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Abstract Graph neural architecture search (GNAS) has shown promising results in finding the best graph neural network
architecture on a given graph dataset. However, existing GNAS methods still require intensive human labor and rich domain
knowledge when designing the search space and search strategy. To this end, we integrate large language models (LLMs)
into GNAS and present a new GNAS model based on LLMs (GNAS-LLM for short). The basic idea of GNAS-LLM is to
design a new class of GNAS prompts for LLMs to guide LLMs towards understanding the generative task of graph neural
architectures. The prompts consist of descriptions of the search space, search strategy, and search feedback of GNAS. By
iteratively running LLMs with the prompts, GNAS-LLM generates more accurate graph neural network architectures with
fast convergence. Experimental results show that GNAS-LLM outperforms the state-of-the-art GNAS methods on four
benchmark graph datasets, with an average improvement of 0.7% on the validation sets and 0.3% on the test sets. Besides,
GNAS-LLM achieves an average improvement of 1.0% on the test sets based on the search space from AutoGEL.
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1 Introduction

The rapid growth of graph data has propelled the development of graph neural networks (GNNs) to
capture data dependencies between graph nodes. Today, GNNs have been popularly used as an effective
tool for a wide range of graph data applications [1-4]. However, given a graph dataset, designing the
best GNN architecture is a challenging task which heavily relies on manual exploration and domain
expertise. This is because the neural architecture space of GNNs is vast and diverse, with numerous layer
configurations and connectivity patterns.

Recently, graph neural architecture search (GNAS) [5] has emerged as a promising solution for auto-
matically designing GNN architectures. The base idea of GNAS is to manually design a graph neural
architecture search space, based on which a search strategy is developed to explore the search space with
respect to a given evaluation metric. As a result, the best architecture on a validation graph dataset is
returned as the solution of GNAS. Existing GNAS methods can be categorized into three types accord-
ing to their search strategies, i.e., reinforcement learning GNAS [6], differential gradient GNAS [7], and
evolutionary GNAS [8]. Although these GNAS methods have obtained commendable results, the design
of graph neural architecture search algorithms requires heavy manual work with domain knowledge.

Recent advances in natural language processing have introduced a series of powerful large language
models (LLMs) that have shown remarkable language understanding and generation capability. More
importantly, LLMs have been used to design new neural architectures for CNNs [9]. The key idea is
to design a new class of prompts to guide LLMs to pinpoint promising CNNs and learn from historical
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attempts. Inspired by the work, an intuitive question arises as follows: Can we make use of the pow-
erful generation capability of LLMs to generate new graph neural architectures, to alleviate the burden
of manually designing the search space and search strategy of GNAS? Generally, GNAS operations are
different from traditional CNN operations, particularly due to their irregular message passing and aggre-
gation functions, which lead to a more complicated and diverse GNN search space [6,10,11], and thus
the application of large language models to GNAS is very challenging.

This paper aims to answer the above question and explore the utilization of LLMs for GNAS to
generate new graph neural architectures. The core idea is to design a new class of GNAS prompts
for LLMs which can leverage the generation capability of LLMs to generate new GNN architectures.
Specifically, we present a new LLMs-based graph neural architecture search method (GNAS-LLM for
short) which introduces new prompts to guide LLMs towards understanding the search space and search
strategy of GNAS. First, GNAS-LLM takes LLMs as controllers to generate new GNN architectures by
iteratively exploring the search space. Then, GNAS-LLM uses the evaluation results of the generated
GNN architectures as rewards to improve the GNAS prompts. After a few iterations, GNAS-LLM
converges very fast to the best GNN architectures. The contributions of this work are summarized as
follows.

e This represents the first effort to jointly study graph neural architectures and large language models,
where a new model GNAS-LLM is proposed to embed LLMs into GNAS by taking LLMs as the controller
of GNAS.

e A new class of GNAS prompts is designed for LLMs. These prompts can guide LLMs to understand
the search space and search strategy of GNAS. To understand the search space, the prompts use an
adjacency matrix to describe the space with both candidate operations and candidate connections. To
understand the search strategy, the prompts include descriptions of reinforcement learning with both
exploration and exploitation.

e Experimental results indicate that GNAS-LLM can generate better architectures than existing GNAS
methods with less search iterations; e.g., GNAS-LLM reduces 56% iterations on average on the test sets.
The codes of this work are released on GitHub: https://github.com/checkuredu/GNAS-LLM.

Compared with the previous LLM-enhanced neural architecture search (NAS) method [9] designed
for only one search space with a fixed search strategy, GNAS-LLM can adapt to multiple search spaces
and multiple search strategies. We summarize the technical progress from three aspects. First, our
approach is scalable to new GNN operations, where the search space can be easily expanded by adding
new operations to the GNAS prompts. Second, we describe GNN connections between operations in the
GNAS prompts, which enables GNAS-LLM adaptable to new search spaces conveniently. Third, our
approach is adaptable to new search strategies by only revising the search strategy prompt.

2 Related work

2.1 Graph neural architecture search

GraphNAS [6] represents an early effort that uses reinforcement learning to design GNN architectures.
Based on GraphNAS, AutoGNN [12] introduces an entropy-driven candidate model sampling method
and a new weight-sharing strategy to efficiently select GNN components. GraphNAS++ [13] uses dis-
tributed architecture evaluation to accelerate GraphNAS. GM2NAS [14] uses reinforcement learning to
design GNNs for multitask multiview graph learning. MVGNAS [15] is designed for biomedical entity
and relation extraction. Besides, HGNAS [16] and HGNAS++ [17] use reinforcement learning to find
heterogeneous graph neural networks.

