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Mobile communication networks represent the next-
generation ubiquitous, intelligent, and converged informa-
tion infrastructure. To meet exponentially evolving de-
mands, mobile networks must provide different capabili-
ties spanning four key dimensions: enhanced bandwidth
scalability, massive machine-type connectivity, ultra-reliable
network stability, and deterministic ultra-low latency—
requiring comprehensive cross-scenario adaptability [1].
Baseband (BB) circuits, serving as the central component in
both base stations and end-user devices, represent the most
technology-dense domain of mobile communication systems.
Conventional development approaches rely on fragmented
processes requiring specialized expertise, heavy R&D invest-
ment, and prolonged timelines, struggling to enable rapid
customization capabilities. Therefore, forging an alternative
pathway, this research proposes a Bayesian model-driven
methodology for BB circuit auto-design—a paradigm shift
in wireless system design automation.

Algorithm unification: A Bayesian model-based uni-
fied framework has been developed for heterogeneous BB
processing modules, enabling cross-module computational
consistency. As shown in Figure 1(a), it is observed that
different BB modules share a unified system model with

y = Hx +n, (1)

where y is the received (RX) signal, H and x are transfor-
mation matrix and transmitted (TX) signal, and n is the
system noise. Therefore, solutions of these BB modules can
be derived from a unified Bayesian expression as

Rij(px) = o nax, (log o (Fi(x)) + l;_ Qi)
j=Hk ’
- x:g;ixuo(loglo(l“i(x)) + l;j Qu);,  (2)

Qji(pr) = 3 Ruj (1),
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where R;; and (Q;; represent the messages sent from differ-
ent directions in each module, and py is the k-th possible

entry of ; [2]. The configurable local function F(x) bridges
unified Bayesian BB algorithms and hardware architectures.

Architecture standardization: Building upon this
Bayesian framework, a homogeneous reconfigurable archi-
tecture has been established for BB circuit implementa-
tions, achieving high-level hardware reuse across functional
blocks. The architecture implements message-updating so-
lutions for different BB modules (including channel esti-
mation, MIMO detection, channel decoding, NOMA detec-
tion, and FFT/iFFT) by configuring the processing elements
(PEs) corresponding to the local functions [3].

Automated design: Most critically, an intelligent de-
sign automation methodology has been pioneered through
architectural homogenization, demonstrating considerable
acceleration in BB system development cycles. We repre-
sent BB modules as parametric formulas [4]:

CP) = Lp,enwm) (Test 55 (M}, M2, M) -6(P = Py), (3)

where C(P) represents an Auto-Generator circuit template
of parameters P, P; and D(P) denote a parameter set and
its domain of definition, s; and S stand for the j-th sub-
module and all sub-modules under parameter set P;, [ ] rep-
resents the cascading of sub-modules, M; is the basic mod-
ule in the circuit library, and §(-) is the Dirac delta func-
tion. With the formulaic representation, we construct the
parametric design space, enabling automatic design space
exploration towards the optimal BB circuit.

The proposed approach involves three distinct yet collab-
orative steps: (1) Auto-Generation, (2) Auto-Estimation,
and (3) Auto-Optimization—collectively forming the Auto®
framework that enables intelligent self-adaptation with
order-of-magnitude reduction in manual interventions.
Auto-Generation constructs a parametric BB circuit design
space, enabling auto-estimation to rapidly evaluate each
candidate solution, which then guides auto-optimization to
identify optimal multi-objective trade-offs.
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Figure 1

(Color Online) (a) Proposed Auto-Design framework; (b) Auto-Generation workflow and user-friendly GUI; (c) Auto-

Estimation workflow and estimation results; (d) Auto-Optimization workflow and design Pareto front.

Auto-Generation. Based on the unified Bayesian model,
we are able to construct a parametric design space with-
out compromising flexibility. As shown in Figure 1(b), our
approach comprises three key steps.

e Developing a low-level circuit library for Bayesian BB
signal processing.

e Expressing BB circuits as non-parametric formulas
based on the circuit library.

e Mapping BB algorithms to parametric formulas.

A low-level circuit library tailored for Bayesian BB sig-
nal processing serves as a base for Auto-Generation. We
design circuits for the shared basic operations in the unified
Bayesian expression as part of the low-level circuit library.
The library aims to cover all necessary components to con-
struct the calculation cores of BB acceleration circuits.

Non-parametric formulas are derived for BB circuits as
intermediate representations. Based on the circuit library,
complex BB circuits are expressed as inter-connected mod-
ules with formulaic representations. Using the established
mapping rules between formulas and circuits, we developed
a register-transfer level (RTL) code generator for circuit for-
mulas. Therefore, the feasible design space for a specified
Bayesian BB algorithm is depicted by mapping the algo-
rithm to different formulas.

High-level mapping methods enable efficient construction
of parametric design space. To facilitate high-level mapping,
general design assumptions are taken, for instance, using
spatial arrays for regular matrix operations, and using piece-
wise polynomial approximation for non-linear operations.

Under such assumptions, mapping methods including space-
time transformation (STT) for systolic arrays are adopted.
Using the mapping methods, we develop parametric formu-
las for high-level arithmetic, where different parameter sets
reduce it to different non-parametric formulas. Following
the above scheme, we map Bayesian BB algorithms to para-
metric formulas. The design space is therefore given by the
domain of definition for formula parameters.

