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Abstract The integrated sensing and communication (ISAC) in 6G terahertz (THz) ultra-massive multiple-input multiple-
output (UM-MIMO) systems faces challenges in near-field scenarios, where spherical wavefronts introduce coupled angle,
distance. Existing schemes often address localization and CSI estimation separately, neglecting their interdependence. This
paper proposes a joint uplink localization and CSI estimation scheme for hybrid analog-digital THz UM-MIMO systems.
First, a coarse angle-of-arrival (AoA) estimation method is developed using DFT-based analog combiners, exploiting near-field
angular spread effects. Then, a refined localization scheme iteratively optimizes angle and distance parameters via dynamic
interval contraction, reducing computational complexity. Further, a line-of-sight (LoS) -prior-enhanced CSI estimation (LPE-
CE) method decouples LoS and non-line-of-sight (NLoS) components using subspace-orthogonal combiners and introduces
an adaptive polar-domain codebook that dynamically expands based on residual thresholds. Simulations demonstrate the
proposed scheme achieves sub-meter localization accuracy with low complexity, while LPE-CE outperforms benchmarks and
adaptively reduces codebook size efficiently.
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1 Introduction

With the rapid development of wireless communication technology, the research on the sixth generation
(6G) mobile communication system has become a hot topic in both academic and industrial communi-
ties [1]. The 6G era is expected to bring unprecedented data rates, connection density, and communication
experience, while also promoting the deep integration of sensing and communication technologies. In-
tegrated sensing and communication (ISAC), as one of the important features of 6G, aims to achieve
seamless integration of communication systems and perception systems, thereby improving spectrum uti-
lization efficiency, reducing hardware costs, and opening up new application scenarios such as intelligent
transportation, environmental monitoring, and augmented reality [2, 3].

To achieve efficient collaboration of ISAC, wider bandwidth and large-scale antenna arrays become
inevitable requirements. The terahertz (THz) band, with its rich spectrum resources and ultra-high data
transmission capabilities, emerges as a potential frequency band for 6G communications [4,5]. Ultra-
massive multiple-input multiple-output (UM-MIMO) technology, which leverages hundreds to thousands
of antenna elements, offers significant array gain to overcome the high path loss of THz, positioning it as
a key technology to support 6G THz high-capacity, low-latency communication [6].

In THz ISAC UM-MIMO systems, location information and channel state information (CSI) are two
critical parameters [7]. Location information supports user positioning and tracking, while also facilitating
beamforming and resource allocation by providing spatial awareness of the environment [8]. Meanwhile,
CSI is the basis for efficient data transmission and interference management [9]. Consequently, precise
estimation of location and CSI is crucial for the performance of ISAC systems and has become a research
hotspot.
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1.1 Related work

Early research on joint location and CSI estimation predominantly focused on full-digital architectures.
Ref. [10] proposed a two-stage joint target detection and channel estimation (CE) scheme, exploiting the
joint burst sparsity of sensing and communication channel to enhance detection and estimation perfor-
mance. In [11], an uplink sensing-aided Kalman-filter-based CE scheme was proposed, which exploited
the angle-of-arrival (AoA) estimated by the multiple signal classification (MUSIC) method to improve
the CSI estimation accuracy. A simultaneous weighting orthogonal matching pursuit-sparse Bayesian
learning scheme was proposed in [12], which efficiently estimated the AoA information and incorporated
it in the CE procedure. In [13], a sensing-assisted sparse channel recovery scheme for UM-MIMO systems
was proposed, where the scatterer location was sensed by the echo pilot signal, and the sparse chan-
nel was estimated by the compressive sensing (CS) method exploiting the sensing location information.
However, these schemes require direct access to signals from each antenna element, resulting in high
hardware complexity and power consumption [14]. In UM-MIMO systems, such full-digital architectures
become impractical due to cost and scalability constraints, prompting a shift toward hybrid architectures
to address these limitations.

To mitigate the challenges of full-digital systems, hybrid analog and digital architectures have been
proposed, reducing the number of radio frequency (RF) chains to balance performance and cost [15,16].
And within hybrid architectures, several research studies on location and CSI estimation have emerged. In
terms of location sensing, based on the far-field assumption, research mainly focused on AoA estimation
by designing analog and digital combiners [17-19]. Ref. [17] proposed a dynamic maximum likelihood
estimator suitable for hybrid architectures, and derived the closed-form expression of cramer-rao bound
(CRB) to evaluate the achievable AoA estimation performance. By switching the analog combiners to
a set of predefined angles to reconstruct the signal covariance matrix, in [18], AoAs of the signal were
estimated by applying the MUSIC algorithm. Ref. [19] designed a set of analog combiners that collectively
span the entire space, and then performed an exhaustive search over the analog and digital combiners to
estimate AoA. As for CSI estimation, the CS method has been widely used due to its ability to efficiently
process compressed high-dimensional sparse channels. Ref. [20] proposed two compressive hybrid MIMO
CE schemes to recover the channel matrix by exploiting the spatially sparse structure in the far-field
MIMO channel.

However, with the growing scale of UM-MIMO antenna arrays, the wavefront emitted by a source
within a certain range becomes spherical when it reaches the array, and the near-field effects have become
significant [21]. Unlike the far-field planar wavefront, such a spherical wavefront brings another degree
of freedom to the channel in addition to AoA: distance. Hence, existing research turns to both near-field
localization and CE in hybrid architectures. In [22], an efficient near-field localization scheme for hybrid
analog and digital UM-MIMO systems was proposed, which reduced the high computational complexity
by the design of the analog and digital combiner decoupling AoA and distance estimation. Ref. [23]
proposed a polar-domain representation that makes the near-field channel exhibit sparsity, and achieved
an accurate near-field sparse CE by the CS method. Based on this, Ref. [24] proposed a two-dimensional
polar-angular-domain sparse representation for THz widely-spaced multi-subarray systems. These studies
typically address localization and CE independently, failing to account for the intrinsic coupling between
AoA, distance and CSI in near-field scenarios. This lack of integration limits their applicability in ISAC
systems, where joint estimation is critical for optimal performance.

