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Terahertz (THz) radiation, spanning 100 GHz to 30 THz be-

tween infrared and microwave bands, offers ultra-wide band-

widths enabling terabit-per-second data rates to meet future

communication demands. However, power amplifiers (PAs)

in THz front-ends exhibit strong nonlinearities and signif-

icant memory effects caused by device physics and ultra-

wideband challenges. These impairments degrade signal

fidelity and spectral containment, limiting system perfor-

mance. Conventional polynomial-based models face issues

such as multicollinearity and ill-conditioning, reducing their

effectiveness in modern wideband, high-frequency scenarios.

Recent advances have focused on artificial intelligence

techniques leveraging neural networks nonlinear mapping

capabilities. Early work by Rawat et al. [1] modeled the

nonlinear behaviors of wireless power amplifiers using a dy-

namic real-valued time-delay structure. Subsequent mod-

els [2, 3] include convolutional neural networks and hybrid

CNN-LSTM architectures, improving efficiency and accu-

racy. Transformer-based models [4, 5] have also demon-

strated strong performance by effectively capturing long-

range dependencies in PA nonlinearities.

Existing experimental validations mostly use datasets

with bandwidths below 200 MHz and focus on sub-6 GHz

bands. This narrow scope overlooks challenges in ultra-

wideband Terahertz systems, which exhibit stronger non-

linearities and more significant memory effects. More-

over, many existing nonlinear models target narrowband or

sub-6 GHz systems and often fail to generalize to ultra-

wideband Terahertz scenarios. Since nonlinear behaviors

vary with carrier frequency and bandwidth, a generalized

modeling framework adaptable to diverse bands and condi-

tions is essential.

To address this gap, we built a comprehensive experi-

mental testbed covering W-, D-, and G-bands with band-

widths from 1 to 4 GHz. To the best of our knowledge, it

is the first publicly available dataset for nonlinear modeling

of THz transceivers. Leveraging this dataset, we propose

a convolution-enhanced Transformer architecture. Our ap-

proach effectively captures complex nonlinearities and mem-

ory effects across diverse conditions. Additionally, we intro-

duce a parameter modulation mechanism that adapts model

parameters to varying domain characteristics, improving ro-

bustness and generalization across different frequency bands

and bandwidths.

Dataset. We develop a THz transceiver test bed and

collect input-output signal pairs across multiple frequency

bands and bandwidth settings. The dataset spans W

(96 GHz), D (141 GHz), and G (228 GHz) carrier frequency

bands, with instantaneous bandwidths up to 4 GHz, and

captures nonlinear behaviors under various modulation for-

mats and operating conditions. It serves as the first pub-

lic resource for studying ultra-wideband THz nonlinearities.

Our dataset is already publicly available at the website1).

The THz transceiver test bed consists of an arbitrary

waveform generator (Keysight M8195A, 60 GHz sampling

rate), frequency mixer, the device-under-test PA (W-band:

35 dB gain AT-LNA-3504HP PA, D-band: 18 dB gain

AT-PA-1815E PA, G-band: 16 dB gain AT-PA-1610 PA),

25-dBi gain transmitter/receiver horn antennas, and an os-

cilloscope (Agilent DSOX93204A). The oscilloscope offers

high measurement accuracy with a 33 GHz analog band-

width, 2.10 mV noise floor (at 50 mV/div, 33 GHz), and

100 fs jitter floor. The baseband signals are 16/64-

quadrature amplitude modulation orthogonal frequency di-

vision multiplexing (OFDM) signals.

Baseband input signals are first digitally up-converted to

an intermediate frequency (IF). Then the AWG loads IF sig-

nals to the target radio frequency (RF) bands by the mixer.

The resulting RF signal is amplified by the PA and trans-

mitted over a 1.0-meter distance via a transmitter horn an-

tenna with 25-dBi gain. At the receiver side, a 25-dBi gain

receiver horn antenna captures the signal. Finally, the RF

signal is down converted to the same IF band using a shared

local oscillator (LO), and then the signal is collected through
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Figure 1 (Color online) (a) Model architecture diagram; (b) NMSE results (dB) of different models on datasets with various

bandwidths. The best results are in bold.

an oscilloscope. The captured IF signal is processed offline

(e.g., digital down-conversion) to obtain the corresponding

baseband signal.

