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Abstract Achieving robust well-focused ISAR imaging in diverse observation scenarios is critical for practical applications.
However, the available iterative algorithms require elaborate parameter tuning, while model-driven networks necessitate
model retraining for different observation conditions, limiting their practicality. To tackle these issues, this paper proposes
a novel sparse Bayesian learning network, dubbed robust gamma process Laplace network (RGaPLN), for ISAR imaging in
complex environments. Firstly, our previously proposed 2D inverse-free gamma process Laplace (2D-IFGaPL) algorithm is
unfolded into a deep network to eliminate the need for parameter tuning. Then, a convolutional neural network (CNN) is
integrated into the unfolded network to enhance robustness against variations in signal-to-noise ratio (SNR). Furthermore, a
hypernetwork is designed to dynamically generate optimal parameters for different data missing rate (DMR), enabling ISAR
imaging without model retraining under varying SNR and DMR conditions. Experimental results have demonstrated the
effectiveness and superiority of the proposed method under various SNR and DMR conditions.
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1 Introduction

Due to the superior capabilities of high-resolution imaging under all-day and all-weather conditions,
inverse synthetic aperture radar (ISAR) has been extensively used in space situational awareness and air
surveillance [1-5]. Generally, ISAR achieves high range resolution by transmitting signals with large time-
bandwidth product and pulse compression; and achieves high azimuth resolution through relative motion
between the target and radar. Particularly, the relative motion consists of translational motion and
rotational motion. The former destroys the coherence among echoes [6] and should be compensated [7],
while the latter is beneficial for producing high azimuth resolution.

For ideal observation conditions such as high signal-to-noise ratio (SNR) and complete data, ISAR can
obtain well-focused images through accurate translational motion compensation and conventional Fourier
analysis techniques, i.e., the range Doppler (RD) algorithm. Unfortunately, the observation conditions
in practice may become rather complex: (1) echoes reflected by long-distance, weak-scattering moving
targets have low and time-varying SNR [8]; (2) jamming mitigation and ISAR resource scheduling lead to
incomplete echoes [9] with changing data missing rate (DMR). Although the sparse signal reconstruction
theory [10] has addressed the above issues to some extent, the existing methods require cumbersome
parameter tuning to obtain well-focused images. Moreover, the optimal parameters vary with SNR and
DMR, thereby necessitating parameter re-adjustment when the observation conditions change. Therefore,
sophisticated methods should be designed to achieve robust ISAR imaging under complex observation
conditions with varying SNR and DMR, in order to boost imaging performance and reduce both time
and space complexity.

In recent years, extensive research has been focused on ISAR imaging under complex observation
conditions based on sparse signal reconstruction [11-14]. These methods exploit the sparsity of ISAR
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images, reformulate ISAR imaging as a sparse signal reconstruction problem, and then solve it through
numerical optimization or sparse Bayesian learning (SBL) techniques. Specifically, the numerical opti-
mization techniques impose sparsity constraint on the ISAR image using /p norm or /; norm, and typical
methods include orthogonal matching pursuit (OMP) [15] and alternating direction method of multipliers
(ADMM) [16,17]. Although these methods are easy to implement, determining the optimal regularization
parameters is still an open problem. Furthermore, they suffer from rapid performance degradation under
low SNR and high DMR conditions. On the other hand, by introducing sparse priors and establishing
probabilistic models, the SBL, methods fully exploit the statistical characteristics of the ISAR image, and
then infer the posterior distribution utilizing Bayesian inference techniques, thereby achieving accurate
ISAR imaging under low SNR and high DMR conditions [18,19]. Among the available sparse priors, the
nonparametric priors, e.g., the beta process prior [20] and the gamma process-Laplace prior [21], have
demonstrated superior performance due to their flexibility. Despite their satisfying imaging performance,
the SBL methods typically involve numerous matrix inversions and require careful tuning of model pa-
rameters, leading to low imaging efficiency. Although some methods have been proposed to eliminate
the matrix inversion by relaxing the lower bound [22,23], the optimal choice of the model parameters
remains an important problem.