Ji et al. [5] developed an Auto-Generator for belief prop-
agation (BP) polar decoders, the parametric formula is

n—2
BPD(N, M) = BCBY - [ [W - BCBY| - Py
k=1
n—2
xBOBG - Py, - [T [BOBY -7¢], (1)
k=1

where N is code length, M is parallelism, BCB? and BCBi@
represent two types of duplicates of basic computational
blocks, W,? and T,? denote duplicates of different permuta-
tion blocks, and Pp; and Py, denote permutation blocks.
The auto-generator can generate RTL codes within sec-
onds. With design space exploration, Ref. [5] achieved better
energy- and area-efficiency than prior art.

Following the proposed approach, we have developed
auto-generators for various BB modules. By configuring fun-
damental parameters, corresponding RTL codes can be gen-
erated within one second. As shown in Figure 1(b), we have
also developed a user-friendly graphical user interface (GUI)
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for these auto-generators, allowing users to easily configure
parameters and generate RTL codes.

Auto-Estimation. Based on Auto-Generation, Auto-
Estimation enables fast and accurate prediction of key met-
rics for circuits. Auto-Estimation comprises two key steps.

e Building prediction models for modules in the library.

e Conducting a multi-module estimation for hardware.

Single-module estimation serves as the foundation for
large-scale circuit analysis. As depicted in Figure 1(c), to
construct prediction models for each module in the library,
we proposed an abstract syntax tree (AST) explorer for Ver-
ilog hardware description language (HDL) to facilitate the
feature extraction of gate-level netlist and signal. Subse-
quently, machine learning was utilized to train prediction
models based on these features and synthesized PPA met-
rics. When estimating the entire circuit, we decompose the
overall architecture into submodules and obtain the hard-
ware parameters of each submodule. Pre-trained models are
then employed to predict the key metrics of submodules.

A multi-module estimation approach for the entire circuit
enables a more accurate mapping of hardware parameters to
key performance metrics. The approach considers both the
performance metrics of each submodule and the coupling ef-
fects and hardware characteristics that collectively impact
the overall performance. To capture the hardware character-
istics, we employed an enhanced control and data flow graph
to analyze the temporal behavior of submodules and their in-
terconnect relationships. To mitigate the impact of coupling
effects, we proposed a novel graph neural network (GNN) to
extract submodule coupling features from the hardware ar-
chitecture. By accounting for the performance metrics of
each submodule and the coupling effects, we can provide a
reliable prediction of the entire circuit performance.

In previous research, Zhong et al. [6] analyzed the sub-
modules in proposed polar code encoders and estimated
the complexity of their hardware implementations. Encoder
type I comprises M X log, % XOR gates, N — M D flip-
flops, and M xlogy N/M 2-to-1 multiplexers (MUXs), where
N is the code length and M signifies parallelism. Encoder
type II includes M/2 x logy N XOR gates, N — M D flip-
flops, and M x logy N/M 2-to-1 MUXs. Encoder type III
integrates logo M XOR gates, N D flip-flops, and N 2-to-1
MUXs. The analysis established the relationship between
performance metrics and hardware parameters.

Auto-Optimization. After identifying the solution space,
Auto-Optimization aims to fine-tune circuit parameters,
achieving optimal trade-offs among key performance met-
rics. To achieve automated optimization, it is imperative
first to identify the specific parameters within the hard-
ware modules that require optimization. Based on the map-
ping obtained by Auto-Estimation, it is feasible to further
construct the constraints in Auto-Optimization straightfor-
wardly according to performance demands.

Deep reinforcement learning (DRL) is a promising tech-
nique to automatically specialize parameters for different
modules.  Figure 1(d) presents a framework of Auto-
Optimization based on DRL. The Pareto front represents
the set of optimal solutions that cannot be improved in
one objective without degrading another objective. Feasible
points are those that satisfy the constraints of the optimiza-
tion problem. In performance-constrained scenarios, the re-
ward function incorporates performance loss (e.g., frame er-
ror rate) as a hard constraint, defined as

01 exp(_62 Zl wzf(vl))v Al < 67
e = (5)
—p, AL > 0,
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where A/ is performance loss, § is the predefined thresh-
old, 61 and 02 are hyper-parameters controlling the reward
shape, w; is the weight for each optimized variable v;, f(-) is
the estimation function obtained in Auto-Estimation, and p
is the penalty coefficient. Given that BB digital signal pro-
cessing (DSP) algorithms are sensitive to quantization noise,
the action space A is restricted to {a¢| — La < ar < La} to
prevent divergence, where L, is the maximum action. This
bounded action space helps to reduce the risk of severe per-
formance degradation. The state space incorporates the em-
beddings of both module and agent information, including
variable index i, element size size;, and last action as—1.
As shown in Figure 1(d), Ge et al. [7] achieved auto-
optimization for quantization policies and attained an op-
timal trade-off between average bitwidth and BER per-
formance loss in MIMO detectors. Compared to tradi-
tional unified quantization (UQ), the same detector utilizing
the method in [7] demonstrates 2.97x area efficiency and
1.24x energy efficiency with 17.92 Gb/s peak throughput.
Conclusion. This work introduces a Bayesian model-
driven automated design methodology for BB circuits, which
is different from the existing high-level synthesis (HLS) [8]
approach, by establishing an algorithm-architecture co-
optimization framework. It achieves 6.15x higher design ef-
ficiency than conventional template-based approaches. Ex-
perimental validation demonstrates 1.24x energy efficiency
and 1.70x throughput gains over state-of-the-art man-
ual implementations in 6G scenarios. Initial deployment
in distributed MIMO systems reveals promising potential
for automated BB design.
spans diverse DSP domains, including adaptive filters, ma-

The framework’s extensibility

chine learning accelerators, and autonomous driving systems
through its unified Auto® framework.
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