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Abstract In the context of enhancing adversarial transferability along the line of surrogate refinement, this paper investi-

gates transferable black-box attacks and proposes propagation rectified attack (PRA), which rectifies both the forward and

backward propagation of the surrogate. Specifically, on rectifying the forward propagation, we develop multi-scale feature

rectification (MSFR), which applies the feature rectifications to different levels of features, encouraging the forward prop-

agation to be in the proper status of adversarial optimization, and highlighting the necessity and benefits of multi-scale

decays for enhancing transferability, which has been ignored by existing studies. Additionally, for the backward propaga-

tion, existing studies only pursue the smoothness of the alternative activation derivative. Instead, we derive a more feasible

and comprehensive conclusion. First, the derivative of the activation should be non-negative and monotonic, maintaining

the gradient integrity. Besides, its second derivative should have a certain degree of magnitude near zero. Based on these

findings, we further propose adaptive activation rectification (AAR), which takes the specificity of the features from each

layer into account, thereby building a more effective activation alternative. Our evaluations are performed on two widely

adopted datasets: ImageNet (with average gains of +13.85% over ten classical CNN models and +15.38% over six non-

conventional-CNN models) and CIFAR-10 (with average gains of +5.5%). Codes will be released at https://github.com/

phyyyy/PRA.
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1 Introduction

Deep neural networks (DNNs) have been widely applied in various areas such as image understanding [1–
8], underscoring the urgent concerns regarding their security. Among these concerns, adversarial attacks
have emerged as a significant challenge, exposing the profound vulnerability of DNNs to such threats [9–
11]. To date, these attacks have posed serious risks to almost all the methods based on DNNs for existing
vision tasks such as image classification [12–18] and object tracking [19–21], threatening the reliability
and security of these systems. In this regard, researchers have dedicated significant efforts to studying
adversarial robustness [9, 10, 22, 23]. Generally speaking, black-box attacks, which do not require access
to the internal information of the victim model, exhibit a more severe threat to information security.

In the black-box setting, transferable black-box attacks are particularly concerning compared to query-
based methods [24, 25], especially when the opportunity for numerous queries is limited. Therefore,
studying transferable attacks is essential for understanding the potential vulnerabilities of DNNs and
developing effective defenses to protect sensitive information. Within this research domain, modifying
the propagation of the surrogate model has been shown to be an effective strategy for enhancing the
transferability of such attacks. However, previous efforts [26–29] usually focused on rectifying either
the forward or backward propagation alone. Instead, this paper introduces a bidirectional approach,
propagation rectified attack (PRA), which simultaneously rectifies the forward and backward propagation.

Specifically, during forward propagation, applying perturbation decay to a single intermediate layer
is proven to be a promising way [27]. However, simply applying perturbation decay to one layer risks
the possibility that the decayed perturbations may be amplified by subsequent layers [30], potentially
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Figure 1 (Color online) Qualitative results. (a) Spectrum attention maps [31] in discrete cosine transform space, with the specific

inputs indicated by the top caption. In summary, a broader range of differences means more levels of information distortions.

(b) Attention maps of different inputs.

allowing the perturbations to escape the constraints of the decay operation. Thus, encouraging the entire
forward propagation to be in a proper adversarial optimization state1) could better address this limitation.
Moreover, since different levels of features contain varying information, limiting the decay to only the
intermediate-level features ignores the usage of the other levels of features, making it somewhat one-sided.
To this end, we develop multi-scale feature rectification (MSFR), which covers a broader attention range,
involving the features at different levels. Based on the above analysis, this comprehensive approach
facilitates the perturbations containing more levels of information, achieving a higher level of distortions.
As shown in Figure 1(a) [31], MSFR achieves more intense drifting on attention regions than ILPD, in
both the range (referring to the contours in the upper left and lower right) and intensity (referring to the
overall differences). This means that MSFR exhibits broader and stronger information distortions than
ILPD, thereby ensuring higher transferability.

Meanwhile, on the backward propagation rectification, existing studies usually pursue replacing ReLU
with the specific alternative, of which the derivative is smooth. However, are there other necessary char-
acteristics of the ideal alternative activation? To answer this question, we conduct extensive explorations
and conclude that the smoothness alone is insufficient. Instead, the derivative of the alternative acti-
vation should first be non-negative and monotonic, and it also should maintain the gradient integrity2).
Accordingly, Softplus-β might be a suitable alternative activation. Nevertheless, we further reveal an un-
precedented insight, i.e., the second derivative of the activation should have a certain degree of magnitude
near zero (see Subsection 3.4 for detailed explanation). Meanwhile, considering that the characteristics
across different layers usually vary a lot, using a fixed β and simply aligning them to the same setting may
not be entirely appropriate. Thus, we propose adaptive activation rectification (AAR) for the backward
propagation rectification, where AAR adaptively adjusts the β of each Softplus-β according to its input
features. Consequently, as affirmed by Figure 1(b), AAR can effectively shift the attention of the victim
model further compared to other methods, thereby enhancing the transferability.

Our contributions are: (1) we propose PRA, a bidirectional method that incorporates both the forward
and backward propagation rectifications; (2) in our PRA, we propose MSFR that applies the perturbation
decays to different levels of features, encouraging the forward propagation to maintain a proper adversarial
optimization state and overcoming the issue of incomplete utilization of features when applying decay to
a single intermediate layer; (3) meanwhile, we clarify the incomplete definition of the ideal substitution
activation used during backward propagation in previous studies, and further propose AAR that considers
the specificity of the features from each layer; (4) we perform extensive experiments over numerous models
on the ImageNet and CIFAR-10 datasets, and these results demonstrate the significant superiority of our
PRA.

2 Related work

2.1 Adversarial attacks

In general, adversarial attacks can be broadly classified into white-box and black-box attacks. In short,
white-box attacks assume that the attacker can access the gradients of the victim model. In contrast, the
black-box setting implies that the attacker lacks any knowledge except for the training data of the victim

1) In this paper, “adversarial optimization state” refers to the state where an obstacle opposing the optimization objective is

introduced, and we achieve this state by decaying the perturbed features.

