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1 Environmental Interaction Navigation of Soft Growing 

Robot 

The soft growing robot exhibits high compliance, enabling it to navigate through 

confined environments via interactions with surrounding obstacles. According to the 

study by Greer et al.[1]-[2], the soft growing robot can be modeled as an inflatable 

cantilever beam. A lumped parameter model is developed for the soft growing robot, 

segmenting it at points of bending or collision with the environment. 
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Here, li represents the length of each segment of the robot, ci denotes the position of the 

pivot point, and Rz(θ) represents a rotation of θ degrees around the Z-axis. In this way, 

the overall shape of the soft growing robot can be characterized by the length of each 

segment or the bending angles at each pivot point. 

 

Figure S1 Soft growing robot and its environment-interaction navigation strategy (a) Lumped 

parameter model of the soft growing robot (b) Condensation points and environmental guidance (c) 

Uncertainty of the soft growing robot 

When the soft growing robot collides with the environment, its growth direction 

changes, forming an angle of less than 90° with its original trajectory and aligning 

parallel to one side of the obstacle. Thus, environmental structures serve as both 

guidance and constraint, effectively shaping the robot’s trajectory. As illustrated in 

Figure S1(b), all robots initialized within the ∠CBA region are steered toward point A 

due to the environmental layout. The red-shaded area represents the uncertainty in the 
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robot’s tip position, primarily caused by manufacturing tolerances. However, this 

uncertainty is significantly reduced through physical interaction with environmental 

boundaries, which constrain the robot’s path and guide its growth direction. 

2 Control and Modeling of PAMs 

The proportional valve used in this study is the VEAB-L-26 model from Festo [3]. 

The response time of the proportional valve is approximately 50ms. As illustrated in 

Figure S2, the pneumatic system consists of a positive pressure air source connected to 

the proportional valve, which is followed by a two-position three-way solenoid valve. 

The regulated airflow is then directed either to the PAMs or to the body of the soft 

growing robot. 

 

Figure S2. Schematic diagram of the pneumatic system structure 

During the fabrication process, one end of the plastic film is first heat-sealed. 

Subsequently, fishing lines are attached at regular intervals to complete the construction 

of the PAM. When inflated, the PAM contracts in length, causing the robot to bend 

toward one side. PAMs are mounted on both the left and right sides of the soft growing 

robot. To simplify modeling and control, a constant curvature model is employed to 

describe their behavior. 

  2il l d   (2) 

Where l represents the length of the PAM attached to the soft growing robot, li denotes 

the length of each segment of the PAM, and α is the bending angle. 
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Figure S3. Fabrication and Modelling of PAMs 

The internal pressure of the pneumatic artificial muscle and the bending angle at 
the robot's tip approximately follow the relationship described below.[4]-[5] 
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In this context, K1 represents the stretching stiffness of the PAM; Kt and k are the 
torsional stiffness and stretching stiffness of the soft growing robot, respectively. 

In practical applications, the bending angle of the robot is determined using the 
gyroscope's end pose, and the length and internal pressure of the pneumatic artificial 
muscles are further calculated. Precise control of the pneumatic artificial muscles is 
achieved using a proportional valve. 
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3 Sim-to-Real Simulation Framework for Soft Growing 

Robot 

This section describes the sim-to-real simulation framework [6]-[7] of the soft 

growing robot from two perspectives: structural characteristics and actuation strategies. 

The structural characteristics of the soft growing robot are analyzed, simplified, and 

subsequently modeled in the Unity virtual environment. 

The soft growing robot extends its length through the eversion of a membrane;  

however, accurately simulating this eversion dynamics in the simulation software is 

challenging, posing difficulties for real-time execution. To address this, we represent 

the flexible body of the soft growing robot using multiple serially connected rigid 

capsules and model its growth process by incrementally appending new rigid capsules 

at the tip. 

 

Figure S4 (a) Sim-to-real framework of soft growing robot (b) Schematic of the capsule structure 

and pre0-bending (c) Schematic of the soft growing robot (d) Schematic of the pneumatic artificial 

muscle. 

As shown in Figure S4, adjacent capsule bodies are connected via configurable 

joints, where the upper sphere center of one capsule coincides with the lower sphere 

center of the next, while collisions between adjacent capsules are disabled.  The 

simulation focuses exclusively on the in-plane behavior of the soft growing robot.  

