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Abstract The rapid development of information technologies for terahertz (THz) sensing, wireless communication, and low-
dissipation quantum computation requires ultracompact and high-efficiency THz functional devices. Spintronic-metasurface
emitters, which realize diverse polarization state modulation during THz wave generation, have illuminated a revolutionary
avenue for the next-generation on-chip functional THz devices. Currently, broadband polarization modulation is achieved in
spintronic-metasurface emitters through rotating setups and arranging patterns. However, there has been little study on the
distribution of external magnetic fields for THz radiation. Here, we demonstrate that nonuniform magnetization contributes
to achieving more diverse THz chirality in patterned emitters. The symmetry of THz radiation is broken when the azimuth
angle of emitters exceeds 90°, providing an effective approach to achieve full ellipticity ranging from 0 to 0.85 over the
0.5-2.5 THz frequency band. Moreover, under curved magnetization, ellipticity exceeding 0.6 can be achieved in patterned
emitters, where no chiral THz waves are radiated under a uniform magnetic field. Our findings provide the capability to
expand the application scenarios of integrated spin-optoelectronic devices, shedding light on potential benefits in wireless
communications and biomedical detection.
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1 Introduction

Terahertz (THz) radiation has inspired numerous promising applications in spectral imaging and non-
invasive biomedical detection [1-6]. In particular, chiral terahertz technology holds great potential for
significant impact in wireless communications [7-10], nondestructive testing [11-13], and biomedical sens-
ing [14-18]. A great deal of research has been devoted to manipulating the electric-field vector of THz
waves to achieve flexible control of their amplitude, phase, frequency, polarization and spatial prop-
erties flexibly [4,19-24]. However, modulating THz waves typically relies on the insertion of optical
elements, such as waveplates and liquid crystal, which results in low efficiency and a narrow manipula-
tion bandwidth [25-29]. Therefore, there remains interest in exploring a valid way to modulate chiral THz
waves [30-33]. Recently, integrating spintronic THz emitters into metasurface [34-44] has been shown to
have the potential to manipulate broadband THz chirality at room temperature [45-48] in compact and
multifunctional systems [43,49-56]. In particular, magnetization distribution, the most decisive factor
for the radiated THz polarization according to the inverse Hall effect (ISHE) [57-60], urgently needs
to explore its impact on the generation of chiral THz waves. In this work, striped-array emitters are
positioned at the center of an inhomogeneous magnetic field by opposing like poles of magnets. When
these devices are rotated within the twisted magnetic field, they exhibit an asymmetry in amplitude
and phase difference. This asymmetry results in a full range of ellipticity values from 0 to 0.85 across
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SiO, substrate

Figure 1 (Color online) Diagram of chiral terahertz generation and modulation. A femtosecond laser along the z axis is vertically
incident on the patterned emitter surface with the fixed twisted magnetic field. Chiral terahertz waves with different ellipticity can
be obtained when rotating them in the z-y plane by ¢ and 180°— . The inset illustrates that the twisted magnetic field would
change the direction of j., E; and j;, which causes different diverse ellipticity modulation effect compared with the situation under
uniform fields.

the 0.5-2.5 THz frequency range. Additionally, we achieve an ellipticity value greater than 0.6 in the
emitter, even when only linearly polarized waves are present under uniform magnetic fields. Our findings
address the gap in understanding how magnetization distribution influences spintronic-metasurface THz
multifunctional devices. They contribute to a deeper comprehension of the modulation mechanisms of
chiral THz waves and expand the repertoire of manipulation techniques for next-generation on-chip THz
devices.