2) In this paper, “gradient integrity” means that no truncation is performed on the gradients during backward propagation.
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model. However, the practical applicability of white-box attacks could be limited, as direct access to the
internal information of the victim model is often unavailable in real-world scenarios. Thus, the study on
black-box attacks is more urgent, to some extent. To date, black-box attacks typically include query-
based and transfer-based attacks. Among them, query-based attacks [24,25] involve interacting with the
victim by conducting a series of queries and obtaining the outputs to infer the decision boundaries. In
contrast, transfer-based attacks craft adversarial examples on a local surrogate model.

2.2 Transfer-based attacks

In the field of transfer-based attacks, existing research can be roughly categorized into several parallel per-
spectives, including input transformation, gradient stabilization, advanced objective, and surrogate refine-
ment. To be short, input transformation [32–34] involves applying feasible transformations to the input
data, thereby enhancing the transferability of adversarial examples. Gradient stabilization is also widely
studied in transfer-based attacks [35–37], focusing on the design of more stable gradient update strate-
gies. Besides, the scope of advanced objective involves designing more effective objective functions that
can provide further performance gains in terms of transferability. For example, some of the approaches
in this area design feature-level objective functions [26, 38], or leverage integrated gradients [39, 40] to
build new objectives. Surrogate refinement focuses on refining the surrogate model to enhance the ef-
fectiveness of the attack. These approaches can be categorized into forward or backward refinements.
For forward refinement, intermediate-level attack++ (ILA++) [41] enhances transferability by mapping
intermediate-level feature discrepancies to prediction losses using linear regression. Intermediate-level
perturbation decay (ILPD) [27] improves the transferability by applying perturbation decay to a single
layer. For backward refinement, skip gradient method (SGM) [29] encourages prioritizing the gradients
propagated through the skip connections over residual modules in ResNet-like neural networks. Linear
backward propagation (LinBP) [28] performs the backward propagation in a more linear manner. It
maintains the forward propagation normally but restores a proportion of the gradients from the inacti-
vated neurons while retaining the gradients from the activated neurons. Backward propagation attack
(BPA) [42] further proposes to replace the conventional activation, ReLU, with SiLU and incorporates
the softmax with temperature to calculate the derivative of max-pooling.

As can be found, the substantial differences between our PRA and these studies lie in: (1) our PRA is
a bidirectional approach that incorporates the rectifications for both forward and backward propagation,
rather than focusing on one of them; (2) the MSFR of PRA is a comprehensive strategy that applies decays
to different levels of features, thereby leveraging a wider range of features and achieving more extensive
information distortions; (3) the AAR of PRA confirms more concrete and feasible properties of the ideal
activation alternative, i.e., being non-negative and monotonic, maintaining the gradient integrity, and
having a second derivative with a certain magnitude near zero. Additionally, it also adaptively accounts
for the specificity of the features from each layer.

3 Methodology

3.1 Problem formulation

The basic goal of adversarial attacks is to find the adversarial example xadv that causes the model f to
misclassify the input. In general, the perturbation δ in xadv is typically constrained by ℓp norm to ensure
its imperceptibility: ‖δ‖p 6 ǫ. Formally, the above description can be expressed as

xadv = x+ δ s.t. f(xadv) 6= y, (1)

where x is the clean input, y is the one-hot ground truth.
In the black-box setting, a surrogate model fs is used to generate adversarial examples to attack the

victim model ft. In this context, the perturbation δ is usually optimized to maximize the loss function
L of the surrogate model, as stated by

δ = arg max
‖δ‖p6ǫ

L(fs(x+ δ),y). (2)

To achieve this, a commonly adopted attack framework is the gradient-sign based iterative approach,
where the adversarial example at the i+ 1 iteration is formulated as follows:

xadv
i+1 = Π255

0 (x+ δi+1), δi+1 = Πǫ
−ǫ(δi + α · sign(∇xL(fs(x+ δi),y))), (3)
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Figure 2 (Color online) Sketches of the key components in our PRA. (a) Illustration of our MSFR, which periodically applies

perturbation decays to the layers highlighted by purple blocks. Its operation is formulated in the dotted box. (b) Illustration of our

AAR, which rectifies the derivative of the activation during the backward propagation. Specifically, we use the proposed A′(zi) to

replace A(zi).

Algorithm 1 Algorithm of our PRA.

Definitions: The adversarial example at the i-th iteration x
adv
i , clean example x, the number of attack iterations T .

Definitions: x
adv
1 = x.

for i← 1 to T do

// Keeping the activation the same as the default one (ReLU) in the surrogate;

Feeding x
adv
i and x to the surrogate;

Applying MSFR via Eqs. (6) and (7) to the shallow, intermediate, and deep layers;

Calculating current loss via Eq. (4);

// Applying AAR via replacing all the activations with our adaptive Softplus-β;

Acquiring x
adv
i+1 via Eq. (3);

end

Adversarial examples: xadv = x
adv
T .

where Πb
a(·) clips its input to the interval [a, b], α is the step size, and sign(·) represents the sign function.

Generally, for the loss function L, we use the cross-entropy loss as the objective, as shown in

LCE(f(x+ δ),y) = −

C
∑

i=1

yi log f(x+ δ)i, (4)

where C is the number of classes, yi is the i-th entry of y, and f(x+ δ)i is the probabilities for class i.

3.2 Method overview

In summary, our PRA involves two novel approaches, multi-scale feature rectification, and adaptive
activation rectification, as illustrated in Figure 2. For ease of implementation, we provide the overall
pseudo-code, outlined in Algorithm 1. Next, we will describe the concrete forms of our MSFR and AAR.

3.3 Multi-scale feature rectification (MSFR)

In this paper, we denote the surrogate model as fs(x) = G(H(x)), where G stands for the classification
head and H represents the feature extractor. Then, the architecture of H is represented by

H = Hs ◦Hm ◦Hd, (5)

where Hs, Hm, and Hd represent shallow, intermediate, and deep levels of feature extractors, respectively.
The motivation behind intermediate-level attacks lies in the observation that different models may

share similar representations within Hm. Thus, manipulating the features from the layer of Hm could
enhance the transferability. Currently, the most advanced method in the field of intermediate-level attacks
is ILPD [27], which applies the decay to the features from a specific intermediate layer. In fact, this can
be seen as a form of adversarial idea when optimizing adversarial examples [43].