Different from reinforcement learning-based GNAS that explores a discrete GNN search space, a new
class of differentiable gradient GNAS methods was proposed to explore a relaxed yet continuous GNN
search space, such as DSS [18], SANE [7], GAUSS [19], GRACES [20], AutoGT [11], and Auto-HEG [21].
SANE focuses on searching for data-specific neighborhood aggregation architectures. DSS is designed for
GNN architecture with a dynamic search space. GAUSS [19] addresses large-scale graphs by devising a
lightweight supernet and employing joint architecture-graph sampling for efficient handling. GRACES [20]
achieves generalization under distribution shifts by adapting a tailored GNN architecture specifically
designed for each graph instance with an unknown distribution. AutoGT [11] introduces an automated
neural architecture search framework that extends GNAS to Graph Transformers. Auto-HeG [21] enables
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automatic search for the neural architecture of GNNs for heterophilic graphs. In addition, AutoGEL [22],
DiffMG [23], MR-GNAS [24], DHGAS [25], and HLWP [26] focus on heterogeneous graphs.

Recently, AutoGraph [27] and Genetic-GNN [8] use evolutionary algorithms to find the best GNN
architectures. G-RNA [28] proposed a unique search space and defined a robustness metric to guide the
search procedure in order to search for defensive GNNs. Zhang et al. [5] and Oloulade et al. [29] surveyed
automatic machine learning methods on graphs. However, these studies have not touched the problem
of using large language models to enhance the GNAS models, which is the focus of this paper.

2.2 Large language models

GPT-4 [30] represents a new generation of AT models that can generate answers with respect to questions
on multi-modal data. In particular, recent efforts have shown that GPT-4 is capable of understanding
graph data [31] and performs well on various graph learning tasks. Moreover, a recent work [32] combines
large language models and graph learning models and uses GPT-4 to reason over graph data. Different
from the GPT models, BERT [33] pre-trains a model on large-scale unlabeled data, and then fine-tunes the
model on specific downstream tasks. Based on BERT, a number of language models were proposed [34,35].
For example, PaLLM [36] is built upon the decoder of Transformers [37]. PaLM 2 [38] uses a larger dataset
and a more complicated architecture and obtains better results than PaLLM.

The integration of graph learning with LLMs has recently attracted extensive attention [39]. TAPE [40]
uses LLMs to generate explanations and pseudo-labels to augment textual attributes of graphs, wherein
LLMs act as a data enhancer. GraphGPT [41] aligns LLMs with graph structural knowledge through
graph instruction tuning. GraphPrompter [42] consists of two main components, i.e., a graph neural net-
work that encodes complex graph information, and an LLM that effectively processes textual information.
Both GraphGPT and GraphPrompter take LLMs as a predictor which directly outputs results.

Recently, large language models have been used for neural architecture search. A pioneering work
GENIUS [9] uses GPT-4 to design neural architectures for CNNs, aiming to explore the generation
capability of LLMs. The key idea is to allow GPT-4 to learn from the feedback of generated neural
architectures and iteratively generate better ones. Experimental results on benchmarks demonstrate that
GPT-4 can find top-ranked architectures after several iterations of prompts. Subsequently, AutoML-
GPT [43] designs a series of prompts for LLMs to automatically complete tasks such as data processing,
model architecture design, and hyper-parameter tuning.

Although the above studies are successful, LLMs have not been used to generate graph neural architec-
tures. Therefore, in this paper, we extend LLMs to the task of generating new graph neural architectures.
This approach can alleviate the burden of manually designing the search space and search strategy of
GNAS and improve the performance of existing GNAS methods.

3 Methods

In this section, we introduce LLMs for GNAS, which consists of a new class of GNAS prompts that can
instruct LLMs to generate new GNNs. Formally, given an LLM model, a dataset G, a GNN search space
M, and an evaluation metric A, we aim to find the best architecture m* € M on a given graph G, i.e.,

m* = argmax A(m(G)), (1)
meM(LLM)

where M(LLM) denotes the search space generated by the LLM, and the metric A can be either accuracy
or AUC for graph node classification tasks.

3.1 GNAS prompts

To solve (1), an essential question is to design a new class of prompts that guide LLMs to generate new
candidate GNN architectures, i.e., M(LLM). The design of GNAS prompts needs to be aware of the
diverse search space and search strategy in GNAS. In particular, the search space in GNAS contains a
large number of candidate operations and candidate connections between operations. The purpose is to
generate previously unseen and better architectures from the search space by using LLMs. Figure 1 gives
an overview of the GNAS-LLM method, and we will discuss three important questions in the following.
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Figure 1 (Color online) An overview of GNAS-LLM. First, GNAS prompts are designed to describe the search task, search space,
and search strategy of GNAS. Then, the GNAS prompts guide LLMs towards generating new architectures within the search space.
Based on the generated architectures, new GNN models are trained on a given graph and tested according to a metric, such as
accuracy. The generated GNN models and their tested results are returned to LLMs as rewards described by the reward prompts.
Repeatedly, LLMs update the GNN models and eventually output the best one.
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Figure 2 (Color online) An illustration of a generated architecture (left) represented by an adjacent matrix (right) in which each
element “1” represents a connection between operations.
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How can LLMs gain awareness of the search space in GINAS? The search space in GNAS
contains candidate operations and candidate connections between operations. As shown in Figure 2, we
define an adjacency matrix to describe connections between candidate operations. Then, the connections
are represented by the adjacency matrix and the operations are included into the GNAS prompts, so that
LLMs can understand the search space.

First, we describe candidate connections in the GNAS prompts. A GNN architecture can be taken as
a sample from the search space. The architecture (sample) can be depicted by a directed acyclic graph
(DAG), where each node represents an operation and each edge represents a connection. For example,
Figure 2 shows a GNN architecture consisting of four operations between input and output, utilizing the
adjacency matrix to describe the operation connections. The connection pattern remains consistent for
all the GNNs within the search space.