2 Materials and methods

Figure 1 shows the experimental schematic diagram for the radiation of chiral terahertz waves under a
twisted magnetic field. A femtosecond (fs) laser with a central wavelength of 800 nm, a pulse duration of
35 fs, and a repetition rate of 1 kHz, generated by an amplified Ti:sapphire laser source, is used to excite
the spin-metasurface device. The excitation pulse has a power of approximately 150 mW, and the beam
radius at the metasurface emitter is approximately 1 cm. The electric field direction of the pump laser
is aligned along the z-axis. Under fs laser illumination, the longitudinal spin current j, arising in the
ferromagnetic (FM) layer is converted into a transverse charge current j. due to ISHE. The conversion
relationship between two currents is j. = vjs X M/|M|, where M is the magnetization and + is the spin-
Hall angle of the nonferromagnetic (NM) layers [61,62]. The spintronic-metasurface emitter consists of
striped-patterned trilayer heterostructures of W (5 nm)/CoFeB (2 nm)/Pt (2 nm) nanofilms, which are
grown on a 500 um thick SiOs substrate in a direct current (DC) and radio frequency (RF) sputtering
system. In our experiment, five groups of metasurface structures with different aspect ratio (l:w) are
selected: DO (1:1), D1 (10:1), D2 (20:1), D3 (30:1) and D4 (50:1), while the value of [/d remains constant
at 5.66:1. Each group comprises 22 strips, with each stripe maintaining the same area of 20000 pm?.
In this experiment, we initially align the stripes along the z axis and then rotate them in the xy plane
by an angle ¢ to get polarization modulation. The azimuth angle ¢ is defined as the angle between the
emitters and the y axis.
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Figure 2 (Color online) Manipulation of terahertz chirality by rotating D4 under the twisted magnetic field distribution.
(a) The concept sketch of the manipulation of the terahertz chirality by rotating azimuth angles of devices. In the left pic-
ture, the pink component is the THz E-field of j.,, which comes from the component in the = direction of the external magnetic
field due to the inverse spin Hall effect (ISHE). Similarly, je, also originates from M,. Under the effect of the backflow j;, the
current density in the x and y directions is donated as j, and j,. In the middle and the right subfigures, the purple curve presents
the left-handed waves and the yellow is the right-handed waves. The THz E-fields of j, are represented in green. In order to more
vividly illustrate the causes for asymmetry, we represent E., and FE;,,p in the purplish red and red curves. (b) and (c¢) The THz
amplitudes in the x and y directions as a function of the azimuth angles ¢. The signals have been horizontally offset for clarity.
(d) The phase difference between E, and E,. (e) The ellipticities change with different azimuth angles.

3 Results and discussion

As shown in the inserted picture, under the non-uniform magnetic field distribution, the spin-converted
in-plane transverse ultrafast charge current j. is generated, with its predominant flow directions per-
pendicular to the corresponding dominant magnetic fields [60]. The charge current j. results in charge
accumulation at all boundaries of a stripe, forming the non-uniform built-in electric field E;. Meanwhile,
a uniform gap electric field F is generated between adjacent stripes due to the similar arrangement
of charges on adjacent boundaries. When the component of F; in the direction of stripe arrangement
exceeds F, charges can no longer remain at the boundaries of the stripes. Similarly, the charges on the
other two sides of the stripe also cannot remain at the boundaries. We define the currents in a stripe
induced by these two electric fields as the backflow j;. 7; will suppress the amplitude of the original
current, change its phase and cause diverse ellipticity modulation effects.

Generating elliptical THz waves is the result of the combined effects of the azimuth angle and magne-
tization [63]. The influence of external inhomogeneous magnetic fields on chiral THz radiation is clearly
illustrated in Figure 2(a). The magnetic moments along the x and y directions are defined as M, and
M,, respectively. According to ISHE, the components of j. in the  and y directions, recorded as jca
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Figure 3 (Color online) Performance of the backflow, the built-in electric field and applied magnetic field on polarization modu-
lation. (a) Amplitude in the z and y directions from the rotation of a conductive striped-array emitter with an aspect ratio 50:1
under 30 mT nonuniform magnetic field; (b) ellipticity modulation results of several patterned emitters with different aspect ratios
under 30 mT nonuniform magnetic field; (c) amplitude in the z and y directions of D4 under different strength twisted magnetic
fields; (d) ellipticity modulation results in D4 under different strength twisted magnetic fields.