Using the above testing platform, we collect datasets of

16-QAM and 64-QAM OFDM signals at bandwidths of 1, 2,

and 4 GHz in the W, D, and G frequency bands, respectively.

Each frequency band contains approximately 83000 data

samples, resulting in a total dataset size of about 250000

samples. Among the five independently collected datasets,

four are used for training and one for testing.

Proposed method. We propose an augmented real-valued

multi-scale convolutional transformer network (ARVM-

CTN) to model nonlinear behaviors of THz transceivers,

and the model architecture is shown in Figure 1(a). The

architecture captures temporal variations and long-range de-

pendencies in complex baseband signals, while generalizing

across frequency bands and bandwidths.

Each input is a temporal window of measured baseband

signals, represented in an augmented real-valued form by

concatenating real and imaginary parts, amplitude, and

higher-order nonlinear terms.

The network uses a two-stage feature extractor. First,

a multi-scale convolutional module with three parallel 2D

convolution branches of different kernel sizes extracts infor-

mation at multiple receptive fields. Second, these features

are combined with positional encodings and passed through

stacked multi-head self-attention Transformer encoder lay-

ers. The contextual features output by the Transformer

encoder are fed to a fully connected regression layer that

predicts the real and imaginary parts of the signal.

To address domain shifts, a lightweight parameter modu-

lation mechanism is employed. The domain parameters from

the dataset, including frequency band, carrier frequency, and

bandwidth, are one-hot encoded and then passed through

two small multilayer perceptrons. These generate per-

feature scaling (γ) and shifting (β) factors used to modu-

late the intermediate features. Given intermediate feature

F , modulation is Fmod = γ ⊙ F + β, where ⊙ is element-

wise multiplication. This adapts feature distributions per

domain without retraining.

Experimental setup and results. We evaluate ARVM-

CTN and several baselines under four training settings: joint

training on all domains (All) and separate training on W-,

D-, and G-band subsets, both with and without parameter

modulation. RVTDNN [1] employs a dynamic real-valued

time-delay structure to model nonlinear behaviors. RVTD-

CNN [2] further incorporates convolutional layers to better

extract local temporal features. RVRTCNN [3] combines di-

lated convolution and residual connections, which strength-

ens temporal modeling ability. ARVTDform [4] integrates

Transformer-based attention into the augmented time-delay

framework. ATLSTM [5] adds an attention layer before the

LSTM to enhance the capability of integrating information.

In our experiments, the memory depth of all models is set

to 10. Under this configuration, the attention-based mod-

els (ARVMCTN, ARVTDform, ATLSTM) require about 7M

FLOPs with an average inference latency of 1.5 ms, while

the other models remain around 4M FLOPs with 0.5 ms

latency. All models exhibit a similar memory footprint of

approximately 10 MB. The experiments are conducted on a

platform equipped with an NVIDIA RTX 4090 GPU and an

AMD EPYC 7T83 CPU.

As shown in Figure 1(b), ARVMCTN consistently out-

performs all baselines, demonstrating the effectiveness of

the proposed architecture. Without parameter modula-

tion, joint training across domains leads to clear perfor-

mance drops, while applying modulation yields substan-

tial and consistent gains. Moreover, ARVMCTN surpasses

the Transformer-only ARVTDform, validating the benefit of

multi-scale convolutional integration.

Conclusion. We present the first large-scale THz non-

linear dataset across multiple frequency bands and band-

widths, and a convolution-enhanced Transformer architec-

ture with parameter modulation for ultra-wideband behav-

ioral modeling. The proposed approach effectively cap-

tures both local and long-range dependencies by employ-

ing multi-scale convolutions for different nonlinear sources

and a Transformer regressor for long-range coupling effects,

adapts to diverse acquisition domains. This work provides a

practical modeling framework for future THz system design

and DPD development.
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