Therefore, the rotational degrees of freedom about the X and Z axes are constrained, 

leaving only rotation about the Y-axis unrestricted. To simulate the behavior of an 

inflatable flexible beam, appropriate springs and dampers are incorporated into the 

joints. The material properties of the capsule bodies are tuned to introduce a certain 

degree of elasticity.  The first capsule body is immobilized to serve as the base of the 
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soft growing robot.  By adjusting the initial angles of the configurable joints, we can 

simulate the pre-bent shape of the soft growing robot. Assuming that pneumatic 

artificial muscles are symmetrically distributed on both sides of the robot, its bending 

behavior can be approximated using a constant curvature model. At this point, actuators 

are added to all joints, enabling uniform rotation by a predefined angle to simulate the 

effect of PAMs. 

To closely approximate real-world conditions, domain randomization is applied to 

the virtual environment, and consistent random seeds are used across Unity and Python-

based reinforcement learning code to ensure reproducibility and facilitate debugging. 

The friction coefficient between the capsule bodies and the ground is randomized 

within the range of 0.2 to 0.3. Configurable joint parameters are tuned such that angular 

stiffness varies between 80 and 150, angular damping between 25 and 40, and joint 

angle limits are constrained within 20° to 30°. To further simulate real-world fabrication 

uncertainties during the training of the second-layer network, positional deviations are 

introduced between the centers of adjacent capsules at pre-bent joints, and angular 

deviations are allowed in the preset bending angles. Additionally, to enhance robustness, 

simulation parameters are randomized every 20 episodes during training, introducing 

controlled uncertainty into the learning process. 

 

Figure S5 Unity simulation validation (a) Real-world scenario without pre-bending (b) Virtual 

scenario without pre-bending (c) Comparison of actual and simulated trajectories without pre-

bending (d) Real-world scenario with pre-bending (e) Virtual scenario with pre-bending (f) 

Comparison of actual and simulated trajectories with pre-bending 

To verify the effectiveness of the virtual environment simulation, we constructed a 

simple test setup where the soft growing robot was operated both with and without pre- 

bending. As illustrated in Figure S5, the trajectory of the end-effector and the overall 

shape of the robot after movement were compared. When the total length of the soft 
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growing robot reached approximately 800 mm, the maximum structural deviation was 

3.66 mm, and the maximum end-effector trajectory error was 3.74 mm. Therefore, 

regardless of whether pre-formed bending was applied, the simulation results closely 

matched the actual outcomes. 

 

4 Dual-Layer DDPG Network 

This section presents the design of a dual-layer DDPG network for the control and 

motion planning of the soft growing robot. Compared to other reinforcement learning 

algorithms, DDPG is more suitable for high-dimensional continuous control tasks, 

offering faster sampling efficiency and convergence speed (compared to PPO), higher 

stability, and lower computational cost (compared to SAC). The first-layer network 

primarily learns the environmental interaction strategy of the growing robot, 

determining the pre-bending configuration to reach the target position. The second-

layer network, based on the pre-bending action selected by the first-layer network, 

accounts for manufacturing errors and sensor information to regulate the motion of 

pneumatic artificial muscles for error compensation. 

4.1 Pre-bending Action Selection Network 

This section details the action selection strategy, the design of the reward function, 

and the reinforcement learning training process conducted in both the Unity virtual 

environment and Python. 

 

Figure S6 (a) State vector of the soft growing robot (b) Physical prototype demonstration of state 

variables. 
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The action of the soft growing robot determines whether to set pre-bending or the 

angle of pre-bending.  
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In practical scenarios, pre-bending cannot be continuously adjusted. Therefore, 

after the soft growing robot selects a nonzero action, it must choose five consecutive 

zero actions (i.e., move straight) before selecting another nonzero action. 
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The reward for the soft growing robot consists of two parts: the reward for 

approaching the target rtarget and the reward for turning behavior raction, where waction and 

wtarget are their respective weights. 

 target targetaction actionr w r w r   
 (5) 

where d represents the Euclidean distance between the target point and the robot's tip, 

while θt is the angle between the robot's growth direction and the target direction.  
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θbend is constrained within (-20°,20°) to prevent excessive turning. The target-

approaching reward adopts an exponential function to ensure smoother reward 

transitions. The turning behavior reward is calculated based on the angle between the 

robot’s growth direction before and after turning and the target point, encouraging 

reasonable turning while penalizing excessive and ineffective turns. 
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The algorithm flowchart is illustrated in Figure S7, where the orange sections 

denote the main steps executed in Python, while the blue sections represent the main 

steps in Unity. In Unity, the current environment information is obtained and 

transmitted to Python. The reinforcement learning algorithm then selects an action and 

computes the reward function. The experience is stored based on the computed reward, 

and the target network is updated accordingly. Next, in Unity, a new capsule is 

generated based on the received action information, and the system evaluates whether 

the target has been reached. If the target has not been reached, the process loops back 

to environment information acquisition. After each single-step simulation, the 

environment is reset. Once the success rate or training episode surpasses a predefined 

threshold, the experience replay buffer and reinforcement learning model are stored. 