and j.y, are perpendicular to M, and M,, respectively. We define the component of j. in the = and y
directions, which are affected by j;, as j, and j,, respectively. These components are represented by green
and red in the middle and the right subfigures of Figure 2(a). Here, to visually represent the direction
of the backflow, j; is divided into j;, and j;,, which are perpendicular and parallel to the direction of
stripe arrangement, respectively. We define j;, and j;, at the initial moment as j, and j3, respectively.
Owing to the change in the number of accumulating charges on boundaries when rotating the device, we
use j, and jp to calculate the current change during the device’s rotation. A chiral THz beam undergoes
a change from left-handed to right-handed polarization at ¢ and 180° — ¢ due to a phase reversal in
the y-component of backflow. Through current decomposition, we found that j., is responsible for the
broken symmetry of I, as well as the phase. The detailed current analysis is shown in the Supporting
Information Section S2. Here, we rotate D4 under a 30 mT twisted magnetic field to verify the above
statement. As shown in Figures 2(b) and (c), the phase reversal in the y direction enables the switching
between left-handed and right-handed waves. The amplitude in the y-direction also exhibits significant
asymmetry after a 90° rotation. A similar phenomenon is also observed in the phase difference in the
frequency domain, as shown in Figure 2(d). This reveals that chirality asymmetry is distributed across a
wide frequency range. Additionally, the tunable ellipticity during azimuth rotation, summarized in Fig-
ure 2(e), demonstrates that a twisted magnetic field enables patterned emitters to achieve full ellipticity
from 0 to 0.85 over the frequency range of 0.5 to 2.5 THz. This capability paves a new path for diverse
polarization modulation in integrated THz optoelectronic devices.

It has been reported that switching between linear and elliptical polarization states can be achieved in
FM/NM films by tailoring the magnetization distributions [60]. Here, we employ a conductive patterned
emitter with a 50:1 aspect ratio to demonstrate that the chirality in patterned terahertz sources originates
from charge accumulation, which is distinct from that in thin films. As displayed in Figure 3(a), the weak
THz amplitude of £, does not follow an angle-dependent model in the conductive patterned emitter. This



Yang Q, et al. Sci China Inf Sci November 2025, Vol. 68, Iss. 11, 212401:5

(a) (b) Ellipticity ()
~A=N-NE, = 3 o7
90 —A-NNE, X / f ’ 1.0 —
0.8 — — N i 1 f i - 20°~0.1 THz 20°~1.4 THz
ot 129 3//0_?.0 \fo —0-NSE, | ‘ ] 052 e 160°~0.1 TH e 160°~1.4 THz
056 7 O\ —9-NSE, ’ . 4
- gi 150 / / \ 30 12 ) W 034 05 -0.6127 0.25259
3 o. £ \ p
] / K] \
S 03 / °/ I \ E \ 018~ S ‘ :
e / A/‘A *A A\AO \ E 40 ) 3 hegerson
o1 |/ g . € 00 A
5 00180 oA/ > 0 § 08 e
© w
goil |\ A A | &
Go2] |\ QA A 9 ] o 0 o 0.5 )
N 0.3 \ A, —A w 239 ] =—90°~0.3 THz = 90°~1.4 THz
= \ 4 :
0s] 210 330
0.6 - -0.57 1.0 —40°~0.1 THZ 40°~1.4 THz
N / h e 140°~0. 1 THZ s 140°~1.4 THZ
07 N =
08 240 9=0-0" 39 075

-1.0 0.5 0.0 0.5 1.0
Ex (a.u.)