Recent efforts have explored joint localization and CE in near-field hybrid architectures. In [25],
a sensing-enhanced uplink CE scheme for near-field UM-MIMO systems based on a novel transceiver
architecture was proposed. This architecture comprises a sensing module for power sensing and a training
module for baseband processing, relying on RF switches adopted on antenna elements to keep the two
modules switching. While the approach shows promising results in lower-frequency bands, it increases
system complexity and cost, limiting practical deployment. More critically, this scheme is unsuitable for
THz bands, where the symbol duration reaches on the order of nanoseconds. As the baseband ADC
stabilization time is on the order of milliseconds [26], leading to the loss of a large number of symbols
during switches between two modules, which disrupts real-time data transmission and degrades spectral
efficiency.
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1.2 Contributions

In contrast to prior work, in this paper, we propose a novel joint uplink localization and CE scheme for
THz near-field UM-MIMO systems in hybrid analog and digital architectures, eliminating the reliance on
additional sensing devices. Our contributions are summarized as follows.

e Inspired by the far-field AoA estimation scheme [17,19], we reveal the near-field spatial angular
spread effect, and then propose a coarse line-of-sight (LoS) angle estimation scheme by DFT-based
analog combiners.

e We propose a refined user localization scheme based on joint parameter optimization, which itera-
tively refines angle and estimates distance parameters by leveraging the high-degree-of-freedom charac-
teristics in the digital domain. During the alternating optimization of angle and distance parameters, we
employ the dynamic interval contraction to progressively reduce the search space, thereby converging to
the optimal solution, lowering computational complexity, and avoiding local optima.

e Exploiting the estimated user location, we propose a LoS-prior-enhanced CE (LPE-CE) scheme
which strategically decouples the LoS and non-line-of-sight (NLoS) components through subspace-
orthogonal analog combiners, and estimates the channel components separately to avoid NLoS compo-
nents being masked. Additionally, we introduce an adaptive near-field polar-domain codebook based on
LoS prior, which initializes with a minimal set of distance rings and iteratively expands based on residual
thresholds, achieving lower average complexity compared to the conventional polar-domain codebook [23].

e Simulation results demonstrate that the proposed localization scheme achieves accurate localization
with less computational complexity. Additionally, the proposed LPE-CE scheme achieves superior esti-
mation performance while employing an adaptive codebook design that efficiently reduces the average
codebook size compared to the conventional codebook.

The rest of this paper is organized as follows. In Section 2, the transmission protocol, signal model, and
THz near-field channel model are introduced. Section 3 introduces the near-field localization scheme, and
the LoS-prior-enhanced CE scheme is proposed in Section 4. The simulation results are then presented
in Section 5. Finally, the conclusion is drawn in Section 6.

1.3 Notations

Notations used in this paper are explained as follows. Lower-case and upper-case boldface letters represent
vectors and matrices, respectively; (-)T, (), ()71, (-)T denote the transpose, conjugate transpose, inverse,
and pseudo inverse of matrix A, respectively; a[i] and A[i, j] denote the i-th elements of a vector and
the (i, j)-th entry of the matrix A, respectively; B = blkdiag(A1, As,..., A,,) returns a block diagonal
matrix by aligning A, As,...,A,, along the diagonal. CN(u,0?) is a complex normal distribution with
mean j and covariance 2.

2 System model

As shown in Figure 1, we consider an uplink time division duplexing (TDD) based multi-user THz UM-
MIMO system. The base station (BS) is equipped with a uniform linear array (ULA) with N antennas
to simultaneously serve P single-antenna users randomly distributed over the cell. The fully connected
hybrid analog and digital architecture with M RF chains is employed at the BS. For uplink transmission,
we assume the users transmit mutually orthogonal pilot sequences to the BS, thus, the localization and
CE are independent for each of them. Without loss of generality, we consider an arbitrary user for
analysis.

2.1 Transmission protocol and signal model

In this paper, we propose that sensing and wireless communication are implemented in one system and
exploit the sensing location knowledge to enhance CE. To this end, our proposed scheme is based on a
specific transmission protocol, as described in Figure 2. Specifically, there are T" transmission slots in the
considered time interval, and the channel remains unchanged within such channel coherence time. During
the pilot transmission phase, the protocol comprises two sequential stages: (i) angle-distance sensing via
Q1-slot uplink transmission of sensing pilots from the user to the BS; (ii) CE through Q2-slot CE pilots
leveraging acquired location parameters for adaptive codebook optimization. Finally, in the remaining
T — @1 — Q2 slots, uplink data transmission is carried out between the BS and the user.
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Figure 1 (Color online) THz UM-MIMO system with hybrid analog and digital architecture.
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Figure 2 (Color online) Transmission protocol of proposed scheme.