The rapid advancement of deep learning in the past few years has spurred significant interest in uti-
lizing deep networks for high-resolution ISAR imaging [24-26]. These methods can be broadly classified
into data-driven and model-driven approaches. The data-driven methods utilize the superior nonlinear
mapping abilities of deep networks to directly learn the relationship between radar echoes and ISAR
images [27]. However, these methods lack interpretability and require massive training data, hinder-
ing their practical application. In contrast, the model-driven methods truncate and unfold iterative
algorithms into limited-layer networks and learn the algorithm parameters through end-to-end training,
thereby achieving higher reconstruction accuracy than the iterative algorithms [28,29]. Typical meth-
ods include ISTA-net [30,31], ADMM-net [32,33], and AMP-net [34]. Notably, these methods possess
several advantages: (1) the algorithm parameters are learned from data, avoiding the time-consuming
manual parameter tuning process in traditional iterative algorithms; (2) the unfolded networks naturally
inherit domain knowledge from iterative algorithms, providing stronger interpretability than data-driven
methods; (3) the number of learnable parameters is limited in the unfolded networks, thus requiring
less training data than data-driven methods. Despite their excellent performance, available model-driven
methods should be trained under fixed SNR and DMR conditions due to their limited network capacity,
and retraining is required when the SNR and DMR of test samples deviate from those of the training
samples, thereby leading to low robustness and high complexity.

It should be noted that, the available model-driven ISAR imaging networks rely on numerical optimiza-
tion techniques and fail to exploit statistical characteristics of the target and the environment, thereby
possessing unsatisfying performance. On the contrary, designing effective SBL methods and unfolding
them into deep networks may boost the imaging performance under low SNR and high DMR conditions.

In view of this, this paper proposes a novel ISAR imaging method based on robust gamma process
Laplace network (RGaPLN), which combines SBL and deep networks to achieve robust ISAR imaging in
complex observation conditions with varying SNR and DMR. The main contributions are summarized as
follows.

(1) A novel ISAR imaging method based on RGaPLN is proposed, which effectively addresses the
issue of parameter tuning in conventional iterative algorithms and achieves robust ISAR imaging under
different SNR and DMR conditions without retraining.

(2) A deep unfolded network is proposed, which is constructed by unfolding the 2D-IFGaPL algorithm.
Particularly, with the detailed analysis of the update mechanism of the iterative algorithm, a convolu-
tional neural network (CNN) is integrated into the unfolded network to enhance robustness against SNR
variation.

(3) A hypernetwork, composed of convolutional and fully-connected layers, is designed to dynamically
generate the algorithm parameters according to the DMR, thereby improving the adaptability to DMR
variation and eliminating model retraining.

(4) Monte Carlo simulations demonstrate that the proposed method outperforms the available methods
in reconstruction accuracy. In addition, imaging results of both simulated and measured data further
indicate that the proposed method can obtain well-focused images for echoes with various SNR and DMR.

The rest of this paper is organized as follows. In Section 2, we construct the ISAR sparse observation
model and establish a probabilistic model based on the gamma process-Laplace prior. In Section 3, we
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introduce the proposed ISAR imaging method based on RGaPLN in detail. In Section 4, we validate the
effectiveness of the proposed method through Monte Carlo simulations and imaging experiments using
simulated and measured data. Finally, we conclude the paper in Section 5.

2 Modelling

2.1 Signal modelling

After translational motion compensation, the rotational motion of a target can be represented by a
turntable model. For the linear frequency modulated (LFM) waveform, the radar echoes after dechirping
satisfy [21]

s (fort) Zaprect< >eXp <—j4?71(fr+fc) R, (tm)) (i), (1)

where fr, tm, p, 0p, B, ¢, fe, Ry (tm) and n (t,,) represent the range frequency, the slow time, the index
of scattering centers, the backscattering coefficient of the pth scattering center, the signal bandwidth,
the light speed, the carrier frequency, the instantaneous slant range of the pth scattering center and the
additive noise, respectively. Particularly, for a steadily moving target with a small accumulation angle,
R, (tm,) can be approximated by

R, (tm) = xpwt;m + yp (2)

with x, and y, denote the azimuth and range coordinates of the pth scattering center, respectively, and
w is the rotation speed. Substituting (2) into (1), we obtain

(oo t) Z oprect (5 ) exp (<422 (4 £ st + 1)) + 00, ®)

By substituting f,. = nAf and ¢, = m/PRF into (3), we can obtain the discretized echoes as

m) = i%rect <%f> exp (—j% (nAf + f.) (xpwPRF + yp)> +n(m), (4)

where n € [1, N,] is the range samples index, m € [1, N,] is the echoes index, Af = B/N, is the range
frequency interval, PRF is the pulse repetition frequency.
Subsequently, Eq. (4) can be reformulated as

S = F,XF, + N, (5)

where 8 € CN»*Na represents the radar echoes matrix, F,. € CN7*7 represents the range observation dic-
tionary, X € C”*? represents the unknown ISAR image, F, € C@*Ne represents the azimuth observation
dictionary, and N € CV*Na represents the noise matrix.