However, an intuitive and critical idea is: whether the transferability could further benefit from a form
of multi-scale perturbation decays? To answer this question, we make the following hypothesis. First,
since the adversarial perturbations can be amplified as the network deepens [30], simply applying pertur-
bation decay to a single layer, like ILPD [27], may risk a potential case where the decayed perturbations
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Figure 3 (Color online) Comparison results on ImageNet. (a) Comparisons regarding prediction distortions; (b) comparisons of

different form of decay intensities. Each subplot in (a) reports the joint distribution of the angle offset (shown in the x-axis) and

the distortion magnitude (shown in the y-axis). The means of these indicators are marked in legends, where smaller mean of cosine

similarity and larger mean of perturbation magnitude indicate the better method. For subplot (b), the x-axis represents the form

of decay intensities (shown in legend).

are amplified by subsequent layers, which might cause the perturbations to escape the constraint of decay
operation. Thus, periodically applying the decay is necessary, thereby encouraging the forward propaga-
tion to be in the status of adversarial optimization [43]. As indicated by Figure 3(a), we can achieve higher
intensity of distortions with larger angle offset and distortion magnitude. Besides, considering the fact
that features at different levels usually contain unique levels of information. Therefore, utilizing different
levels of features can facilitate the perturbations contain more levels of information, achieving a higher
level of distortions. As proved by Figure 1(a), our MSFR drifts the spectrum attention regions with
a higher intensity than ILPD, demonstrating that our MSFR contains a broader range of information
distortions, ensuring the promising potential of such multi-scale approach.

Based on this insight, we conduct the corresponding ablation studies regarding the decay positions and
periods to verify our hypothesis. Taking Hs as an example, where it can be decomposed as

Hs = hs
1 ◦ h

s
2 ◦ · · · ◦ h

s
i ◦ · · · ◦ h

s
n. (6)

Here, hs
i represents the i-th layer of Hs. Within our approach, we replace a specific layer hk

i of Hk with
h′ki , where k ∈ {s,m, d} denotes the specific feature extractor. Taking k = s as an example, h′si is defined
in (7), where γ represents the decay intensity.

h′si (x) = γhs
i (x+ δ) + (1− γ)hs

i (x) s.t. ‖δ‖p 6 ǫ. (7)

Theoretically, when the decay intensity increases, a greater proportion of the perturbed features are
preserved, resulting in a weakened adversarial effect during forward propagation. Conversely, when the
decay intensity decreases, the preservation of the perturbed features is reduced, leading to a higher level
of adversarial status during forward propagation.
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Figure 4 (Color online) Results on ImageNet regarding the application positions of decays. (a) Results of CNN-AVG.; (b) results

of NCCN-AVG. The x-axis (Period) shows the decay period. Since the values of ‘Period’ are usually discontinuous, to format the

results, we label the specific value of ‘Period’ on the top of each bar, which is denoted as ‘s’. The y-axis (Num) denotes the number

of decays. The z-axis shows the attack success rate (%). The annotation on the bottom of each subplot indicates the maxima and

the corresponding parameters.

To verify that the decays to the features at different levels can further enhance the transferability, we
conduct the experiments and summarize the results in Figure 43). Here, our decays are performed at
some specific layers, ranging from conv1 to layer-4-2, covering 17 layers in total, as specified in the official
code4). In this notation, layer-x-y stands for the y-th block of layer-x. Taking the second subplot in the
top row of Figure 4 as an example, with the parameters num=3, period=4, and s=6, the three decays
are applied to conv1, layer-2-3, and layer-4-0, respectively. In Figure 4, we can conclude that applying
decay several times, with proper decay intensity and period, indeed can yield remarkable performance
gains. Besides, higher decay strength (lower decay intensity) usually needs fewer decays. Moreover, a
relatively larger decay period seems to always provide the optimal performance. We hypothesize that the
underlying reason for this phenomenon lies in the insurmountable barriers introduced to the optimization
of perturbations by sequentially applying perturbation decay to all the modules. As the network depth
increases, the disruptive effects of the perturbations are progressively diminished, rendering the loss
function incapable of providing effective gradients to guide perturbation updates. Consequently, this
greedy approach (applying decay to all the modules) is less favorable compared to the periodic strategy.

Next, we discuss how the variations in decay intensities affect the transferability. Generally, the forms of
decay intensities can be categorized into three types: progressively increasing, constant, and progressively
decreasing. We believe that progressively increasing the decay intensities while ensuring a certain level

3) For simplicity, “CNN-AVG.” refers to the average attack success rate (ASR, shown in %) over ten classical CNN models

employed for our evaluations, and “NCNN-AVG.” refers to the average ASR over six non-conventional-CNN models employed for

our evaluations.

4) https://huggingface.co/timm/resnet50.tv in1k.

https://huggingface.co/timm/resnet50.tv_in1k


Sun X X, et al. Sci China Inf Sci December 2025, Vol. 68, Iss. 12, 222102:7

Figure 5 (Color online) Derivative curves and performances of different activations. (a) Derivatives of some activations;

(b) derivatives of S-β with different β; (c) performances of different activations. For simplicity, we report the performance of

S-β with the optimal choice, β = 5.

of initial intensity is a more effective way to enhance the transferability of adversarial examples. This
hypothesis could be verified by the results in Figure 3(b), where progressively increasing the decay
intensities exhibits the highest transferability. In contrast, using a stronger initial decay intensity or
maintaining a constant decay intensity would not provide significant performance gains.

In fact, the progressively increasing decay intensities act as an information-filtering mechanism. It
allows low-level details to be conveyed from the shallow layers while emphasizing high-level, integrated
information at deeper layers. Yet, stronger decay in a shallow layer may cause excessive information loss.
From an adversarial perspective, this implies that imposing an overly strong obstacle can prevent the
model from effectively overcoming it, thus failing to maintain stable and high-quality gradients.

3.4 Adaptive activation rectification (AAR)

For conventional backward propagation, the gradient at each layer is defined as

∂L

∂zi
= A(zi)⊙

(

(W i+1)T
∂L

∂zi+1

)

, A(zi) =
d

dzi
ReLU(zi) =

{

1, if zi > 0,

0, if zi 6 0,
(8)

where zi is the input to the i-th layer, ∂L
∂zi represents the gradient at the i-th layer, A(·) is the derivative

of the activation, ⊙ denotes the Hadamard product, and W i+1 is the weight matrix of layer i+ 1.
As shown in (8), the derivative of ReLU could truncate the gradient. However, the gradient truncated

by ReLU might be precisely the critical information needed for crafting more transferable adversarial
examples. As a result, this truncation suppresses the gradient flow of some inactive neurons at the
current layer, leading to a form of sparse gradient, which could raise the great risk of dropping the
required information for updating the gradients in the following layers. In contrast, a more complete
gradient flow could allow the attacker to capture the vulnerabilities from various directions, ensuring
that the attacker exploits potential weaknesses of the model during the backward propagation, thereby
generating more transferable adversarial examples. Therefore, maintaining the gradient integrity is crucial
for creating perturbations that can transfer across different models.