For ease of presentation, we use ) to uniformly denote the pilot length of sensing and CE in the pilot
transmission phase. Let s, denote the transmit pilot in the time slot ¢. By assuming that s, = 1 for all
qg=1,...,Q, the received signal vector y, € CM*! can be represented as

H H H H
Yq = VA,thq + VA,qu = VA,qh + VA,qu’ (1)
where V4, € CN*M is the analog combiner matrix in the g-th slot, satisfying the constant modulus
constraint [V 4(i,5)] = —=. h € C¥*! denotes the channel vector, and w, ~ CA(0,0?) denotes the

VN
additive Gaussian noise. Via digital combiner operation, the baseband received signal

Tqg = V%,qviqh + V%,qviqwq’ (2)
where vp , € CM*! s the digital combiner vector in the g-th slot.
2.2 THz near-field channel model

The THz near-field signal transmitted by each user propagates through a multipath channel with L + 1
distinct paths and is captured by the N receiving antennas, where there is one LoS path and the remaining
L scatters are randomly distributed in the near-field region. Due to the high susceptibility to blockage,
reflection, and scattering, NLoS paths in THz channels experience severe attenuation, making the LoS
path dominant and accounting for the majority of the received energy, particularly at short ranges [27],
with the power ratio of the LoS path to the total NLoS paths typically ranging from 10 to 20 dB [28,29].
Therefore, the THz near-field channel can be characterized as [30]

L

h = hyes + hros = agb(6o,70) + Y crb(81,71), (3)
=1

where [ = 0 denotes the LoS path. «y,r;, and 6; = sin ¢; represent the complex path gain, the distance, and
the spatial angle of the I-th path, respectively. As the LoS path dominant, there have |ag| > |ay| (I # 0).
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@1 is the AoA of the [-th path. And b(6,r) is the near-field steering vector given as [23]
T

b(0,7) = e A ,e'./\ coo,e A , (4)

where \ represents the carrier wavelength, Ar(™ = (" — () is the distance between the n-th

BS antenna and the user that can be derived as (™ = \/r2 + p2d? — 2rp,df with 6 € [—1,1]. p, =

n — %, n = 1,2,..., N is the antenna location. The antenna spacing d is set to half-wavelength as

d= 3 [31].

3 Localization scheme

In this section, we propose a near-field localization scheme for hybrid analog and digital architectures.
Firstly, we propose a coarse LoS angle estimation scheme based on DFT-based analog combiners by
revealing the near-field spatial angular spread effect. Then, we propose a refined user localization scheme
based on joint parameter optimization, which iteratively refines angle and estimates distance parameters
by leveraging the high-degree-of-freedom characteristics in the digital domain.

3.1 Coarse angle estimation by DFT-based analog combiners

In the hybrid analog and digital architecture, the received signal is first processed by the analog combiner
matrix V4, as (1) shows. Existing far-field AoA estimation schemes typically use the DFT matrix F =
\/Lﬁ[a(ﬁo), ...,a(fny_1)] as the analog combiner matrix, as each of its columns a(f,,) = [/, ... &7N]T

corresponds to a specific angular sector in the spatial domain, where 6,, = n — % Signals with AoA
outside of the given sector are attenuated or even nullified, enabling the system to quickly identify the
angle of the received signal [19]. But for the near-field signal, the additional distance dimension causes
the energy spread effect in the spatial angular domain, resulting in reduced accuracy of the sector angle
response [23]. In this subsection, we specifically analyze the near-filed energy spread effect in the spatial
angular domain. Based on this, we perform a coarse angle estimation by DFT-based analog combiners.

3.1.1 Analysis of near-field spatial angular spread effect

In order to determine the near-field spatial angular spread effect, we first derive the m-th entry of the
analog received signal y, in (1) as

_ H H
Yq [m] - VA,q,mh =+ VA,q.,qu
L
H H
= Z OélVA7q7mb(ol7 Tl) + VA,q,mWQ’
=0

where v 4 ¢m is the m-th column of the combiner matrix V4 4. Let va gm = a(f,), we have

L
yalml = (0,)b(0r, 1) + V4 . We. (6)
=0

And the near-field spatial angular spread effect is determined by a™ (6,,)b(6;,7;) [23]. Thus, we define the
amplitude function of a(6,,)b(6;,r,) as follows:

T (e_n79l7rl) = ‘aH (é’ﬂ) b (6[,7‘[)|
@ 1%

2n _ p2d2(1 - 62)
=~ p,db, — p,do Pn= A\ 71J
12 e (15 (oo + 5

n=1

N

_ d(1 — 9?
> " exp (j7T (pn (9n—91)+p27( l>)>‘,
el 27"1

1
N
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Figure 3 (Color online) Normalized amplitude of 7 (én, 0, ’I"l) versus 0, in two cases (the spatial angle 6, of each case marked
by black deshed lines), where N = 256 and f = 100 GHz.

where (a) is derived by Taylor series to approximate Ar(™ = \/r2 4+ p2d% — 2rp,df — r ~ —p,df +

2 ;2 2 — —
w. Figure 3 shows the normalized amplitude of " (6,,,6;,71) versus 6,,. It can be seen that the

energy of one near-field path component spreads towards multiple angles around its true spatial angle 6;.
Define the spatial angle range of energy spread:

6= {01 (0..017) > s (B 1,1) }. )

where n € (0,1) is a threshold. And then, we have Theorem 1.
Theorem 1. The true spatial angle 0; lies approximately at the midrange of @y, i.e.,

0; ~ median(60;). 9)

A similar conclusion was also drawn in [32, Observation 1], but no detailed proof was provided therein.
Proof.  Let x =p, € [-1,1], when N — oo, Eq. (7) can be approximated as

1 2 _p2 9 _
/ exp (_jﬂ (N dél 07) 2 NV (0 91)$>>d$
1 Tl 2

1
= % ‘/ exp (—jT[ (le — G2)2> dx
-1

where G = 4/ %1—912)7 Gy = /Wl—ef)(én — ;). Then, let t = /2(G1x — G2)?, there derives

T (6, 00,7m1)
1 V2(G1—G2)
2v/2G /\/i(GlJer)

T (e_nvolaTl) ~ oz

[N

(10)

)

exp (—jgtz) dt

= ﬁ {C (\/§(G1 - G2)) —-Jjs (\/i(Gl - Gz))} - [C (\/§(G1 + Gz)) —-Jis (\/§(G1 + G2))”
:T;Gl ¢ (VA - 62) — 0 (Va(ei +@)] ~i[s (VA - 62) -5 (Va(ar + ).