2.2 Probabilistic modelling

Since the distribution of the scattering centers of the ISAR targets usually exhibits strong sparsity, we
exploit such characteristic and establish a probabilistic model by introducing the gamma process-Laplace
nonparametric prior [21] to X, which is defined as follows:

N, N,
p(SIX,¢) = H H ON (S |Frn XF g, €71, (6)
p(§) = Gam (§|a b), (7)
p(X|T) = HHLap Xjqll'jq); (8)
j=1q=1

p(Ljg) = Gam (I'j4[1/JQ ,d), 9)
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where F,.,,. is the nth row of F,, Fy.,,, is the mth column of F,, £ is the noise precision, CN (+|u, o)
represents the complex Gaussian distribution with mean g and covariance o, Gam (-) represents the
gamma distribution, Lap (-) is the Laplace distribution, and a, b and d represent the model hyperparam-
eters. Particularly, as JQ — oo, the random measure G = ijl Zqul I'j40F, ;F,, becomes the gamma
process [35], thus providing great flexibility in data description.

3 Model solving

In this section, we first briefly introduce the 2D-IFGaPL algorithm. On this basis, the RGaPLN is
constructed through deep unfolding of the 2D-IFGaPL algorithm and integrating a hypernetwork to
achieve robust high-resolution imaging. Below, we will introduce the proposed method in detail.

3.1 2D-IFGaPL

Since the posterior distribution of the probabilistic model is intractable, our previously proposed 2D-
IFGaPL algorithm [21] solves the probabilistic model using the expectation maximization (EM) tech-
nique [36]. Firstly, a vectorized signal model is constructed to facilitate inference, i.e.,

s =®x + n, (10)

where s, x and n represent the vector form of S, X and N, which are obtained by stacking the corre-
sponding matrix along the column; ® = F] ® F,., with ® denoting the Kronecker product.

To eliminate the heavy computational burden induced by matrix inversion in the M step, the 2D-
IFGaPL algorithm relaxes the EM lower bound L (x) as

L (X) - Eq(x,f,k) [hlp (Sv X, 57 FY)]

>~ By [€] (IIs = 3113+ 2Re (x — )@ (86 —5)) + L |x - 33

JQ
- QZEQ(V) [1/7i ] lzi| 4 const,
i=1
where Ey(.) [] represents the expectation defined by E, [z] = [ xq (z)dz, ¢ represents the posterior dis-

tribution, Re (-) represents taking the real part, and ()H represents the conjugate transpose. Then,
maximizing the relaxed EM lower bound in the M-step yields the inverse-free update formula of x.

Finally, by applying the property of the Kronecker product, we can obtain the iterative algorithm in
matrix form as follows:

X~y [ (1X B (B,X R, - 8) FY)

2 (Lol V1 + BT ® 2 |x®)),

k+1 a+ NrNa
Eq(e)6]*+ = 7
b+ S — F,X+DF, ||}, (12)
VK. < 8d ’X%“)D
q(T) [ jq] = D) o)) )
2 X e ( 8a X D
where k is the iteration number, @ denotes the element-wise division, |-| denotes taking the modulus,

||I-[| » denotes the Frobenius norm, and K. (-) denotes the modified Bessel function of the second kind.
3.2 RGaPLN

Although the 2D-IFGaPL algorithm can achieve accurate reconstruction of the ISAR image, two issues
still need to be addressed: (1) under different SNR and DMR conditions, the algorithm requires fine-
tuning of parameters d and L to obtain satisfying imaging results, which is usually cumbersome and
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Figure 1 (Color online) Structure of RGaPLN. There are three modules in the kth layer of EGaPLN, i.e., image reconstruction

module (I), noise precision estimation module (N) and image precision estimation module (P), corresponding to the iterative steps
in (12).

time-consuming; (2) the parameters for all iterative steps remain fixed and lack flexibility, which may
degrade imaging performance. To address these issues, this paper proposes RGaPLN, which learns model
parameters of each layer separately, eliminating the issue of manual parameter tuning and enhancing
network flexibility. Additionally, to tackle the issue of network retraining due to limited capacity, it
integrates a CNN into the unfolded network to gain robustness to varying SNR, and further integrates a
hypernetwork to gain robustness to varying DMR.

Figure 1 depicts the network structure of the RGaPLN. It is observed that the RGaPLN consists of
two parts: the enhanced gamma process Laplace network (EGaPLN) and the hypernetwork. The latter

generates parameters of each layer, while the former adopts these parameters to reconstruct the ISAR
image.

3.2.1 EGaPLN

The EGaPLN is constructed by unfolding the 2D-IFGaPL algorithm. Specifically, the EGaPLN has K
layers, with each layer containing three modules: the image reconstruction module, the noise precision
estimation module, and the image precision estimation module. Since each module is constructed accord-
ing to the corresponding iteration formula, the network possesses great interpretability and ensures the
ISAR image X being appropriately updated throughout the forward process. Below, we will introduce
the EGaPLN in detail.