Along this line, LinBP [28] modifies the backward propagation by allowing a certain proportion of
negative gradient flow, where it proposes to restore the gradients passed from the inactivated neurons by
a proportion while retaining those gradients from the activated neurons. Subsequently, BPA [42] replaces
the ReLU activation with the more continuous and smoother SiLU activation during the backward propa-
gation. As observed, employing a more continuous and smoother activation during backward propagation
may play a critical role in enhancing transferability. Accordingly, we plot the curves of the derivatives of
different activations. As shown in Figure 5(a), an intuitive issue arises. Although the derivatives of these
activations are more continuous and smoother than those of ReLU, they share a common problem: they
are non-monotonic and can include negative values.

During backward propagation, the non-monotonicity of the derivative might cause the gradient map
to lack the structure information of the beginning image. Specifically, if the derivative is non-monotonic,
the gradient map could be inconsistent. Moreover, considering that for standard models, almost all of
them employ the activation with non-negative property in its derivative. In this context, the presence
of negative gradients might result in abrupt changes in the optimization direction. Therefore, we believe
that a more optimal alternate would be one with monotonic, non-negative derivative.
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Table 1 Performances of Softplus-β (S-β). We report the results (attack success rate, shown in %) of other activations and mark

the best in bold and the second-best in underline.

Method S-1 S-3 S-5 S-7 S-9 S-11 S-13 S-15 SiLU AAR

CNN-AVG. 48.84 69.87 71.14 67.67 60.52 56.31 53.43 51.20 66.91 75.64

NCNN-AVG. 17.62 29.41 31.21 26.99 24.06 22.23 20.83 19.64 25.55 34.07

Although the motivation of Zhang et al. [44] is orthogonal to us, they have pointed out that the Softplus
function could be an alternative to ReLU to improve the smoothness. Coincidentally, Softplus happens
to have the two characteristics we emphasize above. To verify our hypothesis, we perform preliminary
explorations regarding the choice of activation during backward propagation. Here, we extend Softplus
to Softplus-β (denoted by S-β) for a more general choice. Its derivative is formulated in

A′(zi) =
d

dzi
Softplus-β(zi) =

eβz
i

1 + eβzi , (9)

where A′(·) is the derivative of S-β, and β is a manually pre-defined and fixed hyperparameter.
However, we find that not all the choices of β for S-β could yield better performances, despite its

advantageous properties of preserving gradient integrity and being monotonic and non-negative. In fact,
its performance is even inferior to that of SiLU when β = 1 (see Table 1 for reference). Comparing the
derivatives of S-1 and SiLU, an intuitive reason for this discrepancy could be attributed to the fact that
the second derivative of S-1 owns a relatively smaller degree of magnitude near zero than that of SiLU.
In other words, the absolute value of the second derivative of the function near the zero point should
lie within an appropriate range-neither too small nor too large, and a relatively higher magnitude of
the second derivative near zero might play a key role in enhancing transferability. Such a characteristic
ensures that the function can respond quickly to small input changes. As pointed out by Table 1, when
we enlarge β, its performance could be enhanced to some extent. Nevertheless, increasing β greedily is
also an undesirable choice, as larger β could cause S-β to gradually approach the behavior of ReLU.

Despite this, the optimal choice of β in S-β still needs intensive manual efforts to be decided. Besides,
this fixed value may not adapt well to the varying characteristics of different layers. Specifically, since
the architecture and parameters differ across layers, the same β value may fail to accommodate the
range of feature magnitudes across layers, leading to suboptimal gradient adjustments. For example,
different layers may require varying sensitivity to second-order derivatives near zero or different levels of
reactivation for values previously truncated by ReLU. To this end, we propose AAR, which adjusts the
β of each layer based on its minimum input.

This dynamic adjustment strategy helps the attacker more accurately identify and amplify potential
weaknesses in each layer, realizing more aggressive and transferable attacks. Within this context, to ensure
that all the gradients could pass through the network, we set a small threshold, thereby maintaining the
integrity of the gradient, as shown in

τ =
1

1 + e−β(µ+ζ)
, β = −

ln
(

1−τ
τ

+ ζ
)

µ+ ζ
. (10)

Here, τ is the critical threshold, ζ is a small positive value, e.g., 1× 10−10, and µ is the minimum input.
As we can see in Figure 5(c), the preliminary results clearly demonstrate that our AAR outperforms

ReLU, GeLU, SiLU, and the best value of S-β. Specifically, AAR not only ensures that the derivative
of the activation is non-negative and monotonic but also maintains the gradient integrity. Moreover, its
second derivative near zero has a certain degree of magnitude. Last but not least, it takes into account
the diverse characteristics of the features from different layers, thereby enhancing the transferability.

4 Experiments

4.1 Experimental settings

(1) Datasets. We evaluate on two commonly utilized datasets: CIFAR-10 [45] and ImageNet [46]. For
the CIFAR-10 dataset, we employ the entire test dataset for evaluations. For the ImageNet dataset, we
randomly sample 5000 examples from the validation set, as suggested by [27, 28, 41, 42].
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Table 2 Results in ASR (%) on ImageNet dataset using ResNet-50 as the surrogate. The perturbation budget ǫ = 8 and we run

100 attack iterations. The best results are shown in bold, the same as the other tables.