Besides candidate connections, we describe candidate operations in the GNAS prompts. Because candi-
date operations contain irregular message aggregation functions, we directly include these functions in the
GNAS prompts and expect LLMs to understand them. Concretely, we include into the GNAS prompts
all the candidate operations obtained from the NAS-Bench-Graph dataset [44]. Typical operations from
NAS-Bench-Graph are GCN, GAT, GraphSAGE, GIN, ChebNet, ARMA, k-GNN, skip connection, and
fully connected layer. Taking the operation GAT for example, we include the following functions in the
prompt:

X/i = aiﬂ-@xi + Z am@xj,
JEN (i)

exp (LeakyReLU (a' [©x;/0x;]))
Zke/\/(i)u{i} exp (LeakyReLU (aT [0©x;]|Oxk]))

@5 =

How to guide LLMs to explore the search space of GNAS? We include into GNAS prompts
the description of the search strategy. The prompts guide LLMs to understand reinforcement learning
which consists of exploration and exploitation. In exploration, we instruct LLMs to globally explore the
entire space. In exploitation, we instruct LLMs to locally sample the best candidate operations from
previously generated candidates.
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Table 1 The GNAS prompts for GNAS-LLM.

Prompt name Prompt template

// Search task

The task is to choose the best GNN architecture on a given dataset. The architecture will be trained and tested
on [Dataset], and the objective is to maximize model accuracy.
// Search space

A GNN architecture is defined as follows: The first operation is input, the last operation is output, and the inter-
mediate operations are candidate operations. The adjacency matrix of operation connections is as follows. [Candidate
Connections], where the (i, j)-th element in the adjacency matrix denotes that the output of operation i will be used
as the input of operation j. There are [Candidate Numbers] operations that can be selected: [Candidate Operations].

Space prompt

// Search strategy
At the beginning, when only a few numbers of evaluated architectures are available, use the exploration strategy
Strategy prompt to explore the operations. Randomly select a batch of operations for evaluation. When a certain amount of evaluated
architectures are available, use the exploitation strategy to find the best operations by sampling the best candidate
operations from previously generated candidates.

Reward prompt Model [Architecture] achieves an accuracy of [Accuracy].

Algorithm 1 Search process of GNAS-LLM.

Require: A pre-trained LLM; the search space M; the graph dataset G; the number of iterations T'; the number of GNNs sampled
at each iteration N;
Ensure: The best GNN architecture m™;
// Global model list, accuracy list, and the best model;
1: M=[],A=[],m" =0
2: Generate a GNAS prompt Pp with search space M, candidate operations, and search strategy;
// Input LLM with the setting of GNAS;
: fort =1to T do
4: M; = LLM(Pp, N);
// Evaluation new GNN architectures;
5: Get the accuracy Ay of M by evaluating on G;
6: M=MUM,, A=AU Ay
7 Select the best m™ from M with respect to (w.r.t.) A;
// Add reward prompt;
8: Generate a reward prompt Pr w.r.t. M and A;
9: Pp = Pp U Pp;
10: end for
11: return m™.

w

Table 1 shows that the GNAS prompts consist of three components, i.e., search task, search space,
and search strategy. According to our experiments, these prompts can effectively guide LLMs to find the
best graph neural architectures on a given graph dataset.

Why GNAS-LLM works? The effectiveness of GNAS-LLM originates from several factors. First,
LLMs are capable of analyzing graph data, as pointed out by previous studies [45-47]. GNAS-LLM, based
on LLMs, is also capable of generating GNN architectures. Second, LLMs can act as the controller of
the GNAS which performs better than existing GNAS controllers. Third, GNAS prompts, by describing
the details of the search space and search strategies, enable LLMs to effectively navigate the search space
and iteratively generate better GNNs.

Note that GNAS-LLM introduces practical improvements to support the unique challenges of GNN
architecture search, comparing GENIUS [9]. First, it accommodates the more complex search spaces
of GNNs compared to CNNs. GNN operations range from meta-operators in methods like AutoGEL
to standard graph convolutional layers, such as those in NASBenchGraph. GNAS-LLM’s flexible design
ensures compatibility with diverse operations, making it suitable for different levels of complexity. Second,
the inclusion of candidate connections in the prompt design allows GNAS-LLM to adapt to complex
GNN architectures and different types of search spaces by explicitly representing connections between
operations. Third, GNAS-LLM supports flexible search strategies by enabling modifications to the search
strategy prompt, making it adaptable to various search methods. These features make GNAS-LLM a
versatile tool for GNN architecture search, efficiently addressing operational diversity and structural
complexity.

3.2 Algorithm

Figure 1 shows that LLMs can be taken as the controller of GNAS and thus generate new GNN architec-
tures from the search space based on the GNAS prompts. The overall process is outlined in Algorithm 1.
To initiate GNAS-LLM, we generate a GNAS prompt Pp and call the LLM to generate a set of new GNN
architectures M;. Based on the output of the LLM, we evaluate the performance of the generated GNNs
M;. The evaluation result A; is taken as the reward, guiding the LLM towards generating better GNN
architectures in the subsequent iterations. By continuously integrating the generated GNNs M and their
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evaluation results A in the reward prompt Pr, the LLM converges fast. In the last step, GNAS-LLM
obtains the best GNN m* generated by the LLM.

4 Experiments

In this section, we conduct experiments to validate the performance of GNAS-LLM. First, we evaluate
the results on a search space with different candidate connections. Second, we test the performance
with respect to different GNAS prompts by changing the candidate operations. Third, we compare
GNAS-LLM with existing GNAS methods. Furthermore, we conduct case studies to show the utility
of our approach under complicated scenarios, including comparisons with differentiable NAS within the
AutoGEL search space, node classification on homogeneous graphs, and link prediction on heterogeneous
graphs. We also evaluate GNAS-LLM across various LLM configurations and use the search space of
Pasca on large graphs.