 

Figure S7: Flowchart of the pre-bending action selection network algorithm for the soft growing 

robot. 

 

4.2 Perception and Error Correction Network 

This section describes the sources of error in the soft growing robot, the reward 

function design for the perception and error correction network, and the corresponding 

training process in the virtual environment. During the robot’s motion, deviations from 
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the theoretical trajectory inevitably occur, primarily due to two sources of error: 

manufacturing inaccuracies in pre-bending and sensor measurement noise. 

 

Figure S8. (a) Error sources and environmental variables of the soft growing robot (b) Schematic 

diagram of manufacturing errors (c) Schematic diagram of observation errors. 

When assigning pre-bending configurations to the soft growing robot, deviations 

often arise between the intended and actual bending angles and positions due to 

fabrication limitations.(Figure S8) In real-world scenarios, gyroscopes are affected by 

noise and drift, leading to discrepancies between the ideal and measured trajectories. 

To simulate this in the virtual environment, we treat the direction of the end capsule as 

the ground truth for the robot’ s orientation, while the measured value θ′ is generated 

by adding Gaussian white noise and a drift term to the theoretical orientation. 

        endt t n t b t      (8) 

Here, n(t) represents zero-mean Gaussian white noise with variance σ1
2 , which 

models the high-frequency sensor noise: 

   2
1~ 0,n t N   

The drift term b(t) models the low-frequency bias in the measurement and follows a 

random walk process, defined by: 

      1 bb t b t w t    (9) 

where wb(t) is zero-mean Gaussian noise with variance σ2
2, representing the incremental 

drift noise at each time step: 

   2
2~ 0,bw t N   
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This model effectively captures both the short-term random noise and the long-

term drift in the measured orientation. 

The reinforcement learning reward is computed based on the discrepancy between 

the actual and theoretical end positions resulting from PAM actuation. A reward is 

assigned if the movement reduces the positional error, bringing the end position closer 

to the target, whereas a penalty is applied if the movement increases the error. 
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where dt0 denotes the actual distance to the target, while dt represents the theoretically 

expected distance. 
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Figure S9. Perception and error correction network 

The main framework of the algorithm is illustrated in Figure S9. It comprises a 

two-layer network structure. The first layer is the pre-trained pre-bending action 

selection network, as described in the previous section.  The output of this network 

serves as the input to the second layer: the perception and error correction network, 

which adjusts PAM actuation to compensate for errors. The algorithm operates in two 

parallel environments: an ideal scenario and a simulated realistic scenario. The ideal 
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environment is both fully controllable and observable, whereas the simulated real-

world environment is controllable but only partially observable.  In the simulated 

realistic scenario, the robot’s end coordinates, used as state variables, are estimated by 

fusing gyroscope-based end-attitude data and encoder-based length measurements via 

a Kalman filter. Additionally, noise is introduced into the output of the first network 

layer to simulate manufacturing errors in pre-bending. 

 

Figure S10. Flowchart of the environmental perception and error correction algorithm 

The algorithm flowchart is illustrated in Figure S10. Initially, the trained Network-

1 determines the pre-bending action of the soft growing robot based on environmental 

information extracted from the virtual scene.  Following this decision, capsule bodies 

are added in both the virtual environment and the simulated realistic environment.  In 

the simulated realistic environment, state variables are acquired using Kalman filtering 

with multi-sensor fusion.  Subsequently, Network-2 processes these state variables 

from both environments and selects the appropriate PAM action. Based on this decision, 

the PAMs are activated in the simulated realistic environment to further minimize errors.  

Next, the reward function is computed based on the PAM movement results, and the 

target network is updated accordingly. The system then evaluates whether the target has 

been reached.  If the target is achieved, the current scene is reset;  otherwise, the 

process loops back to the environmental information retrieval step. 
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Following this, the success rate is assessed. If the predefined threshold or training 

episode is met, the training process concludes, and the current experience and model 

are stored.  Otherwise, the next training iteration commences. 