Method LinBP [28] SGM [29] IAA [60] BPA [42] Admix [34] FIA [26] TAIG [39] NAA [40] GRA [37] PGN [36] ILA++ [41] ILPD [27] Ours

Res-101 [5] 68.80 68.33 77.47 81.69 71.69 53.08 70.86 73.74 74.11 76.91 84.74 82.58 94.40

VGG-16 [7] 82.59 75.99 91.25 88.90 79.71 71.90 83.52 81.65 83.08 86.31 87.82 84.89 96.56

Den-121 [8] 85.30 80.59 90.67 91.63 89.65 73.16 90.95 85.08 87.60 89.10 92.24 89.55 97.75

Inc-v4 [4] 48.12 44.13 55.46 57.35 57.31 45.70 68.49 66.46 62.09 62.70 68.01 69.85 88.93

Inc-v3 [2] 50.14 47.92 59.90 56.67 60.40 48.92 71.31 68.29 63.63 66.43 68.36 70.65 87.80

IncRes [4] 35.86 35.86 41.58 41.04 48.19 36.06 57.46 57.81 53.58 54.06 52.90 61.36 79.35

WRN-50 [47] 67.11 68.26 76.16 79.29 67.31 48.62 64.97 71.96 72.02 74.65 83.43 80.07 92.47

Mob-v2 [49] 70.91 72.60 83.18 80.83 78.19 63.40 81.81 79.63 80.75 83.64 86.47 85.61 96.26

SERes-101 [52] 51.74 59.48 56.01 70.18 61.25 43.49 66.33 69.22 67.19 69.97 76.12 76.12 90.65

PNASNet [53] 43.41 44.62 51.10 55.05 57.99 41.47 68.83 65.35 67.22 68.76 68.76 73.61 88.63

CNN-AVG. 60.40 59.78 68.28 70.26 67.17 52.58 72.45 71.92 71.13 73.25 76.89 77.43 91.28

ViT-B [54] 15.69 22.03 19.95 19.17 23.31 14.77 31.75 30.57 30.14 30.32 28.14 32.05 45.79

Swin-B [55] 18.63 23.46 20.05 23.55 20.05 15.62 26.06 34.53 25.37 24.72 35.71 35.37 48.53

Deit3 [56] 33.07 36.05 41.53 37.41 34.60 28.63 37.77 47.02 40.63 42.86 51.08 50.76 69.58

Beit-B [57] 16.48 20.49 19.93 19.58 22.32 14.56 28.48 32.04 30.01 28.82 30.87 33.45 48.06

MlpMix-B [58] 24.50 31.64 30.91 25.84 30.73 21.32 37.20 39.03 38.79 39.22 38.30 42.43 58.28

ConvNeXt-B [59] 30.54 33.59 35.28 44.35 34.82 26.86 41.84 46.81 42.95 43.77 52.19 53.54 69.63

NCNN-AVG. 23.15 27.88 27.94 28.32 27.64 20.29 33.85 38.33 34.65 34.95 39.38 41.27 56.65

(2) Victim models.On CIFAR-10 dataset, the involved victims are VGG-19-BN (VGG-19) [7], Wide-
ResNet-28-10 (WRN) [47], ResNet-18 (Res-18) [5], ResNeXt-29 (ResNeXt) [48], DenseNet-BC (Den-
BC) [8], Inception-V3 (Inc-v3) [2] and MobileNet-V2 (Mob-v2) [49]. Additionally, we utilize two advanced
models: a 272-layer PyramidNet [50] (Pyrm-Net) and GDAS [51]. On ImageNet dataset, we leverage ten
classical victim models, including ResNet-101 (Res-101) [5], VGG-16 [7], DenseNet-121 (Den-121) [8],
Inception-V4 (Inc-v4) [4], Inception-V3 (Inc-v3) [2], Inception-ResNet-V2 (IncRes) [4], Wide-ResNet-
50 (WRN-50) [47], MobileNet-V2 [49], SE-ResNeXt-101-32x4d (SERes-101) [52], and PNASNet [53].
Besides, we introduce six victim models with non-conventional-CNN architectures, encompassing ViT-
B [54], Swin-B [55], DeiT3 [56], BEiT-B [57], MLP-Mixer-B (MlpMix-B) [58], and ConvNeXt-B [59].

(3) Attack settings. Our attack operates under the black-box scenario within the ℓ∞ norm con-
straint. For CIFAR-10, we generate adversarial examples using VGG-19 as the surrogate model, with
the perturbation budget of ǫ = 4/255. For ImageNet, ResNet-50 is served as the surrogate, with the
perturbation budget of ǫ = 8/255. We run 100 iterations for all attack methods on both datasets, using a
step size of 1/255 for fair comparisons. For all the peer methods included in our comparisons, we follow
their suggested hyperparameters and official codes. The evaluation metric is the ASR.

(4) Hyperparameters and settings. Unless otherwise specified, the experimental hyperparameter
settings in this paper are as follows. For our PRA with ResNet-50 as the surrogate model, the decay
positions in MSFR are set to conv1, layer-2-3, and layer-3-5, corresponding to the shallow, intermediate,
and deep layers, respectively. When using VGG-19 as the surrogate, the decay positions in MSFR are
layer-0, layer-10, and layer-23. The decay intensities are set to 0.7, 0.72, and 0.73, respectively. For our
AAR, the critical threshold τ in (10) for our adaptive Softplus-β is 1× 10−9.

4.2 Peer comparisons

We first comprehensively compare our PRA on ImageNet dataset with several advanced approaches, in-
cluding Admix [34] that improves from the perspective of input transformation. We also compare with
GRA [37] and PGN [36], which are developed from the perspective of gradient stabilization. Additionally,
we introduce some methods with advanced objectives such as FIA [26], TAIG [39], and NAA [40]. Fur-
thermore, we compare with several surrogate refinement methods, including LinBP [28], SGM [29], the
novel and powerful IAA [60], BPA [42], ILA++ [41], and the most related transferable attack, ILPD [27].
The experimental results in Table 2 [2, 4, 5, 7, 8, 26–29, 34, 36, 37, 39–42, 47, 49, 52–60] indicate that the
transferability of the adversarial examples generated by our PRA significantly outperforms all the other
methods under the same conditions, achieving the ASR of 91.28% regarding CNN-AVG. and the ASR
of 56.65% regarding NCNN-AVG., with absolute gains of +13.85% and +15.38% over the second-best
method, ILPD, respectively.

For the results on CIFAR-10 dataset, as detailed in Table 3 [2,5,7,8,26–28,31,34,36,37,39–41,47–51],
we evaluate our PRA against several approaches, including Admix [34], SSM [31], GRA [37], PGN [36],
LinBP [28], FIA [26], TAIG [39], NAA [40], ILA++ [41], and ILPD [27]. The results show that PRA also
achieves remarkable results on CIFAR-10, with the average ASR of 59.03%, surpassing the second-best
method PGN by +5.5%.
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Table 3 Results in ASR (%) on CIFAR-10 dataset, with VGG-19 as the surrogate. We set ǫ = 4 and run 100 iterations.

