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Navigating confined and restricted environments poses sig-

nificant challenges for conventional rigid robots. In contrast,

soft growing robots [1], which draw inspiration from plant

growth mechanisms, offer a biologically inspired solution by

elongating through material eversion. This unique growth-

based locomotion significantly reduces friction during move-

ment. Furthermore, the robot’s inherent compliance enables

it to navigate through environmental interaction [2], thereby

enhancing its capability to confined spaces.

Effective navigation in constrained environments requires

soft growing robots to incorporate steering mechanisms, typ-

ically achieved through passive (e.g., pre-bent structures)

or active (e.g., pneumatic artificial muscles, PAMs) meth-

ods [3]. Existing studies on passive steering primarily fo-

cus on modeling the behavior of pre-bent robots or devel-

oping motion planning strategies, often leveraging environ-

mental interactions to assist navigation. Although these

strategies are mechanically simple and exploit the robot’s

compliance to maneuver in tight spaces, they are inherently

irreversible and provide limited capability for correcting mo-

tion errors during operation. Active steering via PAMs,

when integrated with model-based controllers such as vi-

sual servoing or model predictive control, can achieve high

positioning accuracy at the end effector. However, these ap-

proaches often struggle to manage obstacle avoidance along

the entire length of the robot body. Model-free reinforce-

ment learning methods, such as those employing deep Q-

networks (DQN) [4], remain largely conceptual in this field.

They encounter substantial challenges during training due

to structural parameter uncertainties, inaccurate state esti-

mation, environmental disturbances, and prolonged training

durations. Sim-to-real reinforcement learning [5] presents a

promising alternative by reducing training costs while en-

hancing safety, reliability, and real-time performance. This

approach has already shown considerable advantages in soft

robot control tasks.

To address these issues, this study proposes a hybrid mo-

tion planning framework for soft growing robots by inte-

grating passive pre-bending and active PAM-based steering,

guided by a sim-to-real reinforcement learning algorithm.

The proposed method trains control policies in a Unity-

based simulation environment and subsequently transfers

them to real-world robotic systems. A dual-layer deep deter-

ministic policy gradient (DDPG) architecture is employed:

the first layer learns an environmental interaction policy to

determine the optimal pre-bending configuration, while the

second layer actively controls the PAMs to compensate for

sensor noise and manufacturing deviations, thereby mini-

mizing motion errors.

Integration of soft growing robot prototype. As illustrated

in Figure 1(a), the soft growing robot prototype combines

pre-bending and PAM actuation to enable steering. The

system comprises a drive-storage unit, a polyethylene film-

based body, a steering module, and a tip-guiding mecha-

nism. Pre-bending is implemented by folding the polyethy-

lene film into a Z-shape and anchoring one end to introduce

a controlled length differential. A PAM is constructed by

reinforcing a section of the film with nylon thread; when

inflated, it contracts laterally, enabling directional bending.

An HWP906P gyroscope mounted at the tip continuously

provides heading angle feedback, while a base-mounted en-

coder tracks the robot’s extension length. The Kalman filter

is used to fuse multi-sensor data, enabling accurate estima-

tion of the robot’s motion trajectory.
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where K is the Kalman filter gain, H is the measurement

matrix, P is the covariance matrix of state variables, and R

is the covariance of measurement noise. The matrices in (1)

are defined as follows:

x̂ =
[

px py θend

]

,

A =







1 0 v ·∆t · cos (x̂3)

0 1 v ·∆t · sin (x̂3)

0 0 1






,

B =
[

∆t · cos (x̂3) ∆t · sin (x̂3) 0
]T

,

*Corresponding author (email: fcsun@tsinghua.edu.cn, chuzy@buaa.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-025-4544-x&domain=pdf&date_stamp=2025-9-8
https://doi.org/10.1007/s11432-025-4544-x
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-025-4544-x
https://doi.org/10.1007/s11432-025-4544-x