4.1 Experiment setup

4.1.1 NAS-Bench-Graph benchmark

We build the GNAS search space based on the NAS-Bench-Graph benchmark [44]. There are a total
number of nine operation connections in the NAS-Bench-Graph benchmark. Also, the benchmark contains
a large number of generated graph architectures, which allows the performance of the generated GNN
architectures to be directly queried without actually training the GNN models. The NAS-Bench-Graph
benchmark provides accuracy, rank, parameter sizes, and running time of the generated GNNs on datasets
such as Cora, Citeseer, Pubmed, and ogbn-arXiv.

4.1.2 Baselines

We compare GNNs designed by GNAS-LLM with all the seven GNNs listed in the NAS-Bench-Graph
benchmark. The best results of those GNNs are taken as the baselines. We also compare the proposed
model with other GNAS methods, including Random Search, GraphNAS [6], and Genetic-GNN [8].

4.1.3 Hyperparameters

GNAS-LLM runs 15 search iterations. The number of iterations is constrained by the length of prompts
that the LLMs allow. During each iteration, LLMs generate 10 new architectures. For each architecture
search, we only use one candidate operation connection and nine candidate operations. In the following
experiments, we repeat our method three times and show the best results w.r.t. accuracy on a validation
dataset.

If not otherwise specified, we use GPT-4 with version V20230314 as the default LLM in the experiments.
For all models, we set temperature 7 = 0 for reproducibility. We adopt accuracy as the metric for all
tasks. Additionally, we use all the GNAS baselines to generate N = 10 architectures at each iteration.
Specifically, for Genetic-GNN, the initial population is set to 50, and the number of parent individuals
selected at each iteration is 15. For GraphNAS, the ADAM optimizer is used, with a learning rate of
0.00035. In the experiments involving AutoGEL for the dataset of Cora, Citeseer, and Pubmed, we set
the layer number to 2, the ADAM optimizer with a learning rate of 5E—4, a minibatch size of 128, and
train each generated architecture for 200 epochs with a dropout value of 0.5. And for the dataset of
FB15k-237 [48] and WN18RR [49], we set 1 layer, the use of the ADAM optimizer with a learning rate
set at 0.001, and a minibatch size of 128. We trained each generated architecture for a total of 200 epochs,
implementing a dropout value of 0.1.

4.2 Results on search space

To validate the performance of GNAS-LLM, we run the architecture search algorithm three times using
all of the nine candidate operation connections from the NAS-Bench-Graph search spaces. We then
compare our method with other GNAS methods. Table 2 shows the accuracy and ranks of the designed
GNNs. Given a search space in NAS-Bench-Graph, a rank refers to the accuracy ranking of the designed
GNNs within that space. Figure 3 shows the mean accuracy and variance of the designed GNNs.
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Table 2 Results of GNAS-LLM on nine search spaces of NAS-Bench-Graph w.r.t. accuracy (%) and the corresponding rank
within the search space (numbers in parentheses indicate the rank). The best results are in bold.

Method Space 1 Space 2 Space 3 Space 4 Space 5 Space 6 Space 7 Space 8 Space 9

Random 81.00 (1) 81.37 (64) 81.47 (20) 82.37 (1) 81.40 (42) 81.27 (17) 81.97 (6) 81.07 (30) 81.03 (9)
GraphNAS  80.80 (2) 81.77 (22) 81.80 (5) 81.53 (20) 81.57 (28) 81.67 (4) 81.43 (44) 81.80 (3) 81.03 (9)
Genetic-GNN  80.63 (5)  82.27 (3) 81.80 (5) 81.73 (12) 82.00 (10) 81.87 (2) 82.37 (1) 81.43 (12) 81.47 (4)
GNAS-LLM  81.00 (1) 82.37 (2) 81.80 (5) 82.37 (1) 82.37 (5) 81.87 (2) 82.37 (1) 83.13 (1) 81.70 (2)

83.0. —— Random
—— GraphNAS
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=820/ T B ﬁ?
g - T
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Figure 3 (Color online) The accuracy (%) of the GNNs designed by GNAS-LLM and baselines on nine search spaces of Cora.
Comparing with other baselines, the GNNs designed by our method achieve the highest scores in all search spaces w.r.t. the average
accuracy.

As shown in Table 2, our approach achieves an average accuracy of 82.11% across 9 search spaces,
surpassing the other three baseline methods, where Random achieves better results than the other two
baselines in Spaces 1 and 4, GraphNAS ranks top in Space 3, and Genetic-GNN ranks top in Spaces 3,
6, and 7. Note that our method is competitive to the best baselines on all the nine spaces. In particular,
GNAS-LLM wins all the other baselines by 0.51% on average in Spaces 2, 5, 8, and 9. The most successful
result is on Space 8, where the result beats the best baseline GraphNAS by improving the accuracy of
1.33%.

The results demonstrate that GNAS-LLM achieves top-tier results across all the nine different search
spaces. These results emphasize that GNAS-LLM performs well on different operation connections and
consistently yields satisfactory models. Figure 3 shows that our method achieves higher average accuracy
results than the other methods under the nine different search spaces. In particular, our method finds the
best GNN models in four search spaces (e.g., Spaces 1, 4, 7, and 8). The results show that our method
is capable of designing the best model for a new search space with different operation connections.

4.3 Results on GNAS prompts

To validate the performance of the GNAS prompts, we construct two types of variants of GNAS-LLM
for an ablation study.