(11)
where C(8) = foﬂ cos(Zt?)dt, S(8) = fOB sin(5t?)dt are Fresnel functions [33]. For a specific path, the
value of (71 is constant, and the value of G5 only varies with 0,,. Combined with the properties of Fresnel
functions, it can be easily derived that '(—G2) = T(G2) = Y (|0; — 6p|). Thus, we have ; = median(6;).
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3.1.2  Analog combiners design and coarse angle estimation

Based on Theorem 1, we next design the DFT-based combiner and then perform the coarse angle esti-
mation.

Due to the limited number of RF chains of the hybrid architecture, V4, € CN*M cannot directly
cover all IV spatial angular sectors in the DFT matrix. Therefore, we design a set of analog combiners
~{V,47q]>qQ:11 in the first (); transmission slots as

VA,q = [VA,q,la cee 7VA,q,M] = [a (é(qfl)MJrl) yeees @ (éqM)] . (12)

Accordingly, let the m-th RF chain analog received signal in the ¢-th slot y, [m] in (5) be denoted as
y(n) = a(0,)h + a'(0,)w,, where n = (¢ — 1)M + m. Next, to identify signal components likely
associated with the dominant LoS path, we introduce a candidate index set N, defined as

Nz{n

where 7 € (0,1) is the predefined power threshold parameter. This set includes indexes of signals whose
power exceeds a fraction 77 of the maximum signal power.

Due to the LoS path dominance and accounting for the majority of the received energy in THz near-field
channel, it allows us to associate the strongest signal components with the LoS path. By appropriately
selecting the value of 7, the candidate set N can effectively capture the spatial angle range index corre-
sponding to the energy distribution of the LoS path. Finally, the spatial angle of the LoS path can be
estimated as éoc = émcdian( A7) by Theorem 1.

(P> |y} (13)

3.2 Refined angle and distance estimation by joint parameter optimization

Having completed the design of analog combiners in the above subsection, we obtain the candidate index
set A/, which indicates a preliminary angle estimation of the LoS path, i.e., éoc = gmcdian( - To further
refine the angle estimation and additionally estimate the distance of the LoS path, in this subsection, we
next propose a refined LoS path estimation method based on joint parameter optimization, iteratively
refining angle and estimating distance parameters by leveraging the high-degree-of-freedom characteristics
in the digital domain.

Firstly, define Q = {L"—A}lJ +1lneN } as the set of candidate time slots corresponding to all analog
combiner vectors associated with N, |Q] = I. Then, we have the corresponding analog output y; =
VIA{ G+ Vﬁquq, where V 4 4 is the analog combiner in the g-th slot, ¢ € Q. This way, an exhaustive
search by excluding spatial sectors can be avoided. Let the optimal digital combiner corresponding to
Va,q be vp g. Stacking all ¢ € Q slots, the analog output and optimal digital combiner can be denoted
as y = diag(yg,,---,¥q) € CIM*! and vp = [vg)ql, . ,VE)JI]T € CIMX1 yegpectively. The baseband
received signal thereby is x = vily € C1*1.

Theorem 2. Let the whole hybrid combining weight align with the array steering vector, i.e., V4 ¢vp 4 =
b(6,7),0 € (—1,1). For the LoS-dominant THz near-field channel, the baseband received signal power
gets maximum when (0,7) = (6o,70), 1.e., Va,4VD,q = b(o, 10).

Proof.  The received baseband output power from (2) is

2
P, — ‘(VquvDﬁq)H h‘ +o2. (14)

Since the noise power o2 is constant, maximizing P, reduces to maximizing the signal power term

|(Va,qvD,g)"h% Let Va,vp,=b(0,r), 0 € (—1,1), there derives

(Vaqvo.a)"h| = [b(0,r)h| = . (15)

L
Z ale (9, T‘)b(@l, Tl)
=0

In the LoS-dominant channel, the inner product is dominated by the LoS path’s contribution. For
arbitrary (0, r), apply the triangle inequality:

L L

b (0,m)h| < Jaul[b™ (0, r)b(61,m)| <D |aul, (16)

=0 =0
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where the upper bound is approached when (6,7) = (6, 70), as the LoS term |ag| is maximized while
cross terms are minimized. For other (0, r), the inner product is reduced due to smaller gains |a;|(l # 0).

Hence, based on Theorem 2, the angle and distance of the LoS path can be estimated by maximizing
the following objective function:

(éo, fo) = arg max %)%, st Vagvpg = b(6,), (17)

where the parameter space € = (Omin, Omax) X (Tmin, "max). In the constraint, we have vp ; = VTA qb(6‘, r),
where VTA g 1s the left pseudo inverse of V4 5. For the given 'V 4,7 in the above subsection, as the columns
of V 4,4 are orthogonal, it follows that vp = VLﬁqb(H,r) = +Vib(0,r).

Next, to solve binary optimization problems efficiently, we propose an alternate optimization scheme,
dynamically adjusting the confidence intervals of the parameters to converge toward the globally optimal
(6,7). This approach significantly reduces the computational complexity of directly optimizing (6,r)
while lowering the risk of conventional gradient-based methods converging to local optima.

(1) Initially, the confidence interval of 6 is set to i.e., !Iléo) = [9(0) 9,(1?21)(] = 65 — AB, 65 + AG], where

min’
Af is a predefined angle spread range. And the confidence interval of r is set to its full domain, i.e.,
7 = [rfr?i)n,rr(ggx]. At each iteration ¢, the algorithm cyclically optimizes one parameter while fixing

another to the midpoint of its current intervals.

