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Smart distribution networks (Smart DNs) serve as a key

component of the intelligent digital infrastructure for new

power systems [1]. Currently, the scale of heterogeneous

data transmitted in Smart DNs has increased exponentially

due to the large proportion of new energy units and new

power electronic devices connected to DNs [2]. Moreover, a

series of compute-intensive applications has emerged, such

as distributed energy resource management and intelligent

robot inspection, which require not only real-time and reli-

able data transmission, but also sufficient computing power

to make correct and timely decisions [3]. To meet the needs

of flexible and stable operation of Smart DNs and ensure

continuous new energy integration, it is urgent to expand

the computing, communication, and storage resources and

capabilities of heterogeneous nodes for building large-scale

ubiquitous computing power networks (UCPNs). Although

UCPNs have many benefits, it is very challenging to realize

flexible scheduling of computing power resources under the

performance requirements of massive and diverse compute-

intensive tasks.

•UCPNs in Smart DNs are the cyber-physical interdepen-

dent systems [4]. Computing and communication resource

scheduling may occur between nodes that are on the same

power line. These relationships of similar spatial distribu-

tion and high position dependency need to be characterized

in UCPNs to obtain an accurate network state and acceler-

ate the speed of node selection.

•Computing resources are distributed and finite. To ac-

complish a computing task, communication and computing

resources may exist in the form of groups. However, these

resources are independent among nodes. Environmental im-

pacts may lead to nodes with sufficient computing power

but limited communication resources. Therefore, the re-

source scheduling scheme should point out the differences

in resource provisioning capacities and potential group rela-

tionships among heterogeneous nodes to enhance scheduling

efficiency and responsiveness.

To solve these challenges, we propose an efficient and fast

computing power resource scheduling method for UCPNs in

Smart DNs. Our main contributions are as follows. (1) A

novel and unified hypergraph modeling method is proposed

for UCPNs in Smart DNs to capture the high-order rela-

tionships, enabling faster node selection and resource map-

ping. Specifically, hyperedge groups using cyber-physical in-

terdependence, connectivity features, k-hop neighbors, and

multi-dimensional resource attributes are constructed. (2) A

hypergraph convolutional attention network (HGcov-atten)

for computing resource scheduling is proposed. Hypergraph

convolution embeds four high-order relationships into nodes

via convolution operators to generate node computing power

evaluation values, selecting top Q nodes as targets. More-

over, the graph attention mechanism weights neighbors by

transmission rate, delay, and reliability of links to find the

optimal next hop. By repeating this process, the end-to-end

paths from the source to targets are generated.

Hypergraph construction for UCPNs in smart DNs. The

UCPN hypergraph is defined as G = (V , E,H), where V is

the set of computing nodes, E is the hyperedge set, and H is

the incidence matrix. As shown in Figure 1, the hyperedge

set E is composed of four types of hyperedge groups, namely

cyber-physical interdependence (Eind), connectivity feature

(Econ), k-hop neighbors (Ehop), and multi-dimensional re-

source attributes (Eres). Eind groups computing nodes on

different power lines to model the spatial and positional de-

pendencies of UCPN nodes. Econ clusters nodes with varying

connectivity, leveraging the communication modes between

node pairs to reflect whether a vertex has more next-hop op-

tions. Ehop categorizes the k-hop neighbors of a certain ver-

tex v, aiming to identify the related nodes via k-hop reach-

able positions. Eres contains computing nodes in different

intervals and models the correlation among heterogeneous

nodes with differentiated resource provisioning capabilities

at the group level. The incidence matrixH is constructed by

direct concatenation: H = Hind||Hcon||Hhop||Hres, where
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Figure 1 (Color online) Framework of computing power resource scheduling of UCPNs for Smart DNs.

·||· is a matrix concatenation operation, Hind, Hcon, Hhop,

and Hres are incidence matrices of Eind, Econ, Ehop, and

Eres, respectively.
Hypergraph convolutional attention network for comput-

ing power resource scheduling. Based on the UCPN hy-

pergraph, we design a hypergraph convolutional attention

network (HGcov-atten), which integrates hypergraph convo-

lution and graph attention mechanism. In the hypergraph

convolution, the inputs are incidence matrix H, attributes

and resource requirements of tasks Xser1, and vertex re-

source features X
res. The hypergraph convolution opera-

tion is
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where Dv is the vertex degree matrix, De is the hyperedge

degree matrix, W is the identity matrix, X(t) and Y (t+1)

are input and output of hypergraph convolution layer t, Θ(t)

is the coefficient of the Chebyshev polynomial, and the sig-

moid activation function is defined as σsigmoid(·).
The output Y = {Y1,Y2, . . . ,YL} is composed of the

evaluation values of all computing nodes within k hops from

task sources, where L is the number of computing tasks.