First, we test variants by removing parts of the GNAS prompt. We design three variants, namely
‘=Connections’, ‘=Operations’, and ‘—Strategy’, to define prompts without the corresponding descrip-
tion. ‘=Operations’ denotes prompts without the description of the operations. Table 3 shows the results
of GNAS-LLM and the variants. Obviously, when excluding any item of the search space and search strat-
egy descriptions, the variants can still output satisfactory results. However, these variants output worse
results than GNAS-LLM. On four datasets, GNAS-LLM exhibits a modest average accuracy improve-
ment of 0.52% over the variants, alongside a ranking advancement of 15 places. The variant =Operations
consistently outperforms or, at the very least, equals the other variants across all four datasets. Con-
versely, the =Connections variant lags behind other variants on all datasets, which may suggest the
relative importance of different components to a certain extent. According to the above results, we can
conclude that all the parts of the GNAS prompts (e.g., space prompt and strategy prompt) are helpful
in generating GNN architectures, which suggests that the GNAS prompts are capable of avoiding local
optima by iteratively running the GNAS prompts.

Second, we test two variants of the GNAS prompts using new search strategies and candidate con-
nections. We construct the ‘with Fvolutionary’ variant by replacing the search strategy of the GNAS
prompt with evolutionary algorithms. Furthermore, we construct the ‘with T'uple’ variant by describing
the candidate operation of the GNN architecture using the operation tuple list. Note that the design of
the ‘with FEvolutionary’ variant aims to enable LLMs to autonomously design candidate operations by
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Table 3 Results of the variants of GNAS prompts w.r.t. accuracy (%) and the corresponding rank within the search space
(numbers in parentheses indicate the rank). The best results are in bold.

Dataset GNAS-LLM —Operations —Connections ~Strategy with Evolutionary with T'uple
Cora 83.13 (1) 82.00 (26) 81.80 (49) 81.80 (49) 82.00 (26) 81.47 (171)
Citeseer 71.37 (2) 70.80 (20) 70.17 (119) 70.80 (20) 71.37 (2) 70.67 (30)
Pubmed 78.30 (3) 78.03 (11) 78.03 (11) 77.90 (16) 78.00 (12) 77.80 (33)
arXiv 72.39 (1) 72.28 (9) 72.07 (98) 72.28 (9) 72.08 (98) 72.27 (10)

Acc: 80.40%

Acc: 80.80% y GCN
|

Crossover

Acc: 79.87%

Mutation Acc: 81.07%
Ace: 79.00% ([N ) e

Before Iteration 5 Before

i . — =

(a) The GNN design process of GNAS variant "with Evolutionary "

(b) with Evolutionary (c) with Evolutionary (d) GNAS-LLM (e) GNAS-LLM
Iteration 1-5 Iteration 10-15 Iteration 1-5 Iteration 10-15

Figure 4 (Color online) Analysis of search strategy prompts in GNAS-LLM. (a) LLMs can comprehend and execute the given
search strategy prompt. The ‘with Ewvolutionary’ variant follows the evolutionary search strategy prompt and generates new
architectures by applying crossover and mutation to high-performing GNN architectures. (b)—(e) The percentage of GNN operations
selected by LLMs under different search strategy prompts. The results highlight the influence of varying search strategies on LLMs
during architecture search.

organizing the edges within the operation tuple list. As shown in Table 3, the variant ‘with Fvolutionary’
achieves comparable results with respect to GNAS-LLM on the Citeseer dataset, while performing below
GNAS-LLM by an average of 0.58% on the remaining three datasets. This shows that the original search
strategy is more adept at handling these three datasets than the evolutionary search strategy. Meanwhile,
the variant ‘with Tuple’ underperforms GNAS-LLM on all four datasets, with an average drop of 0.75%.
This indicates that LLMs are capable of understanding the description of a model architecture using the
adjacency matrix and the operation lists.

Third, to investigate whether adding the name of the dataset in our prompt would lead to information
leakage, we construct a variant of ‘—Dataset’ by removing all related information about the dataset from
our prompt. The results of GNAS-LLM and its variants show competitive results. They achieve the same
results on the Cora and Citeseer datasets, with accuracy of 83.13% and 71.37%, respectively. On the
arXiv dataset, GNAS-LLM outperforms ‘—Dataset’ by a margin of 0.12% in terms of accuracy. However,
it lags by 0.30% in accuracy on Pubmed. From the results, we can conclude that revealing the name of
the dataset in the prompt does not significantly cause information leakage.

Finally, to evaluate the ability of LLMs to understand and follow specified search strategies, we con-
ducted experiments analyzing the impact of search strategy prompts, as shown in Figure 4. Initially, we
employed the evolutionary search strategy prompt as a case study to assess whether LLMs can faithfully
execute the principles of an evolutionary algorithm. Figure 4(a) demonstrates that the GNAS-LLM vari-
ant with ‘Evolutionary’, utilizing the evolutionary search strategy prompt, successfully adheres to the
evolutionary search strategy throughout the GNAS process. Furthermore, to investigate the influence
of different search strategy prompts, we analyzed the distribution of GNN operations designed by the
LLM under varying strategies, as illustrated in Figures 4(b)—(e). Specifically, in Figure 4(b), the ‘with
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Table 4 Results of graph neural architecture search on NAS-Bench-Graph w.r.t. accuracy (%) and the corresponding rank within
the search space (numbers in parentheses indicate the rank). The best results are in bold. The second best results are underlined.