(1) Image reconstruction module (I). This module reconstructs the ISAR image according to the
iteration formula of X in (12). For the kth module I%), it accepts four inputs, i.e., Eqee) [5](k_1), LK)
X (=1 and Eq(r) [1"](1671)7 and outputs X*) | i.e.,

X (k) =Ey ¢ [5](’6*1) (L(k)X(kfl) _ F}{ (F,‘X(kfl)Fa _ S) FE)

(13)
@ (LPE " T+ Eyry TV o [xE1]),
where L(*) denotes the learnable parameter of the kth layer. In the first layer (i.e., k = 1), X(1) = FESF?

(2) Noise precision estimation module (N). This module estimates the posterior expectation of the
noise precision according to the iteration formula of E,¢) [¢] in (12). For the kth module N(®), it accepts
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Figure 2 (Color online) Structure of the image precision estimation module.

(k)

input X and outputs Eqe) 6] as follows:

a+ NN,
b+ ||S — F.XMF,|3

Eqle]® = (14)

(3) Image precision estimation module (P). This module estimates the posterior expectation of image
precision Egr)[[']. Although this module can be designed by strictly unfolding the update formula of
Eqr[I] in (12), the corresponding learnable parameters are quite sensitive to SNR variations, thereby
necessitating network retraining under different SNR conditions.

To address this problem, we reformulate the update formula of X in (12) as follows and scrutinize the
role of E,ry[I], i.e.,

X® = (X0 P (F,X*VF, - 8) FE L) 0 (1+ (BT @ [XED)) /(LB 1) (15)

where 1 denotes the matrix with all ones. Then, the first term can be expressed in vector form as

vee (XU — FH (B, XUUF, - 8) FY /L) = (x*0 - @ (ex*0 —s) /1), (16)
Considering Vx [|s — <I>XH§ = 2®! (dx — s), Eq. (16) can be rewritten as
vec (X( v _pH (F X(h=1) )FH/L) x5V ’s—@xk 1>H /2L (17)

which is indeed the gradient descent with a step size of 1/2L and ensures that the reconstruction result
minimizes the negative log-likelihood, i.e., ||s — <I>x||§. In addition, the second term in (15) acts as a mask
to adjust the gradient descent result. Particularly, L and Eq ) [£] serve as scaling factors which change
the overall amplitude of X; while E,r)[I'] assigns values separately to each entry of X and enhances
the reconstruction flexibility. It should be noted that in order to adapt to different SNR, the magnitude
of Eq(r)[I'| should be adjusted elaborately and manually in the 2D-IFGaPL algorithm. Moreover, the
primary unfolding network can only obtain Eq)[I'] suitable for a specific SNR, thereby still requiring
model retraining for different SNR. To achieve noise robustness, however, the magnitude of E,r)[T]
should be able to adjust adaptively according to the varying SNR without parameter tuning or model
retraining.

In view of this, we design a CNN to estimate Eq(r)[I']. For the kth module P*) it accepts two inputs
d®) and X*) and outputs Eq(r) [I‘](k), ie.,

Eym L% = Vd® f, <\/8d(k> \X<k>\) % \/2 |X®)], (18)

where d®) denotes the learnable parameter of the kth layer, and f; denotes a CNN with parameter set
0. As shown in Figure 2, the CNN in the image precision estimation module consists of five convolution
layers with a convolution kernel size of 3 x 3. Particularly, to reduce the number of network parameters,
such a structure is shared among layers.

It should be noted that the parameters d and L in EGaPLN are not shared among layers to improve
the model flexibility. Additionally, the integrated CNN in EGaPLN generates suitable masks adaptively
for echoes with different SNR, thereby improving model robustness and reconstruction accuracy. The
experimental results presented in Section 4 will further demonstrate such superiority.
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3.2.2  Hypernetwork

Although the EGaPLN can achieve noise robustness owing to the learnable image precision estimation
module, it fails to adjust parameters automatically according to the varying DMR. To address this issue,
we design and integrate a CNN-based hypernetwork to EGaPLN and obtain RGaPLN.

Specifically, the hypernetwork accepts the DMR and the channel-concatenated image of X and
DMPI (i.e., the image that describes the data missing pattern), extracts features from echoes with
different DMR, and generates the corresponding optimal parameters {d, L}, i.e.,

{d,L} =%, (x<1>, DMPI, DMR) : (19)

where d = (d(l), e d(K)) and L = (L(l), R L(k)) are the algorithm parameters, Hy (-) is the hyper-
network with parameter set ¥, and X() = FESFE is the initialized image.