(2) A uniform sampling operator S(¥), K) = {Winin + =5 (Yimax — Pmin) } 2, generates K equidistant
points within @) and the objective function is evaluated at these points. The top [7K (7 € (0,0.5))
samples with the highest function values are retained, and the updated interval ¥(**+1) is defined as the
minimum and maximum of these selected points, ensuring ¥(**+1) C ¥() The process alternates across
both parameters until their intervals converge to a specified tolerance ¢, i.e., ¥ < e.

3.3 Proposed localization algorithm

The overall localization procedure is summarized in Algorithm 1.

Algorithm 1 Proposed localization algorithm.

}Ql
q=
Output: Estimated localization (6o, 7o).
: Stage 1: coarse angle estimation
:forg=1,...,Q1 do
Apply V4,4 in (12) to acquire y(n);
end for
: Calculate N = {n“y(n)|2 > ij |max,, y(n)|? }in (13);
9(? = emedian(/\fﬁ
Stage 2: refined angle and distance estimation
: Calculate Q = {L%J +1n € N} and y;
: Initialize confidence interval WS(D) = [ég — A6, ég + AH} ,LPT(O) = {Tr(:i)n’ rr(r?;x};
10: for t-th iteration do
11: 0 ]E[llle(t)]7 generate samples of r: S =S¥V, K);
12: Compute the value of the objective function f in (17), and generate F{ = {f(0,r)|r € SP};
13: Interval contraction: W 1) « {min (Sﬁt)[Zﬁt)]) ,max (Sﬁt)[Zﬁt)])}, where Z{ is the index set of the top [7K] highest

Input: Received signal {y, 1, predefined threshold 7, tolerance error €, sampling number K, interval shrinkage ratio 7.

el

values in Sf,t);

14: 4 ]E[LPT“+1)], generate samples of 0: Sét) = S(Wg(t)7 K);

15: Compute the value of the objective function f in (17), and generate f[gt) ={f(6,r)0 € Sét)};

16: Interval contraction: llle(Hl) — {min (Sét)[Zét)]) , max (Sét)[Zét)])}, where Zét) is the index set of the top [7K| highest
values in Sét);

17 if 7D <€ then

18: break;
19: end if
20: end for

21: return (0, 7o) = (E[wS'TV], Ew+D]).
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4 LoS-prior-enhanced CE scheme

In the THz near-field channel, it is noted that the LoS path is dominant and accounts for the majority
of the received energy, which may mask the weak NLoS components in the noise [34]. By exploiting
the estimated LoS information in Section 3, in this section, we propose a LoS-prior-enhanced CE (LPE-
CE) scheme, which strategically decouples the LoS and NLoS components through subspace-orthogonal
analog combiners, and then estimates the channel components separately to avoid NLoS components
being masked. Additionally, we propose a lightweight near-field polar domain sparse codebook based on
the LoS prior to reduce the computation complexity.

4.1 Subspace-orthogonal analog combiner design

Given the estimated LoS parameters (éo, 70) in Section 3, we can easily obtain the steering vector of LoS
path b(6p, 7o) in (4). The normalized LoS direction vector is therefore given by

() L
ug = m b (90,r0) . (18)

Motivated by the LoS dominance in THz channels, we align one of the combiner vectors directly with
uy to maximize the gain along this path, thereby capturing the bulk of the LoS energy. For the remaining
vectors, we aim to span the spatial dimensions beyond the LoS direction to focus on NLoS components,
while minimizing LoS interference. Specifically, we propose the following design strategy that enforces
orthogonality between these additional combiner vectors and the LoS direction.

Firstly, for each combiner matrix Va4 (¢ = Q1+ 1,...,Q1 + Q2), the first column is set as the LoS
direction

VAg1 = Up. (19)

This alignment maximizes the received signal strength for the LoS component in the corresponding RF
chain.

Then, for the remaining combiner vectors v4 q2,...,Va,q M, We impose the orthogonality condition by
the Gram-Schmidt orthogonalization process [35]

Vg,q,muo =0, m=2,...,M. (20)

Gram-Schmidt orthogonalization is employed here for its simplicity and ability to generate an orthonormal
basis starting from random or predefined vectors, iteratively subtracting projections onto previous vectors.
This orthogonality ensures that these vectors do not capture signals along the LoS direction, thereby
focusing on the extraction of NLoS components. For ease of description, let u,—1 = va gm (M =
1,...,M). Consequently, the full combiner matrix can be written as V4 4, =U = [uy, ..., un—1].

This design creates a subspace-orthogonal combiner matrix U that projects the received signal into
decoupled dimensions, enabling the separation of LoS and NLoS components across different RF chains,
and thereby facilitating the subsequent CE. With the combiner matrix U designed, the next step is to
construct an adaptive polar-domain codebook leveraging the LoS prior, which will be used for NLoS
component estimation.

4.2 LoS-prior-aided adaptive polar-domain codebook

The THz near-field channel exhibits inherent sparsity in the polar domain, where the multipath compo-
nents are sparsely distributed across a limited number of angle-distance pairs (;,r;). This sparsity allows
the channel to be efficiently represented using the polar-domain dictionary, facilitating CS-based recon-
struction with low computational overhead [23]. Based on the estimated LoS parameters from Section 3,
we propose an adaptive polar-domain codebook W to exploit the channel sparsity.

As the channel characteristics depend on both angle and distance parameters in the near field, the
conventional polar-domain codebook [23] consists of near-field steering vectors b(6,r) corresponding
to a grid of angles 6 and distances r. Typically, the entire polar domain is divided into S distance
rings r1,...,7rs, while each distance ring is segmented by N uniform angle samples, yielding a total
codebook size of N x NS. For the n-th samples angle, the sampled distance of the s-th distance ring
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Tns = ZA(1 — 02) /s, where Za = éV;—Qdi is the threshold distance defined to limit the column coherence
between two near-field steering VectoArs, [ is the column coherence threshold. This approach requires
sampling all possible angle-distance combinations, leading to a surge in sample count and computational
complexity.