Method Cora Citeseer Pubmed arXiv
Val Test Val Test Val Test Val Test
ChebNet 79.33 77.33 67.30 69.00 75.37 75.13 72.31 73.53
GCN 82.27 79.00 69.10 71.13 77.47 78.13 72.03 73.10
GraphSAGE 80.13 78.47 68.80 69.53 77.13 77.93 71.97 72.70
GAT 81.80 79.73 69.27 68.73 77.20 78.67 71.20 73.10
GIN 79.83 78.93 68.50 68.33 75.93 79.67 66.60 67.80
k-GNN 78.40 77.07 66.60 65.73 74.50 78.33 67.95 69.07
ARMA 79.17 76.27 66.03 68.67 75.50 75.53 71.76 73.07

Random-NAS  82.37 (8)  79.80 (3139) 70.66 (29) 70.13 (1449) 77.63 (57) 80.20 (55)  72.18 (32) 73.33 (60)
GraphNAS  81.80 (49)  79.60 (3997) 70.56 (35) 70.20 (1222)  78.27 (4)  78.47 (5071) 72.10 (79)  73.50 (9)
Genetic-GNN  82.37 (8)  79.80 (3139) 70.67 (30)  70.93 (261)  78.27 (4)  78.47 (5071) 72.21 (18) 73.53 (5)
GNAS-LLM  83.13 (1) 80.93 (84) 71.37 (2) 70.07 (1546) 78.30 (3) 79.33 (1031) 72.39 (1) 73.33 (61)

Table 5 Results of three architecture search w.r.t. accuracy (%). The best results are in bold. The second best results are
underlined.

Cora Citeseer Pubmed arXiv
Method

Val Test Val Test Val Test Val Test
Random 80.98 0.13 79.69 0.31 70.16 0.44 69.96 0.37 77.43 0.24 79.49 0.91 72.14 0.07 73.31 0.04
GraphNAS 81.01 0.10 79.69 0.20 70.01 0.48 70.11 0.21 77.80 0.52 79.36 0.84 72.03 0.06 73.33 0.17
Genetic-GNN  81.17 0.54 80.27 0.68 70.28 0.40 70.02 1.00 77.90 0.33 78.89 1.00 72.15 0.08 73.41 0.13
GNAS-LLM 82.76 0.65 80.93 0.00 71.19 0.31 70.22 0.27 78.03 0.23 79.87 0.46 72.29 0.09 73.41 0.07

Evolutionary’ variant is prompted to maximize exploration of diverse GNN architectures during the
initial stage; in Figure 4(c), it adheres to the evolutionary algorithm search strategy; in Figure 4(d), it
prioritizes an exploration search strategy; and in Figure 4(e), it emphasizes the exploitation strategy.
The experimental results demonstrate that the behavior of LLMs in architecture search is modulated by
the choice of search strategy prompt.

4.4 Results on graph neural architecture search

To evaluate the performance of GNAS-LLM on graph neural architecture search, we compare GNAS-
LLM with reinforcement learning GNAS, evolutionary GNAS, and differential gradient GNAS on Cora,
Citeseer, Pubmed, and arXiv. We compare the GNNs discovered by our method with these baseline
GNAS methods.

Table 4 shows the comparisons between the GNNs discovered by GNAS-LLM and other GNAS methods
w.r.t. the accuracy and rank of GNNs on NAS-Bench-Graph. Obviously, the GNN models generated by
our method are at the top of the entire search space in terms of validation accuracy. The results confirm
the efficacy of our method in designing GNNs. Specifically, our approach achieves an average of 0.42%
accuracy improvement on the validation dataset compared with the baseline methods. In particular, our
method can design the best GNN architectures for both Cora and arXiv w.r.t. accuracy on the validation
set.

While the generated architectures show exceptional results on the validation set, their results on the
test set may not always be the best. Furthermore, considering the Pubmed dataset, the best model on the
validation set ranks 3, whereas on the test set drops to 1031. This suggests an obvious gap between the
validation and test sets, highlighting the need for a more precise and robust model evaluation approach
to GNAS. Utilizing methods such as variance analysis on the validation set and incorporating confidence
intervals for selection purposes could enhance the accuracy and reliability of model evaluations in the
GNAS tasks.

In Table 5, we show comparison of the performance of the architecture search under different validation
and test sets. Our method procures favorable results on both test and validation sets across four datasets,
with an average increase of 0.74% on the validation sets and of 0.29% on the test sets.

Moreover, we test the dynamic evolution of the best architecture on the datasets. The results are shown
in Figure 5. The GNAS-LLM refines the designed GNN architecture. Once the backbone architecture is
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Figure 6 (Color online) Results of the baseline methods with 200 architecture search iterations. GNAS-LLM runs less than 15
search iterations and then converges to the best GNN architectures.

set, the operations from the existing best architecture continuously replace, adapt, and refine the archi-
tecture. Taking the experiments on Cora as an example, GNAS-LLM initially randomly selects several
architectures for performance evaluation, from which it identifies architectures with better performance,
such as the first and second architectures in Figure 5(a). Subsequently, for the existing higher-performing
architectures, some operations are fixed, while others are replaced for exploration, as exhibited in the 3rd,
4th, 5th, 6th architectures in Figure 5(a). GNAS-LLM fixes the first two operations in this architecture
and replaces the final two operations, deriving a better architecture.

In order to showcase the advantage of our method at the convergence, we set the search iterations of
the baselines to 200, while our approach only carries out 15 iterations of the architecture search, because
the input tokens are limited by GPT-4. The results are shown in Figure 6. The experiments on Citeseer
and arXiv show that our method surpasses all the baselines because the baseline method cannot find a
better GNN than our method even with increasing search iterations. Moreover, experiments on Cora show
that the Random method can find the GNN comparable to our method using more than 50 iterations.
Additionally, experiments on Pubmed show that Random and GraphNAS can find GNNs with more than
80 iterations and achieve 0.2% improvement in accuracy compared to our method. In conclusion, our
method can find well-performing GNNs within 15 iterations on the benchmark datasets. In other words,
our approach will explore fewer candidate GNNs to find the best GNN architectures.

To further showcase the time efficiency of our approach, we conducted a comparison with respect to
the architecture validation time with the baseline methods of 200 iterations. Our approach requires only
15 architecture search iterations. As depicted in Figure 7, our method converges to the final results faster
than all the baselines, including the communication time with the GPT-4 server. The communication
time with the server is almost negligible, particularly for large datasets.