Method LinBP [28] Admix [34] SSM [31] FIA [26] TAIG [39] NAA [40] GRA [37] PGN [36] ILA++ [41] ILPD [27] Ours

VGG-19 [7] 64.93 51.67 71.05 53.80 49.23 58.27 67.88 71.58 67.22 68.32 74.29

WRN [47] 56.20 43.99 58.31 42.43 38.21 50.15 57.24 61.57 57.91 60.16 67.52

Res-18 [5] 29.13 20.12 27.60 19.12 16.96 24.78 27.99 31.29 31.02 30.09 37.38

ResNeXt [48] 58.10 47.52 58.20 45.80 42.03 53.12 57.88 61.47 58.63 61.04 69.31

Den-BC [8] 55.06 44.93 54.51 43.88 39.51 51.74 54.68 59.20 55.93 58.67 66.13

Inc-v3 [2] 58.93 46.52 65.14 47.16 44.73 52.23 61.19 65.02 60.62 63.11 70.97

Mob-v2 [49] 63.40 52.83 69.71 57.24 52.76 58.44 67.07 70.85 66.34 67.96 73.78

Pyrm-Net [50] 15.88 11.32 13.77 10.53 8.29 15.96 12.79 14.58 15.53 15.47 20.35

GDAS [51] 40.80 30.99 41.90 34.96 29.08 38.26 42.81 46.21 42.48 46.93 51.53

AVG. 49.16 38.88 51.13 39.44 35.64 44.77 49.95 53.53 50.63 52.42 59.03

Table 4 Ablation results (attack success rate, shown in %) on the contributions of our MSFR.

Method ILA++ [41] ILPD [27] MSFR

CNN-AVG. 76.89 77.43 80.51

NCNN-AVG. 39.38 41.27 42.48

Table 5 Ablation results (attack success rate, shown in %) on the optimal positions of our MSFR. Period-x-y denotes the intervals

among the three decays, where x represents the interval between the first two decays, and y represents the interval between the

last two decays.

Method Period-5-5 Period-6-6 Period-5-6 Period-6-5

CNN-AVG. 90.49 90.19 91.01 91.28

NCNN-AVG. 56.52 55.86 56.55 56.65

4.3 Ablation studies

4.3.1 A closer look at MSFR

Here, we conduct ablation studies to evaluate the effectiveness of our MSFR on forward propagation recti-
fication. First, we compare MSFR with other existing methods to demonstrate its significant performance
when used independently. Further, we investigate the optimal decay positions.

(1) Methodology ablation study. As shown in Table 4 [27,41], we conduct comparisons with several
peer attacks, which aim at refining the forward propagation, such as ILA++ [41], and the latest ILPD [27],
over ten classical CNN models and six non-conventional-CNNmodels. Based on these results, we can draw
the following conclusions. Comparing ILPD with ILA++, it is clear that using an adversarial strategy to
decay the perturbation effectively rectifies forward propagation. Moreover, comparing MSFR with ILPD
shows that our MSFR approach, which employs multi-scale rectification, exhibits greater transferability
than applying the perturbation decay solely to a single intermediate layer. In particular, this allows the
attacker to explore a wider range of potential pathways when generating adversarial examples, which
might be missed with single-layer decay. Overall, our MSFR achieves remarkable results among peers.

(2) Hyperparameter ablation study. Previously, in Subsection 3.3, we conduct preliminary ex-
plorations on the decay positions, and forms of intensities of our MSFR. In ILA++ [41] and ILPD [27],
a common experimental conclusion is that adjusting the forward propagation later than layer-4-0 will
have a negative impact on the final performance improvement. To further explore whether this view is
still valid for our MFSR, we conduct further ablation experiments. Although the final differences were
not substantial, the optimal positions in shallow, intermediate, and deep layers shown in Table 5 are
conv1, layer-2-3, and layer-3-5, respectively. Among them, Period-6-6 involves layer-4-0, with relatively
the worst results. This implies that the decay intervals should be slightly larger and should not beyond
layer-4-0. By avoiding the application of decay to layers deeper than layer-4-0, we can maintain the
effectiveness and ensure that the decay does not adversely affect the deeper layers of the network. Thus,
we recommend conv1, layer-2-3, and layer-3-5 as the default choice.
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Figure 6 (Color online) Results in ASR (y-axis, %) of our AAR and other peer methods.

Table 6 Ablation results (attack success rate, shown in %) on the critical threshold τ .

Method 1 × 10−5 1× 10−6 1× 10−7 1× 10−8 1× 10−9 1 × 10−10 1× 10−11 1× 10−12 1 × 10−13

CNN-AVG. 89.10 90.29 90.99 91.13 91.28 91.10 90.86 90.68 90.38

NCNN-AVG. 52.09 54.52 55.99 56.37 56.65 56.52 55.61 55.58 54.88

4.3.2 A closer look at AAR

We further perform ablation experiments to evaluate the effectiveness of our AAR, which is specifically
designed for backward propagation rectification. Firstly, we compare AAR with other existing methods
tailored for backward propagation rectification to demonstrate its significant performance when used
independently. Then, we perform ablations on the critical threshold τ of our AAR.

(1) Methodology ablation study. Here, we conduct comparative experiments with other methods
on backward propagation rectification. Our comparisons include LinBP [28], SGM [29], and the novel and
powerful IAA [60] and BPA [42]. As shown in Figure 6, our AAR significantly outperforms all the other
peer methods over both classical CNN and non-conventional-CNN models. This fully demonstrates the
superior performance of our AAR. Moreover, it supports our view that, during the backward propagation,
it is essential not only to consider the non-negativity, monotonicity, and gradient integrity, but also to
encourage the second derivative to own a certain degree of magnitude near zero. Moreover, considering
the diverse characteristics across different layers is critical for further performance gains. This ensures
the excellent transferability of the generated adversarial examples.