To address the challenge, we exploit the LoS parameters estimated in Section 3 to initialize a minimal
codebook. As the diffraction and scattering are limited in THz channels, NLoS paths are dominated
by nearby surfaces or objects along or close to the LoS path, rather than distant or highly deviated
paths [27]. Therefore, we exploit the LoS parameters as the basis to generate the initial codebook, and
the generation proceeds as follows.

(1) Initial distance ring computation. Given the desired column coherence threshold Sa, we have

ZA = é\g—gdi. Then, the minimum number of distance rings containing LoS path can be calculated as
A

To

where sq is a positive integer. To provide initial coverage, we take 59 = s9 — 1 as the upper bound of the
distance ring sampling. -
(2) Initial codebook generation. For each uniformly sampled angle 6,, = n — %,n =1,...,N,
calculate the corresponding s-th distance ring
Za (1-067)

Fps= - s=5,...,5+5 —1, (22)
S

Tmin

where S is the total number of distance rings that satisfies S + 59 = { Za, J = S. Therefore, the initial

codebook can be generated as
Uiy = [P1,..., Pg], (23)

where ¥, = [b (1,701) ..., b (B 7un)]- )
In this way, the total size of the generated codebook reduces to N x N.S. The codebook size shrink

ratio is - .
S So ZA(l —98) ZA
S i (S o Sl A0 VA . 24
S S \‘ 720 T'min ( )

Given that 6y is bounded within (—1,1), the limits of the aforementioned equation are derived as

1— KOAJ / Lﬂiﬂ < % <1. (25)

The inequality holds since 79 > rpin. This compact initial codebook exploits the LoS prior to focus on
likely NLoS path locations, reducing computational overhead. The codebook will be adaptively expanded
during the NLoS estimation process, as described in Subsection 4.3.

4.3 Hierarchical decoupled estimation of LoS and NLoS components

With the subspace-orthogonal combiner U and the initial polar-domain codebook W;y;t, we now estimate
the LoS and NLoS components separately from the combiner outputs. The motivation here is to exploit
the orthogonal projection to isolate the dominant LoS signal first, then recover the residual NLoS paths.
Specifically, the proposed hierarchical approach leverages the LoS prior for efficient LoS estimation and
the polar-domain sparsity [23] of THz near-field channels for NLoS recovery via CS.

According to (1), the analog received signal after applying U is given by

v, = Ulhs, + Ulw,. (26)

Stacking the signals across all Q2 (¢ = Q1 + 1,...,Q1 + Q2) slots, the whole analog received signal
Y = [le-‘rlu cee 7yQ1+Q2] € CMxQ: thereby is

Y = U'hs + UMW = hgs + UW, (27)
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where we assuming s = [1,...,1]T € C1*@2. W = [wg,41,...,W0,+0,] € CV*?2 is the stacked noise
matrix. Define hog = UTh € CM*! as the effective low-dimensional channel after projection. It can be
estimated by the least squares (LS) method

het =Y (STS)71 st = iYST. (28)
Q2
LS is chosen here due to its simplicity and optimality under Gaussian noise assumptions. With fleﬂr, the
hierarchical CE proceeds in two stages.
(1) Stage 1: LoS component estimation. As the first column of U is the normalized LoS direction
vector ug, the first element of heg primarily captures the LoS gain, which can be extracted as

L
hes1 = ugh = uf'hyes + uf hyres = g + uf) Z arb(0y, ). (29)
1=1

Given the LoS prior ug = b(fp, ) and the approximate orthogonality of near-field steering vectors, the
inner product uilb(6;, ;) ~ 0 for [ # 0. This orthogonality assumption holds well in THz regimes with
large arrays, as paths are sparsely distributed [29]. Thus, the residual NLoS term is negligible, allowing
direct estimation of the LoS complex gain

G = hem 1, (30)

and reconstruction of the LoS channel .
hLoS = douo. (31)

This stage isolates the dominant path without iterative optimization.
(2) Stage 2: NLoS component estimation. After subtracting the estimated LoS from the effective
channel, we obtain the NLoS residual in Qs slots

YNLoS = 1:leiﬁf - UHI:ILOS' (32)

Leveraging the polar-domain sparsity of the THz near-field channel, in this stage, we apply the CS
approach to perform the NLoS CE. Let ¥ be the polar-domain codebook which is designed in Subsection
4.2 to match the near field sparsity and reduce size via LoS prior, the sparse reconstruction problem can
be formulated as R R

mﬁin Ihllo, s.t. [UM®h — ynpos|l2 < &, (33)

where h is the sparse support vector to be estimated, x is the maximum tolerable error bound.
To solve this sparse reconstruction problem efficiently and robustly, we use an iterative orthogonal
matching pursuit (OMP) algorithm [36] with adaptive codebook expansion. After each OMP iteration,

we compute the residual norm ||r|ly = [UP®h — Yxres|lo. If [|]|2 > v, where v is the residual threshold,
we expand ¥ by adding a new distance ring (e.g., Snew = min(s) — 1), computing new distances 7, s, ., =

ZA(lféi) for n = e N, and appending \Ilsncw = [b(él, ’FSncm)v .. 7b(9_N7/F5ncw-,N)] to W. The OMP is

Snew

re-run with warm-start, using the previous support set to reduce complexity. This repeats until ||r|ls < v
or a maximum expansion limit Fy,,y is reached. The NLoS channel is finally reconstructed as

hxros = ¥h (34)
The complete channel estimation is obtained by combining the LoS and NLoS estimates
h= BLOS + ﬁNLoS- (35)

This adaptive mechanism ensures a compact codebook while covering sufficient paths, balancing accuracy
and complexity.