We compare the top 10 candidate GNNs designed by our method and the baselines during the archi-
tecture search. Experimental results show that the GNNs designed by our method are closest to the best
GNNs on the validation set. For example, on Cora and arXiv, the top-two architectures generated by our
method are better than the baselines w.r.t. accuracy on the validation set. Moreover, on Cora, Pubmed,
and arXiv, one of the GNNs generated by our method achieves the best accuracy result on the test set,
compared with the GNNs designed by baselines.
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Figure 7 (Color online) Results of GNAS-LLM and the baseline methods with respect to search time cost.

Table 6 Results of architecture search with the AutoGEL search space. The best results are in bold.

Top 1 Avg. of Top 2
Test Val Test Val Test Val Test

0.00 89.30 0.00 89.24 0.25 89.58 0.28 88.98 0.30 89.56 0.41 88.55 0.51 89.70 0.40
0.00 91.51 0.00 89.48 0.00 91.14 0.37 89.38 0.09 90.73 0.42 89.34 0.09 90.62 0.42
0.00 77.33 0.12 74.59 0.00 77.60 0.29 74.39 0.18 77.84 0.30 73.97 0.48 77.43 0.60
0.00 78.08 0.00 75.11 0.08 77.70 0.38 75.08 0.10 77.33 0.39 74.93 0.18 77.55 0.55
0.05 89.53 0.02 89.18 0.11 89.57 0.06 89.05 0.18 89.55 0.10 88.82 0.29 89.48 0.19
0.09 89.62 0.04 89.45 0.09 89.64 0.09 89.39 0.08 89.66 0.17 89.34 0.10 89.67 0.20

Avg. of Top 5 Avg. of Top 10

Method

Dataset
Val

AutoGEL 89.48
GNAS-LLM 89.48
AutoGEL  74.59
GNAS-LLM 75.19
AutoGEL  89.19
GNAS-LLM 89.48

Cora

Citeseer

Pubmed

4.5 Case study 1: Comparing with AutoGEL

We expand GNAS-LLM into the search space within AutoGEL to demonstrate the superiority of our ap-
proach. Because Autogel runs experiments on Cora, Citeseer, and Pubmed, we also conduct comparisons
on these datasets, using the search space and experimental configurations of AutoGEL. The results of
the AutoGEL method are obtained by executing their codes under our testing environment.

The results in Table 6 indicate that the best GNN architecture designed by our approach outperforms
AutoGEL on the validation sets and test sets on all the three datasets. Our approach shows average
performance enhancement of 0.3% on the Validation set and 1.02% on the Test set in comparison to the
best-designed GNNs. The average improvement for the top two models is 0.34% on Validation and 0.58%
on Test, while the top five models exhibit an average increase of 0.48% on Validation and 0.59% on Test.
Moreover, the top ten models demonstrate an average improvement of 0.76% on Validation and 0.41%
on Test. The best performance improvement is from the Cora dataset, where the improvement of the
best model reaches 2.21%. On the test set of Citeseer, the results of the top five models are inferior to
the baseline.

To sum up, the case study on AutoGEL search space shows that our method can efficiently adapt to new
search spaces and design the best GNNs. Furthermore, our method outperforms the differential-based
GNAS method such as AutoGEL in terms of accuracy.

4.6 Case study 2: Comparing with other LLMs

We conduct experiments on multiple LLMs, such as ChatGLM3-6B [50], GPT-3.5-turbo [51], and PaLM
2 [38]. For the GPT-3.5-turbo and Palm 2 models, we call their online APIs, while for the ChatGLM3-6B
model, we download and run locally.

The results of the experiments are shown in Figure 8(a). GPT-4 achieves the best performance across
all the datasets. On average, GPT-4 obtains a rise of 0.83% compared to other models, and ranks higher
on the four datasets. The best result is reported on the Cora dataset, with a rise of 1.8%. On Pubmed,
PaLLM 2 is slightly better than GPT-3.5-turbo. PaLM 2 performs better on the arXiv and Cora datasets.
Conversely, GPT-3.5-turbo outperforms PalLM 2 on the Citeseer dataset. The ChatGLM model has the
worst results on all three datasets except Cora.

It is intuitive that a wider exploration of candidate architectures within a single GNAS task increases
our chance to discover better architectures. Thus, we count the average number of unique architectures
found by various LLMs during the GNAS iterations, as in Figure 8(b).

As shown in Figure 8(b), GPT-4 discovers the most unique architectures across all the four datasets,
with an average of 123.8 unique architectures. It also achieves the best performance across all the four
datasets. In contrast, ChatGLM3-6B discovers fewer number of unique architectures, only 9.0 across the
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Figure 8 (Color online) Results of case study on architecture searching with different LLMs. (a) The accuracy of GNNs designed
by different LLMs; (b) the number of distinct architectures generated by LLMs during architecture search.

Table 7 Results of LP task on knowledge graphs w.r.t. MRR and HitsQN. The best results are in bold.

Model FB15k-237 WNI18RR
MRR Hits@10 Hits@3 Hits@1 MRR Hits@10 Hits@3 Hits@1
AutoGEL 0.3518 0.5305 0.3846 0.2626 0.4630 0.5255 0.4761 0.4293
GNAS-LLM 0.3539 0.5319 0.3873 0.2646 0.4693 0.5281 0.4818 0.4371

four datasets, and thus exhibits the worst performance. On the Citeseer dataset, GPT-3.5-turbo discovers
a larger number of unique architectures and exhibits better results than PaLM. However, on the arXiv
dataset, PaLM 2 wins with 67.3 unique architectures and 72.0% accuracy. It is evident that the number
of unique architectures found by LLMs during multiple rounds of search impacts the performance of the
LLMs. LLMs that explore more unique architectures generally have a higher chance to find a better
GNN.