(2) Hyperparameter ablation study. As described in Subsection 3.4, when generating adaptive β
for different layers, we set a small threshold to allow all the gradients to pass through the model, thereby
maintaining the integrity of the gradients. To this end, our ablation experiments on the threshold τ ,
shown in Table 6, indicate that a smaller threshold will prematurely truncate the gradient, while a larger
threshold will fail to ensure the magnitude degree of the second derivative near zero. Ultimately, we
verify that the optimal threshold is 1× 10−9, which we select as the critical threshold τ for our AAR.

4.4 Extended evaluations

(1) Scalability in terms of the architecture. We first evaluate the performance of our PRA when
applied to surrogate models with different architectures. For ease of comparison, based on the findings
in Table 2, we select the second-best methods, ILPD, and NAA, as performance benchmarks. In terms
of surrogate model architectures, we choose VGG-19, Den-121, and ResNeXt-50 (RXT-50) for our exper-
iments. The parameters of PRA in these models are similar to those in Table 2, except for the location
of the application of MSFR5). As shown in Table 7 [7,8,27,40,48], our PRA consistently outperforms the
other methods across all the surrogate models, particularly when paired with Den-121. This demonstrates
the scalability of our PRA in terms of surrogate model architectures.

5) The specific settings are available in our code.
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Table 7 Results in ASR (%) on ImageNet with different surrogates. The evaluation settings are the same as Table 2.

Surrogate VGG-19 [7] Den-121 [8] RXT-50 [48]

Method NAA [40] ILPD [27] Ours NAA [40] ILPD [27] Ours NAA [40] ILPD [27] Ours

CNN-AVG. 57.57 67.68 72.16 65.07 74.99 90.22 70.16 78.52 90.25

NCNN-AVG. 31.52 35.30 39.07 36.12 39.58 60.58 37.73 44.14 60.17

Table 8 Results (attack success rate, shown in %) over typical defenses on ImageNet. We set ǫ = 8, total iteration as 100, and

ResNet-50 as the surrogate.

Method LinBP [28] SGM [29] IAA [60] BPA [42] Admix [34] FIA [26] TAIG [39] NAA [40] GRA [37] PGN [36] ILA++ [41] ILPD [27] Ours

HGD [61] 46.03 43.23 55.30 54.04 51.63 43.03 52.77 64.71 58.04 58.84 53.70 69.65 85.99

JPEG [62] 27.59 26.10 30.05 32.97 40.69 32.42 47.34 49.96 49.10 49.17 34.41 54.31 71.12

NRP [63] 28.50 26.59 29.49 30.09 35.49 30.81 41.86 39.23 38.67 38.95 30.65 37.94 42.71

SIN [64] 44.23 40.69 56.33 48.51 56.42 51.68 59.22 61.36 59.31 61.17 48.98 64.43 82.77

R-Inc-V3 25.83 24.75 29.89 31.17 34.28 26.64 41.31 47.67 42.60 42.26 33.27 50.91 69.57

CNS [65] 4.80 5.49 5.23 4.62 7.93 6.63 8.11 8.54 8.68 8.42 5.23 6.45 8.81

AVG. 29.50 27.81 34.38 33.57 37.74 31.87 41.77 45.25 42.73 43.14 34.37 47.28 60.16

Table 9 Results in ASR (%) on ImageNet. We set ǫ = 12 with 100 iterations using ResNet-50 as the surrogate.

Method LinBP [28] SGM [29] IAA [60] BPA [42] Admix [34] FIA [26] TAIG [39] NAA [40] GRA [37] PGN [36] ILA++ [41] ILPD [27] Ours

Res-101 [5] 65.76 83.88 93.90 93.52 78.59 81.33 83.94 88.55 86.75 88.99 88.04 93.34 98.38

VGG-16 [7] 77.14 89.92 98.57 96.56 83.94 90.68 94.20 91.76 92.33 93.55 91.98 95.20 99.14

Den-121 [8] 84.30 91.83 97.82 97.75 92.30 92.30 95.78 94.14 94.69 95.50 93.33 96.32 99.32

Inc-v4 [4] 50.33 60.04 79.44 78.20 61.20 70.83 80.38 82.65 78.35 77.32 73.82 86.47 96.38

Inc-v3 [2] 54.94 62.70 79.27 76.54 62.98 72.53 82.21 82.86 79.63 76.47 73.74 86.08 95.27

IncRes [4] 42.90 50.99 60.40 62.24 50.92 59.58 69.94 74.30 71.71 69.53 60.53 80.91 92.77

WRN-50 [47] 62.51 84.13 92.60 94.10 76.60 77.48 80.29 86.57 85.76 87.20 87.70 90.96 98.37

Mob-v2 [49] 77.31 85.74 96.25 94.35 83.71 87.84 90.74 91.59 91.20 91.46 89.49 94.29 98.95

SERes-101 [52] 55.38 75.85 78.95 87.74 70.61 70.86 78.27 82.93 81.42 83.31 79.03 90.97 96.97

PNASNet [53] 51.77 61.07 74.05 76.79 65.02 68.09 81.47 81.47 81.67 81.00 73.58 88.09 96.59

CNN-AVG. 62.23 74.62 85.13 85.78 72.59 77.15 83.72 85.68 84.35 84.43 81.12 90.26 97.21

ViT-B [54] 26.68 33.37 33.07 32.66 27.88 30.63 44.38 48.38 44.72 41.67 32.66 54.27 64.96

Swin-B [55] 23.13 35.01 33.45 37.39 23.82 26.87 32.95 50.09 35.37 33.39 38.71 56.68 65.37

Deit3 [56] 35.48 52.20 63.35 59.76 39.90 52.80 52.89 66.61 58.89 56.42 56.27 72.71 85.06

Beit-B [57] 23.88 32.70 33.89 34.87 26.91 28.40 42.03 47.73 43.62 42.12 34.51 56.24 69.37

MlpMix-B [58] 33.48 48.01 50.95 47.04 34.33 43.13 50.89 57.48 55.04 51.50 44.96 64.08 77.52

ConvNeXt-B [59] 34.41 47.28 56.11 64.35 41.84 48.33 58.51 64.31 60.21 59.63 56.11 73.73 84.90

NCNN-AVG. 29.51 41.43 45.14 46.01 32.45 38.36 46.94 55.77 49.64 47.46 43.87 62.95 74.53

(2) Transferability against defense methods. Here, we select several representative defense meth-
ods, including HGD [61], JPEG [62], NRP [63], SIN [64], robust Inception-v3 (R-Inc-V3) from Timm6)

repository, and the recent proposed CNS [65]. As shown in Table 8 [26–29, 34, 36, 37, 39–42, 60–65], our
PRA outperforms all the other attacks, which fully proves that the adversarial examples generated by
PRA not only transfer well to normally trained victim models, but also maintain their superiority when
facing defense methods.