Wu H R, et al. Sci China Inf Sci November 2025, Vol. 68, Iss. 11, 214201:2

Figure 1 (Color online) (a) Prototype of the soft growing robot, including its bending and PAM-based actuation structure;

(b) sim-to-real reinforcement learning framework for soft growing robot control; (c) dual-layer DDPG reinforcement learning frame-

work: network architecture and robot state vector; (d) validation of the pre-bending action selection network, training performance

of the policy, and analysis of the resulting robot trajectory and tracking error; (e) validation of the error compensation network for

real-time motion correction.

where, px and py represent the planar position of the end, v

is the linear velocity, ∆t is the discrete time step, and θend
denotes the orientation angle of the end.

Sim-to-real framework of soft growing robot. The sim-

to-real transfer framework for the soft growing robot is il-

lustrated in Figure 1(b). The structural characteristics and

actuation strategies of the robot are analyzed and simpli-

fied. To balance simulation fidelity and real-time perfor-

mance, the soft growing robot—modeled as a flexible inflat-

able beam—is approximated using a series of connected cap-

sule segments in simulation. Growth is modeled by progres-

sively attaching new capsules at the tip to emulate eversion-

driven extension.

Adjacent segments are connected via configurable joints

with virtual springs and dampers to emulate the elastic be-

havior of soft beams. Since the robot operates within a 2D

plane, rotations around the X and Z axes are constrained,

allowing only Y -axis rotation. Pre-bending is realized by

setting initial joint angles, whereas PAM-based steering is

approximated using a constant-curvature model that applies

uniform rotations across all joints. To enhance transferabil-

ity, domain randomization is introduced in the Unity envi-

ronment to account for variations in dynamics and percep-

tion during sim-to-real deployment.

Dual-layer DDPG network. As illustrated in Figure 1(c),

a dual-layer DDPG network is employed for motion planning

of the soft growing robot. The first-level network learns in-

teraction strategies with the environment and determines

the pre-bending configuration to guide the robot toward the

target. Based on the output of the first-level network, the

second-level network further accounts for manufacturing in-

accuracies and sensor noise, and controls the PAMs to com-

pensate for resulting trajectory errors. The state vector used

by the pre-bending action selection network is defined as fol-

lows:

x = [px py θend tx ty Oxi Oyi wi hi θi]

︸ ︷︷ ︸

xrobot

︸ ︷︷ ︸

xtarget

︸ ︷︷ ︸

xobstacle

,

(2)

where px and py denote the tip coordinates of the soft grow-

ing robot. θend is the angle between the robots growth di-

rection and the line to the target point (tx, ty). All obstacles

are rectangular, with centroid coordinates (Ox, Oy), dimen-

sions wi and hi, and orientation angle θi.

Furthermore, the action of the soft growing robot deter-

mines whether to set the pre-bending or the angle of pre-

bending.

at = θbend,







θbend < 0, turn left,

θbend = 0, straight,

θbend > 0, turn right.

(3)

The reward comprises two components: the target-

approaching reward rtarget and the turning behavior reward

raction, weighted by wtarget and waction, respectively.

r = waction · raction + wtarget · rtarget , (4)

rtarget = e−10d, d =
√

(tx − px)2 + (ty − py)2,

raction =







20

|θt − θbend|+ 1
, if |θt − θbend| < θt,

−|θbend|, if |θt − θbend| > θt,

(5)
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where d denotes the Euclidean distance between the robot

tip and the target point, θt is the angle between the growth

direction and the target direction, and θbend is constrained

within (−20◦, 20◦) to prevent excessive turning.