If only the computing node with the largest value is se-

lected as the target based on Y , the dynamic matching

between the task and the network performance during the

transmission process from source to target will be ignored.

Therefore, we sort the elements in Y in descending order,

select the top Q computing nodes with the highest eval-

uation values as the target set, and finally output matrix

Y
′ = {Y ′

1 ,Y
′
2 , . . . ,Y

′
L} ∈ R

L×Q.

In graph attention mechanism, the inputs are target set

Y
′, communication requirements of tasks X

ser2, and net-

work performance features X
per. Through the LeakyReLU

activation function, the absolute attention coefficient of

node n to the source v0 is obtained:

µv0,n = σLeakyReLU(−→a [Wattx
per
v0

||Wattx
per
n ]), (2)

where || is the matrix concatenation operation, Watt is a

shared weight matrix, and −→
a is the weight matrix of the

feedforward neural network. To facilitate comparison of

coefficients across different computing nodes, the softmax

function is used to normalize the absolute attention coeffi-

cients, and the relative attention coefficient of node n to the

source v0 is expressed as

τv0,n = σsoftmax(µv0,n) =
exp(µv0,n)∑

v0 6=v,v∈Nv0

exp(µv0 ,v)
, (3)

where n ∈ Nv0 , Nv0 is the set of first-order neighbors of the

source v0 (including v0). τv0,n is the probability that the

neighbor node n of the source v0 belongs to the optimal next

hop. We select the neighbor node with the highest probabil-

ity from τv0 as the optimal next hop. The optimal next hop

is regarded as the central node of the next attention layer.

Therefore, we take the output of each attention layer as the

intermediate result and mainly focus on the establishment

of the optimal end-to-end path P = {P1,P2, . . . ,PL}.

Experimental results. To verify the effectiveness of the

HGcov-atten, we compare it with four benchmarks, and

implement ablation experiments and parameter sensitivity.

Compared with benchmarks, the average accuracy of the

HGcov-atten is improved by a maximum of 22.48%. Spe-

cific details can be found in Appendix F.

Conclusion. We propose a hypergraph modeling method

of UCPNs for Smart DNs, aiming to capture the high-order

topological connections and differentiated resource provi-

sioning capabilities among UCPN vertices. Based on the

proposed UCPN hypergraph structure, we design an effi-

cient computing power resource scheduling algorithm to en-

hance resource utilization by orchestrating the computing

and communication resources of heterogeneous nodes.

Acknowledgements This work was supported in part by
National Science and Technology Major Project (Grant No.
2024ZD1300400), National Natural Science Foundation of China
(Grant No. 92367102), and Postgraduate Research & Prac-
tice Innovation Program of Jiangsu Province (Grant No.
KYCX22 0944).

Supporting information Appendixes A–F. The support-
ing information is available online at info.scichina.com and link.
springer.com. The supporting materials are published as sub-
mitted, without typesetting or editing. The responsibility for
scientific accuracy and content remains entirely with the au-
thors.

References

1 Said D. A survey on information communication technolo-
gies in modern demand-side management for smart grids:
challenges, solutions, and opportunities. IEEE Eng Manag
Rev, 2023, 51: 76–107

2 Kroposki B, Bernstein A, King J, et al. Autonomous en-
ergy grids: controlling the future grid with large amounts
of distributed energy resources. IEEE Power Energy Mag,
2020, 18: 37–46

3 Li J, Gu C, Xiang Y, et al. Edge-cloud computing sys-
tems for smart grid: state-of-the-art, architecture, and ap-
plications. J Modern Power Syst Clean Energy, 2022, 10:
805–817

4 Saleem M U, Usman M R, Yaqub M A, et al. Smarter
grid in the 5G era: integrating the Internet of Things with
a cyber-physical system. IEEE Access, 2024, 12: 34002–
34018

info.scichina.com
link.springer.com
link.springer.com
https://doi.org/10.1109/EMR.2022.3186154
https://doi.org/10.1109/MPE.2020.3014540
https://doi.org/10.35833/MPCE.2021.000161
https://doi.org/10.1109/ACCESS.2024.3372379