(3) Transferability under higher ℓ∞ norm constraint. When we set the ℓ∞ norm ǫ = 12/255,
as shown in Table 9 [2, 4, 5, 7, 8, 26–29, 34, 36, 37, 39–42, 47, 49, 52–60], the PRA achieves an impressive
average ASR of 97.21% over ten classical CNN models, outperforming the second-best method by +6.95%.
Surprisingly, the average ASR achieved by our PRA is almost close to 99% on classical CNN models, far
exceeding ILPD and all other peer methods. Meanwhile, over six non-conventional-CNN models, we still
could achieve an unprecedented average ASR of 74.53%, surpassing the second-best method by +11.58%.
Through the above analysis, it appears that our PRA can still maintain its superior performance even
under relatively loose visual constraints.

(4) Transferability with fewer iterations. We then reduce the number of attack iterations from
100 to 20. The experimental results are shown in Table 10 [2,4,5,7,8,26–29,34,36,37,39–42,47,49,52–60],
where we can find that even with just 20 iterations, our PRA still could achieve the average ASR of 87.78%
over ten classical CNN models and the average ASR of 54.33% over six non-conventional-CNN models.
These results are significantly higher than the second-best method ILPD by +15.60% and +18.33%,
respectively. Compared to the results under 100 attack iterations, our performances regarding CNN-
AVG. and NCNN-AVG. only decrease by 3.50% and 2.32%, respectively, whereas the ILPD sees larger
decreases of 5.25% and 5.27%. This demonstrates that the adversarial examples of our PRA maintain
strong transferability and experience smaller performance drops with fewer iterations, illustrating the

6) https://github.com/huggingface/pytorch-image-models.

https://github.com/huggingface/pytorch-image-models
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Table 10 Results in ASR (%) on ImageNet. We set ǫ = 8, the surrogate is ResNet-50, and we run 20 iterations here.

Method LinBP [28] SGM [29] IAA [60] BPA [42] Admix [34] FIA [26] TAIG [39] NAA [40] GRA [37] PGN [36] ILA++ [41] ILPD [27] Ours

Res-101 [5] 45.27 64.65 66.22 77.21 57.81 48.48 64.63 72.06 73.74 69.76 74.60 77.16 90.72

VGG-16 [7] 55.30 72.90 77.71 86.60 66.24 66.38 79.66 78.71 81.58 79.07 80.09 80.14 93.91

Den-121 [8] 67.67 78.20 76.47 90.13 78.47 68.53 86.18 83.31 87.40 86.17 85.43 85.56 95.85

Inc-v4 [4] 34.59 43.24 51.49 56.46 42.76 38.73 60.22 62.91 64.21 58.61 56.73 62.77 83.39

Inc-v3 [2] 40.82 47.85 52.30 56.03 46.20 43.76 64.78 65.42 66.21 60.76 58.39 65.78 83.00

IncRes [4] 28.15 36.67 35.84 41.45 35.51 30.06 49.63 54.40 56.44 47.92 43.29 56.17 75.39

WRN-50 [47] 42.12 64.87 63.81 74.95 52.82 44.10 56.75 68.70 69.82 66.94 73.07 72.90 88.76

Mob-v2 [49] 58.44 71.09 70.26 79.71 65.64 57.56 78.14 76.81 80.49 77.66 77.35 80.81 94.35

SERes-101 [52] 40.30 59.17 48.26 67.40 51.14 39.44 56.29 66.25 69.72 65.23 63.87 72.63 87.62

PNASNet [53] 35.52 45.95 44.75 55.45 45.15 37.06 60.00 62.54 69.90 63.14 57.39 67.89 84.82

CNN-AVG. 44.82 58.46 58.71 68.54 54.17 47.41 65.63 69.11 71.95 67.53 67.02 72.18 87.78

ViT-B [54] 16.36 21.78 15.93 18.93 17.51 14.15 25.52 28.68 31.73 26.54 20.21 28.98 45.79

Swin-B [55] 17.44 26.39 20.52 25.94 16.88 13.82 19.95 32.91 28.01 24.96 27.08 32.44 47.99

Deit3 [56] 22.41 34.18 26.92 34.82 23.33 25.68 32.47 42.86 39.72 35.20 40.12 43.40 64.10

Beit-B [57] 14.99 21.00 14.46 20.30 15.16 12.95 22.99 29.59 30.55 26.01 22.27 27.80 46.63

MlpMix-B [58] 21.32 30.18 20.75 25.78 20.65 18.14 31.40 35.61 38.85 32.74 29.51 35.25 56.51

ConvNeXt-B [59] 21.42 33.70 27.44 42.13 25.69 23.58 36.40 44.76 43.48 38.15 40.84 48.10 64.95

NCNN-AVG. 18.99 27.87 21.00 27.98 19.87 18.05 28.12 35.74 35.39 30.60 30.01 36.00 54.33

robustness and efficiency of our approach.

5 Conclusion

In this paper, we studied the refinements on the surrogate model for transferable attacks and proposed
a bidirectional method, PRA, which incorporates both the forward and backward propagation rectifica-
tions. Specifically, during forward propagation, we developed MSFR that applies feature rectifications
to different levels of features and encourages the entire forward propagation to maintain a proper adver-
sarial optimization state, mitigating the issue of incomplete feature utilization when applying decay to a
single intermediate layer. MSFR highlights the necessity and benefits of multi-scale decays for enhancing
transferability, indicating its promising effects in causing larger distortions. On backward propagation
rectification, we concluded a more feasible insight regarding the characteristics of the alternative ac-
tivation, i.e., maintaining the gradient integrity, encouraging the non-negativity and monotonicity of
the activation derivatives, and ensuring a certain level of magnitude of its second derivative near zero.
Moreover, we further proposed AAR to adaptively consider the specificity of the features. Extensive
evaluations strongly demonstrate our remarkable superiority. We hope this research will inspire further
interest in the study of propagation rectifications within the field of adversarial attacks.
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