 

5 Ablation and Contrast Experiments 

5.1 Ablation Experiment 

The pre-bending action selection network of the soft growing robot incorporates 

both residual blocks and self-attention mechanisms to enhance the expressiveness and 

stability of policy learning. To evaluate the effectiveness of these components, we 

conducted ablation studies and systematically compared the results with simplified 

network architectures. As shown in Figure S11, the network integrating both residual 

blocks and attention mechanisms achieves the best performance, exhibiting the highest 

average reward and success rate, along with fast and stable convergence. The synergy 

between the two modules significantly improves the feature extraction and decision-

making capabilities of both the policy and value networks. 

  

Figure S11. Ablation experiment results (a) Residual blocks combined with self-attention 

mechanism. (b) Self-attention mechanism only. (c) Residual blocks only. (d) Baseline network 

without residual blocks or attention mechanisms. 

When only the attention mechanism is used, the reward and success rate still show 

a steady upward trend, but convergence is slower. This indicates that attention helps 

capture critical state features, but in the absence of residual connections, network 

stability is compromised, limiting further performance gains. In contrast, the network 

with only residual blocks quickly achieves high rewards in the early training phase but 
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plateaus thereafter, suggesting that residuals mainly improve training stability and 

mitigate gradient vanishing, with limited impact on long-term policy precision. The 

baseline network without any architectural enhancements performs the worst, showing 

no significant improvement in reward or success rate, and sometimes even a decline, 

indicating poor convergence in complex tasks. In summary, residual blocks and 

attention mechanisms each contribute uniquely to network performance, and their 

combination significantly enhances the efficiency and effectiveness of policy learning. 

Table S1. Ablation experiment results(5 training results, standard deviation in parentheses) 

 Final reward Final success rate/（%） 

Residual blocks 

+ self-attention 
194.94(5.31) 95.94(2.49) 

Self-attention noly 122.93(7.12) 64.40(4.89) 

Residual blocks only 100.58(7.36) 67.34(6.94) 

Baseline network 21.93(14.57) 30.03(6.23) 

 

5.2 Contrast Experiment 

To evaluate the performance of the proposed dual-layer DDPG reinforcement 

learning framework, this section presents a comparative analysis of the pre-bending 

action selection network and the error correction network against two widely used 

algorithms: Soft Actor-Critic (SAC) and Proximal Policy Optimization (PPO). For 

fairness, all comparative experiments were conducted under consistent conditions, 

including identical network architectures, reward functions, training episodes, and 

learning rates. 

For the pre-bending action selection network, the DDPG algorithm exhibited a 

faster convergence rate, with steadily increasing rewards and stabilizing policies, 

ultimately achieving a success rate of 95%. The SAC algorithm showed faster early-

stage convergence and maintained stable performance in the later stages. While its 

overall performance was competitive, it was slightly inferior to DDPG, achieving an 

average success rate of around 79%. In contrast, PPO demonstrated stable training 

behavior throughout, but its convergence was significantly slower and long-term 

performance remained suboptimal, with a final success rate of approximately 78%. 
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Figure S12. Comparative results of the pre-bending action selection network using different 

reinforcement learning algorithms. (a) DDPG (b) SAC (c) PPO 

Table S2. Comparative results of the pre-bending action selection network(5 training results, , 

standard deviation in parentheses) 

 Final reward Final success rate(%) Standard deviation 

DDPG 194.94(5.31) 95(2.49) 11.5 

SAC 169.32(9.84) 78.92(4.54) 12.6 

PPO 167.02(9.23) 77.84(4.49) 17.6 

For the perception and error correction network, the DDPG algorithm 

demonstrated superior overall performance. Although it exhibited considerable 

fluctuations in both average reward and success rate during the early exploration phase, 

it achieved strong convergence and a high average success rate (95%) in the later stages 

of training. In contrast, the SAC algorithm showed a rapid increase in rewards during 

the initial training phase. However, its exploration strategy tends to be more aggressive, 

and its convergence was comparatively slower. Nevertheless, SAC ultimately achieved 

a relatively high level of performance, with a success rate of approximately 80%. The 

PPO algorithm exhibited high training stability, with a steadily increasing average 

reward. However, due to its lower sample efficiency and slower convergence speed, its 
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overall performance lagged behind, achieving a success rate of only 66%. It required 

significantly more training iterations to reach convergence. 

In summary, while all three algorithms exhibit unique strengths, DDPG offers the 

best overall performance and success rate for this task. It is particularly well-suited to 

continuous high-precision control scenarios with high-dimensional state spaces and 

low-dimensional action spaces. 