Although the first-level network is trained in an ideal en-

vironment, real-world deployment often results in trajectory

deviations caused by pre-bending imperfections and sensor

noise. To address these issues, a second-level perception and

error correction network is introduced and trained across

both ideal and quasi-realistic environments. The ideal envi-

ronment assumes full observability and no noise, whereas the

quasi-realistic environment incorporates uncertainties, sen-

sor noise, and partial observability. The input state vector

for the second-level network is defined as

x = [px py θend px0 py0 θend0 tx ty Oxi Oyi wi hi θi]

︸ ︷︷ ︸

xideal

︸ ︷︷ ︸

xreal

︸ ︷︷ ︸

xtarget

︸ ︷︷ ︸

xobs

, (6)

where px, py, and θend denote the ideal coordinates and ori-

entation of the soft growing robot’s tip. px0, py0, and θend0
represent the actual coordinates and orientation of the soft

growing robot’s tip. The action of the second-layer network

is the movement of PAMs.

at2 = θspam,

{

θspam > 0, turn right,

θspam < 0, turn left.
(7)

The reinforcement learning reward is defined by the gap

between the actual (dt0) and expected (dt) end-effector dis-

tances resulting from PAM actuation.







r= |dt−dt0| , dt0 < dt, dt0=
√

(tx−px0)
2 + (ty−py0)

2,

r=−|dt−dt0| , dt0 > dt, dt=
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(tx−px)
2 + (ty−py)

2.

(8)

Both Network I and Network II comprise three fully con-

nected layers activated by ReLU functions. Network I in-

corporates residual blocks and a self-attention mechanism

to enhance feature extraction and ensure training stability.

Network II incorporates two dropout layers to mitigate over-

fitting during training. The DDPG framework utilizes pri-

oritized experience replay to enhance sample efficiency and

employs decaying Ornstein-Uhlenbeck noise to encourage ef-

fective exploration during training.

Experimental results. The proposed dual-layer DDPG

framework was trained in simulation and validated through

real-world experiments, with results compared to simula-

tion. As shown in Figures 1(d) and (e), the learning curves

of the action selection and error correction networks ini-

tially exhibited fluctuations in average reward and success

rate, followed by convergence to stable performance. The

agent eventually learned an effective policy, achieving a suc-

cess rate over 95%. Under identical experimental conditions,

DDPG outperformed soft actor-critic (SAC) and proximal

policy optimization (PPO) in terms of convergence speed,

control precision, and task success rate, demonstrating its

superiority in high-precision continuous control tasks with

high-dimensional state spaces and low-dimensional action

spaces.

To validate the action selection network, an iterative

correction mechanism was employed to compensate for

fabrication-induced pre-bending errors. The robot executed

motion commands from Network I while interacting with

the environment, enabling effective navigation in confined

spaces. The observed end-effector trajectory and overall

robot shape closely matched Unity-based simulation results.

At a total extension of 1300 mm, the terminal tracking er-

ror remained below 25 mm, with a standard deviation of

5.13 mm.

For the error correction network, pre-bending paths from

the trained action network were used as input. The actual

motion was reconstructed via encoder-gyroscope fusion and

compared to the ideal trajectory. The resulting deviation

was processed by the correction network, which actuated

the PAMs to reduce tracking errors. Experiments showed

that cumulative deviations were reduced from under 40 mm

(std: 6.03 mm) to below 8 mm (std: 1.47 mm) through

active compensation.

Conclusion and limitations. This work proposes a sim-

to-real reinforcement learning framework for motion plan-

ning in soft growing robots by integrating pre-bending struc-

tures and PAM actuation. A dual-layer DDPG network

is designed: the first layer learns environmental interac-

tion strategies and determines pre-bending, while the sec-

ond layer compensates trajectory deviations caused by sen-

sor noise and fabrication errors via PAM control. Sim-to-

real transfer is realized via a Unity-based simulation envi-

ronment. Experimental results validate the effectiveness of

the proposed approach, demonstrating a success rate ex-

ceeding 95% and a significant reduction in tracking errors.

Despite its effectiveness, the current approach is limited to

static planar environments, and the integration of PAMs

increases internal pressure, slightly compromising flexibil-

ity. Future work will focus on co-growing PAMs with the

robot body to maintain compliance, expand to 3D and dy-

namic environments, and enhance autonomous perception

and decision-making capabilities, ultimately moving toward

fully intelligent and adaptable soft growing robots.
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