.0
0 20 40 60 80 100 120 140 160 180
Azimuth angle (°)

Figure 4 (Color online) Broadband polarization state modulation is achieved in DO only under the twisted magnetic field. (a) The
amplitude in the z and y directions comparison of DO between under a uniform magnetic field and a twisted field. The amplitude
of two magnetic fields is the same as 30 mT. (b) The ellipticities change with different azimuth angles. (c) The electric fields of
the radiated waves for DO, illustrating the capability to manipulate polarization states and chirality.

is because the tungsten layer is conductive, preventing most charges from accumulating at the edges.
Consequently, there is no strong E; to drag charges and form j;, resulting in the generation of linearly
polarized waves at any azimuth. We also investigated the impact of stripe size on the modulation of chiral
THz waves. Figure 3(b) systematically compares the modulation effect of D1-D4 at 40° and 140°, showing
that the larger aspect ratio is conducive to achieving greater ellipticity and exacerbating the asymmetry
of polarization states over a broadband range. In particular, within the 1.2 to 1.6 THz frequency range,
the ellipticity of D4 remains above 0.8 at 40° and stabilizes around 0.65 at 140°. Although the maximum
value of ellipticity does not increase significantly with the increasing aspect ratio at the same azimuth
angle, the frequency range covered becomes progressively wider. It is evident that large aspect ratios
contribute to achieving broadband chiral terahertz modulation. The asymmetry of polarization states
is also closely related to the magnetic field strength. As shown in Figure 3(c), the emission amplitude
varies with the magnetic strength, which is adjusted by changing the number of static magnets. This
reveals that the intensification of symmetry breaking can be achieved through a stronger twisted magnetic
field. The ellipticity distribution in the frequency domain can reveal the polarization dependence of THz
emission on the varying external magnetic field. As shown in Figure 3(d), a larger magnetic field makes
the difference of the modulation of chirality at 40° and 140° more pronounced. Moreover, the diversity
of polarization state modulation can also be affected by the twisted magnetic field. When ¢ is 140°,
the increase in the magnetic field’s amplitude has no apparent distinguished effect on ellipticity, which is
significantly different from the effect at 40°. When the external magnetic field strength exceeds 10 mT,
the amplitude of the x and y components at the same azimuth angle, as well as the ellipticity distribution
in the frequency domain, remain largely constant with further increases in magnetic field strength. This
phenomenon can be attributed to the device’s relatively small coercive field of approximately 10 mT.
These findings suggest that our device can maintain stable performance across different magnetization
environments.

In order to comprehensively characterize the manipulation performance of twisted magnetic fields on
spintronic-metasurface THz emitters for radiating chiral THz waves, a striped-array device with an aspect
ratio of l:-w=1:1 for tunable polarization states is utilized here. As shown in Figure 4(a), DO exhibits a
clear angle dependence of amplitude in the z and y direction under a 30 mT twisted magnetic field, which
is distinct from the behavior observed under uniform magnetization. Figure 4(b) presents the measured
rotation of the azimuth for different ellipticities in the frequency domain. Throughout the entire rotation
process, the maximum ellipticity of around 0.68 is achieved at 0.2-0.4 THz for angles from 60° to 120°, and
at 1.2-1.4 THz from 140° to 160°. The generated polarized THz spectra at several selected frequencies
(0.1 THz or 0.3 THz and 1.4 THz) at ¢ = 20°, 90° and 160° are summarized in Figure 4(c). At the
frequencies we are considering, the variation of ellipticities with different azimuth angles demonstrates the
ability of the twisted magnetic field to modulate elliptical THz waves in both the low and high frequency
bands. This modulation also enhances the chirality control of the spintronic-metasurface device, even
with a weak E;.

4 Conclusion

In this work, we demonstrate the manipulation of both the chirality and ellipticity of the generated
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elliptical terahertz waves by rotating the trilayer heterostructures, which are fabricated into micrometer-
scale stripes under an applied nonuniform magnetic field distribution. The built-in electric fields and
the magnetic strength both play crucial roles in affecting the terahertz amplitude and phase difference
between the x and y directions, thereby enabling modulation of polarization states. Notably, the twisted
magnetic field induces an asymmetry when the azimuth angle of emitters exceeds 90°, which endows the
potential to achieve full polarization over a wide frequency band. More significantly, the twisted magnetic
field compensates for the deficiency that elliptical THz waves can be achieved in the patterned emitter
with a small strength built-in electric field. We believe that this work will pave a novel path toward the
development of various on-chip THz multifunctional devices, which will play important roles in future
fundamental sciences and practical applications.
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