 

Figure S13. Comparative results of the error correction network across different reinforcement 

learning algorithms. (a) DDPG (b) SAC (c) PPO 

Table S3. Comparative results of the error correction network(5 training results) 

 Final reward Final success rate/(%) Standard deviation 

DDPG 4.37(0.079) 94.64(2.58) 0.32 

SAC 4.18(0.103) 80.08(3.68) 0.44 

PPO 3.97(0.106) 66.57(4.31) 0.41 

 

6 Experimental Verification 

This section presents the complete motion process of the soft growing robot in 

confined environments, followed by a detailed analysis of the experimental results.  
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6.1 Experimental Verification of Pre-bending Action Selection 

Network 

To further demonstrate the effectiveness of the pre-bending action selection 

network, it was tested in a real-world scenario.  First, the required pre-bending actions 

for the soft growing robot were obtained within a virtual environment using the trained 

network. 

Since the first-layer network is trained and validated in an idealized simulation, no 

modeling or sensor errors are present during training. However, in real-world 

implementations, pre-bending introduces inevitable fabrication errors, which typically 

fall within a certain tolerance range. To minimize the gap between theoretical 

assumptions and practical outcomes, we employed a manual selection process: after 

manufacturing each pre-bending segment, its actual bending angle was measured. If the 

deviation between the measured and target bending angles exceeded a predefined 

threshold, the segment was re-fabricated until the error fell within acceptable limits. 

 

Figure S14. The soft growing robot navigates in a confined environment through pre-bending 

As shown in Figure. S14, the soft growing robot navigates into a confined space 

by following pre-bending configurations determined by the action selection network. 

This interaction-based navigation strategy demonstrates the robot’s inherent 

compliance and adaptability. The overall robot shape and its end-effector trajectory 
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show a high degree of consistency between simulation and real-world scenarios. During 

the robot's motion, we estimate the end-effector trajectory by combining vision-based 

tracking with multi-sensor fusion using a Kalman filter. As illustrated in Fig. S15, we 

present the deviation between theoretical and actual trajectories during a representative 

trial. Based on the results of 10 experiments, we compute the standard deviation of the 

path-following error. When the robot reaches a length of 1300 mm, the maximum 

trajectory deviation remains below 30 mm, and the standard deviation of the tracking 

error is 5.13 mm. 

 

Figure S15. (a) Theoretical trajectory and actual trajectory (b) Error between theoretical and actual 

trajectories 

 

6.2 Experimental Verification of Perception and Error Correction 

Network 

To verify the effectiveness of the algorithm, we replace the simulated scenario in 

Figure S9 with a real-world scenario. First, in the simulated scenario, the pre-trained 

Network 1 determines actions, which are then applied to set the pre-bending of the soft 

growing robot.  Notably, unlike the previous validation of the pre-bending network, 

explicit verification of the bending angle to minimize error is unnecessary.  During 

movement, the trajectory of the soft growing robot is obtained using a sensor fusion 

algorithm that integrates gyroscope and encoder data. 

This trajectory is then compared with the ideal trajectory from the Unity 
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simulation to determine the discrepancy between the ideal and actual trajectories. The 

computed error is input into the perception and error correction network to generate 

control signals for the PAMs. Additionally, in the simulated scenario, the pre-bending 

angles are set to match those in the real-world setup rather than being randomized based 

on Gaussian noise.  The experimental validation of the perception and error correction 

network is shown in Figure 14, which presents the ideal, simulated, and real-world 

scenarios at key points. 

 

Figure S16: Experimental validation of the perception and error correction network: (a) Initial state 

(c) Approaching the target point with some error, (d) Error correction via pneumatic artificial muscle 

actuation. 

As the error accumulates, when the robot in the ideal scenario moves to position 

C near the target, the end of the soft growing robot in the real-world scenario still 

deviates slightly from the target. At this point, the trained error correction network 

adjusts the movement of the PAMs to compensate for the error. The motion trajectory 

and path-following error of the soft growing robot are shown in Fig. S17. Before error 

correction, the maximum deviation between the theoretical and actual trajectories is 

less than 40 mm, with a standard deviation of 6.03 mm. After applying PAM actuation 

to correct the trajectory, the maximum deviation is reduced to less than 8 mm, and the 

standard deviation decreases to 1.47 mm. These results demonstrate that the proposed 

method can significantly reduce the trajectory error of pre-bent soft growing robots. 
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Figure S17 (a) Theoretical trajectory, actual trajectory, and estimated trajectory (b) Trajectory 

tracking error 
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