4.4 Proposed LPE-CE algorithm

The overall LPE-CE procedure is summarized in Algorithm 2.
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Algorithm 2 Proposed LPE-CE algorithm.

Input: Estimated localization (éo,ﬂ))7 received signal {yq}qulgfgf17 threshold Ba, minimum allowable distance 7yin, number of

NLoS paths L, residual threshold v, max expansions Emax-
Output Estimated channel h.
: Initialization of LoS-prior-aided adaptive polar-domain codebook:
PR A
for s = so — 1 to sp + S do
forn € {1,...,N} do

g2
) N-—1 ZA(l Z3
O0n =mn — yTn,s = oy

Append b(0,,, 7p s) to Wy
end for
U = [¥,0,];
: end for
: Decoupled estimation of LoS and NLoS components:
: Generate U = [ug,...,up—1] in (19) and (20);
cforg=Q1+1,...,Q1 + Q2 do
Apply V4,4 = U to acquire yq in (26);
: end for
: Stacking all Q2 slots to acquire Y in (27);
. Estimate the effective channel heg in (28);
: Stage 1: LoS component

PSS W o

e e e el

¢ &o = heg,1, hLos = douo;

: Stage 2: Adaptive NLoS component

: Residual signal Ynros = hegr — UM hros;

: Expansion counter and previous support: e = 0, SupPpe, = {}
: while e < Epax do

23: Initialization: r = ynLos, ¥ = UH‘I'7 SUPP = SUPPprev;

24: forl € {1,...,L} do

NN N
N = O ©

25: Calculate the correlation matrix: I' = WHR;

26: Updatc support set: supp = supp U {arg max; ‘i’fIR},
27: LS: h = (o Teupp) "L YNLos;

28: Update residual r = r — \I'suppfl;

29: end for
30: if ||r|l2 < € then

31: break

32: else

33: Add outward ring: spew = min(s) — 1;
34: forn e {1,..., ,N} do

35: o %:wﬁ)

36: Append b(0y, Tn spew) 10 Wopows
37: end for

38: v=[v v, I

39: Warm-start next OMP: SUPPp, ey = SUPD;
40: e=e+1;

41: end if

42: end while
43: hNLoS = ‘I/h
44: return h = hres + hyros.

5 Simulation results

In this section, we evaluate the localization and CE performance based on the proposed methods via
numerical simulations.

5.1 Simulation setup

Through the simulation, we consider a hybrid analog and digital UM-MIMO system with N = 256-
antenna ULA and M = 8 RF chains at carrier frequency f = 100 GHz. The spatial angles of the user
and L = 2 scatterers to the center of BS are set as 6 ~ U(—1,1). The distance of the user to the center
of BS is set to ro ~ (2,10) m within the near-field region Dray1 = 2de2 ~ 98 m, and the distances of
the scatterers are r; ~ U (2,ro + Ar), where Ar = 2 m. The Rician K-factor k is set to 10 dB.

The performance of the localization algorithms is measured by the root of mean squared error (RMSE)

for both angle and distance parameters, which is defined as RMSE = \/% Eiil |#; — x0|2, where D = 103

is the Monte Carlo trials, and Z; denotes the estimates of x at the i-th trial. Here x can be either the
angle 6 or the distance r. And the performances of CE algorithms are evaluated based on the normalized
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Table 1 Details of localization algorithms.

Algorithm Computational complexity (multiplications) Average runtime (s)
Proposed N? 4 tmax MIKN 0.0122
CMR [18] N? + N* 4 N¥ 4 ZUmaxTmin) 2 41.8310
3 x—Tni
SNRO [19] N 4 lrmexSrmin) prrN 0.2016
DE [22] N? 4 Umax—Tamin) prpN 0.0228

mean square error (NMSE), which is defined as NMSE = Zle [h; — h||§/|\h|\§, where h; denotes the
estimates of h at the i-th trial.

5.2 Localization performance

In this subsection, we compare the performance of the proposed localization algorithm with the following
three baseline algorithms.

e Covariance matrix reconstruction (CMR) algorithm [18]. Reconstruct the spatial covariance matrix
and then estimate both angle and distance from the spatial covariance matrix by 2-D MUSIC [37].

e SNR-optimal (SNRO) algorithm [19]. Both angle and distance are simultaneously exhaustively
searched to maximize the output SNR.

e Decoupled estimation (DE) algorithm [22]. Since the angle estimation component utilizes the sub-
array of the partially connected architecture that cannot be extended to the fully connected architecture
in this paper, we leverage the decoupling estimation concept of this approach. In the first step, angle es-
timation employs the coarse angle estimation scheme proposed in this paper; in the second step, distance
estimation follows the original scheme.

The estimated range of all the algorithms is set t0 (min, "max) = (2,15) m. The search resolution
of both angle and distance in CMR and SNRO algorithms, and of distance in DE algorithm, is set to
§ = 1073, For the proposed algorithm, it is set that the predefined threshold 77 = 0.8 [27], tolerance error
€ = 1073, sampling number K = 20, and interval shrinkage ratio 7 = 0.3. The pilot length of the sensing
phase is Q1 = N/M.

The computational complexity and average runtimes of the proposed algorithm and three baseline
algorithms are listed in Table 1. The CMR algorithm incurs additional overhead due to the repeated
matrix pseudo-inversions. The primary reason for the complexity gap between the proposed algorithm and
the baselines (exhaustive search over both angles and distances in SNRO, and distance search in DE) lies in
their brute-force optimization strategies. The computational complexity and average runtime advantages
further demonstrate the superiority of our proposed alternating optimization approach. Additionally,
Figure 4 illustrates the curve of the optimal error of the locations floc = (ég,fo) in each iteration t of
the proposed algorithm, with the interval shrinkage ratio 7 € {0.1,0.3,0.5}. It can be observed from the
figure that the convergence iteration ¢,y increases with 7, while the optimal estimation performance is
achieved at 7 = 0.3, which can be attributed to the following trade-off. On the one hand, small 7 values
induce precocious convergence, causing the algorithm to terminate at suboptimal solutions (local optima)
due to insufficient exploration. On the other hand, large 7 values significantly reduce convergence speed
while simultaneously increasing estimation variance, resulting from excessive exploration at the expense
of exploitation efficiency.