The case study demonstrates that our method can be extended to various LLMs. In order to evaluate
the inference capability of different LLMs on GNAS tasks, we use the number of unique architectures
evaluated by LLMs during the architecture search as an evaluation metric.

4.7 Case study 3: Comparing in heterogeneous graphs for link prediction

To investigate whether our method can be generalized to heterogeneous graphs and new learning tasks,
we further conducted link prediction on heterogeneous graphs. Specifically, we continued to use the search
space and experimental settings of AutoGEL and conducted searches on the datasets FB15k-237 [48] and
WNI8RR [49]. As the results shown in Table 7, Our method outperforms AutoGEL in terms of all the
four metrics on the two datasets, demonstrating the good generalization of our method. In terms of the
MRR metric, GNAS-LLM is on average 0.42% ahead. Meanwhile, in the Hit@QN metric where N is 10,
3, and 1, respectively, our method is on average most ahead in Hit@1, reaching 0.49%.

The case study on heterogeneous graph link prediction can further show GNAS-LLM’s potential ap-
plicability to a wide range of GNN design problems.

4.8 Case study 4: Comparing on a large graph

We conduct an experiment on a large graph dataset, ogbn-products [52], which contains 2449029 nodes
and 61859140 edges. Each node has 100 features, and a total of 47 different node classes. We use the
functions provided by the SGL library [53]. For the search process, we use GNAS-LLM to search 10
architectures in each of the 15 rounds. We also use random search and Pasca [53] as baselines, exploring
a total of 150 architectures. Ultimately, our method achieves an accuracy of 70.86% on the test set, which
is 0.31% higher than 70.55% achieved by the random search and 1.36% higher than 69.50% achieved by
the Pasca.

In the case study, we compared our approach with the baseline in the search space specifically designed
for large graphs, and our method achieved leading results. This demonstrates that our approach can also
handle the architecture search of large-scale graphs.
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5 Discussion

Based on the experiments, we have the following observations and discussions.

Observation 1. LLMs are capable of finding the best graph neural architectures using
the GINAS prompts. As shown in Table 4, GNAS-LLM performs better than the baseline methods on
average, indicating that LLMs indeed understand the graph architecture search task and are capable of
using the GNAS prompts for learning. To sum up, LLMs are capable of running architecture search on
graphs under the GNAS prompts.

Observation 2. The adjacency matrix outperforms edge lists in guiding LLMs towards
generating accurate GNN architectures. As shown in Table 3, the variant of GNAS-LLM “with
Tuple”, which describes model architecture using triplets, underperforms GNAS-LLM by 0.75% on av-
erage across four datasets. This indicates that the adjacency matrix and operation list help LLMs
understand GNN architectures. Recent efforts to employ LLMs for graph analysis tasks use edge lists as
input, which shows restricted performance [47]. Nevertheless, while the adjacency matrix format proves
effective, it consumes plenty of tokens within LLMs.

Observation 3. GPT-4 explores the largest number of unique graph neural architectures
by reducing the number of repeated neural architectures. Figure 8(b) shows the number of unique
graph neural architectures designed by different LLMs during the search process, with GPT-4 exploring
the most unique architectures across all the datasets. In Figure 8(a), GPT-4 also achieves the best
results on the four datasets. These results indicate that with the largest number of parameters amongst
the four LLMs, GPT-4 performs the best on the GNAS task, by avoiding unnecessary computations on
the architectures that are different but close.

Observation 4. GNAS-LLM outperforms traditional RL-based and evolution-based GNAS
methods by running fewer times of iterations, which shows fast convergence of GNAS-
LLM. The experiments demonstrate that our method is capable of identifying the best model on the
given validation set. As shown in Figure 6, GNAS-LLM, which uses only 15 iterations (including 150
GNNs evaluated), outperforms RL-based and genetic-based GNAS methods with 200 training iterations
(including 2000 GNNs evaluated) on Cora, Citeseer, and arXiv. Therefore, it is a good solution to use
LLMs for the complicated GNAS tasks.

Observation 5. LLMs are sensitive to the search strategy, where a well-designed search
strategy prompt is important. As shown in Table 3, the variant of “~Strategy”, which removes the
search strategy from the GNAS prompts, causing the ranking drop of the generated architectures from
1.75 to 23.50. The variant “with Evolutionary” which uses the evolutionary algorithm as search strategy
also underperforms GNAS-LLM with an average ranking drop about 43.67 on the datasets. This result
indicates that a well-designed search strategy for LLMs is helpful. Furthermore, on the Cora, Pubmed,
and arXiv datasets, replacing the GNAS-LLM search strategy with an evolutionary algorithm leads to
worse results than removing the GNAS-LLM search strategy. This indicates that LLMs are sensitive to
the search strategy [47].

6 Conclusion

In this paper, we present a new graph neural architecture search method based on large language models,
namely GNAS-LLM. We design a new class of GNAS prompts that enable LLMs to understand existing
graph search space, search strategy, and search feedback. By leveraging the powerful generative capability
of LLMs, GNAS-LLM generates better GNN architectures than existing GNAS methods. Experimental
results show that GNAS-LLM can generate the best GNN architectures by exploring 97.5 GNN architec-
tures on average on the benchmark datasets. Moreover, ablation studies show that the GNAS prompts
are successful in generating accurate architectures. Last but not least, the reward of the GNAS prompts
promotes fast convergence of GNAS-LLM by continuously fine-tuning the prompts based on the model
evaluation feedback.

In the future, we will test the robustness and adaptability of GNAS-LLM when meeting a broader
range of GNN architectures. It is also interesting yet challenging to embed LLMs into heterogeneous
graph neural architecture search where the search space and search strategy are more complicated. The
method still relies on computationally intensive LLMs, which limits their use in low-resource settings.
Therefore, developing a computation-efficient GNAS-LLM is also valuable.
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