Figures 5 and 6 plot the curves of RMSE of spatial angle and distance versus SNR. of the proposed
algorithm and three baseline algorithms, respectively. From the two figures, it is obvious that as the SNR
increases, the accuracy of the algorithms improves accordingly. The proposed localization scheme signifi-
cantly outperforms the baseline algorithms at all considered SNR in both angle and distance estimation.
For the angle estimation, due to the designed analog combiner matrix that performs pre-judgment on the
signal’s spatial sector, the proposed, SNRO and DE algorithms all achieve superior angle estimation per-
formance. Particularly, the superior angle estimation performance of DE algorithm effectively validates
the efficiency of the coarse angle estimation scheme presented in Subsection 3.1. For the distance estima-
tion, both far-field algorithms (CMR and SNRO) exhibit significant estimation errors, which reveal the
limitations of directly extending one-dimensional far-field search schemes to two-dimensional near-field
search. The one-dimensional search after decoupling angle and distance enables DE algorithm to achieve
superior distance estimation performance compared to far-field schemes. However, constrained by the
limited accuracy of coarse angle estimation, residual errors in distance estimation remain unavoidable.
Therefore, the effectiveness of the proposed scheme for near-field localization is rigorously verified.
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Figure 7 demonstrates the cumulative distribution functions (CDFs) of localization errors for the
proposed and three baseline algorithms at SNR = 10 dB. It can be seen that the proposed algorithm
achieves rapid CDF growth in low-error regimes, attaining 80% localization accuracy within 0.3 m,
and 95% success rate at 1-m error. Although all algorithms show CDF improvement with increasing
error tolerance, the proposed algorithm maintains consistent dominance, reaching full convergence within
1.5 m. These results validate the proposed scheme’s capability to deliver localization reliability essential
for 6G ultra-reliable low-latency applications.

5.3 CE performance

In this subsection, we compare the performance of the proposed CE algorithm with the following two
baseline algorithms.

e Conventional polar-domain OMP (P-OMP) algorithm. The CE process strictly follows [23] without
any LoS prior, and thus does not involve LoS/NLoS decoupling.

e Separate estimation by conventional polar-domain codebook (SEP-OMP). Initial LoS component
estimation is performed according to the presented scheme, after which the resulting NLoS residual
signal undergoes estimation using the conventional polar-domain codebook.

The angle grids of the codebook of all the algorithms are uniformly selected within (—1,1) as 6,, =
n— &=L forn=1...,N. The codebook desired column coherence threshold is set to Sa = 0.8 [23,38].

The pilot length Q2 is set to 50 and the expansion residual threshold in the proposed v = 0.10v/ M.
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Figure 8 provides the NMSE performance of CE versus SNR with K-factor £ = 10, 20 dB, respectively,
where the localization errors are set to 0.3 m. It can be observed from the figure that across —5 to
15 dB SNR, all methods exhibit a monotonic NMSE decrease. LPE-CE slightly outperforms SEP-OMP,
especially in low SNR, indicating the better noise robustness of the proposed adaptive codebook. Both of
them consistently outperform P-OMP, confirming that first estimating and canceling the LoS component
alleviates masking of weaker NLoS paths. When the K-factor increases from 10 to 20 dB, P-OMP gains a
slight degradation due to stronger masking, while LPE-CE and SEP-OMP get an increase because they
explicitly decouple LoS and NLoS.

Figure 9 compares the NMSE performance of CE versus the localization errors with K-factor k =
10,20 dB, respectively, where the SNR is set to 5 dB. As the localization error grows from 0 to 1 m,
NMSE increases for both LPE-CE and SEP-OMP, while it remains constant for P-OMP as it does not
exploit localization prior. LPE-CE degrades more slowly than SEP-OMP, owing to a polar-domain sparse
codebook searched under a residual-threshold rule that adaptively expands the distance ring only when
needed, compensating for biases in the localization prior and yielding higher robustness to localization
errors.

Additionally, to validate the lightweight degree of the proposed LoS-prior-aided codebook, we plot the
codebook size shrink ratio function % in (24) versus different angles and distances, as illustrated in Figure
10. It can be seen in the figure that the codebook size shrink ratio demonstrates an overall decreasing
trend with the reducing distance 7p. When 7y approaches rmin, the codebook shrink ratio reaches 0.1,
indicating an order-of-magnitude reduction in codebook size. And the shrink ratio predominantly
remains within the 0.3-0.7 range. Moreover, the average number of codebook expansions is 0.02 across
all trials. Hence, the final codebook size is nearly identical to the initial one, preserving the order-of-
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magnitude reduction over the full codebook. For UM-MIMO systems featuring hundreds to thousands
of antenna elements, the proposed LoS-prior codebook effectively reduces the codebook size, which may
achieve significant computational complexity reduction.

6 Conclusion

In this paper, we propose a joint localization and CE scheme in THz near-field UM-MIMO ISAC systems.
The proposed scheme achieves precise localization via coarse AoA estimation and refined optimization,
while the LPE-CE scheme boosts channel estimation accuracy with an adaptive codebook that dynam-
ically expands based on residuals. By reducing system complexity and hardware needs, it supports
practical 6G ISAC deployment. Future work could extend this approach to dynamic environments.
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