As shown in Figure 1, the hypernetwork includes five convolutional layers, three pooling layers, and
one fully connected (FC) layer. Each convolutional layer utilizes a 3 x 3 kernel with 32 channels and
rectified linear unit (ReLU) activation. The pooling layers utilize a 2 x 2 kernel with a stride of 2 for
down-sampling. The FC layer converts the resulting 32 1 x 1 feature into a vector with dimension 2K,
ie., [d,L]. In addition, the FC network consists of a single FC layer that maps the scalar DMR to
a 32-dimensional vector, which is then adopted to weight the activated features in the CNN, thereby
enabling automatic adaptation to varying DMR conditions.

4 Experiments

In this section, we begin by introducing the dataset and the training details. Next, we evaluate and com-
pare the performance of EGaPLN and RGaPLN with available methods using Monte Carlo experiments.
Finally, we illustrate the effectiveness of EGaPLN and RGaPLN by presenting the ISAR images of both
simulated and measured data under various SNR and DMR conditions. All experiments were performed
on an Intel Xeon Silver 4114 CPU and an NVIDIA GeForce RTX 3090 GPU.

4.1 Dataset

Given the difficulty in acquiring sufficient labeled measured data, we generate point simulated dataset for
network training. The simulated dataset contains 900 samples, with 800 used for training and 100 reserved
for testing. Each sample contains 300 randomly distributed scattering centers, the dimension of the label
image X is 128 x 128. Particularly, to mimic various target shapes and structures, the distributions
of scattering centers amplitudes include Chi-squared, Gaussian, exponential, and gamma distributions,
respectively, while their locations obey uniform or Gaussian distributions. Typical label images of the
simulated dataset are shown in Figure 3. Then, echoes are generated according to S = F,. XF, + N, with
Gaussian noise added, resulting in SNR that is uniformly distributed in [—1,11] dB. In addition, Figure 4
presents an example of the DMPI with DMR. of 50%, where the white blocks represent the available
echoes and the black blocks represent the missing echoes.

4.2 Training details
In this paper, the loss functions of EGaPLN and RGaPLN are defined as follows:

Ny
Loss = Z

=1

2
. (20)

X - X"

where X; and Xft are the estimated image and the label image of the [th sample, respectively, and Ny
denotes the batch size. For both EGaPLN and RGaPLN, the parameters a and b are set to 10~%. For
EGaPLN, the parameters d and L in each layer are initialized as 5 and 0.5, respectively. The EGaPLN
is trained separately with a fixed DMR. In contrast, the RGaPLN is trained by samples with DMR
uniformly distributed in [25%, 75%)]. Moreover, to achieve the optimal imaging performance, the training
parameters of EGaPLN and RGaPLN are set as specified in Table 1. Particularly, their training epochs
are set to different values to ensure network convergence while preventing overfitting.
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Figure 3 (Color online) Typical label images of the simulated data.

20
40t
60 |
80
100
1201
AL T nini i

20 60 80 100 120
Azimuth

Range

Figure 4 Example of the DMPI with DMR of 50%.

Table 1 Training parameters of EGaPLN and RGaPLN.

Learning rate Batch size Training epoch Optimizer
EGaPLN 2x 1074 8 400 Adam
RGaPLN 5x107° 1 200 Adam

4.3 Monte Carlo experiments

4.3.1 Layer number determination

The reconstruction accuracy of the unfolded network is strongly dependent on the number of layers.
Therefore, we first determine the layer number of EGaPLN and RGaPLN using the testing data. The
number of layers varies from 6 to 14 with an interval of 2, and the SNR varies from 0 to 10 dB in steps
of 2 dB. For each SNR and layer number, 100 experiments are carried out, and the normalized average
root mean square error (RMSE) is presented in Figure 5. Specifically, the normalized RMSE is defined
as follows:

% _ gt % _ gt
Normlized RMSE = \/X X / \/X X

70 70 (21)

As shown in Figure 5, as the number of layers increases, the RMSE of both EGaPLN and RGaPLN
decreases firstly and then becomes stable when the number of layers is greater than 12. Therefore, we

select the layer number of 12 for both EGaPLN and RGaPLN in subsequent experiments to achieve a
balance between the computational efficiency and the reconstruction accuracy.

F

4.3.2  Reconstruction performance evaluation

In this part, we compare the performance of EGaPLN and RGaPLN with 2D-IFGaPL [19], 2D-ADN [31],
HCM-AMPN [32] and primary GaPLN (PGaPLN) through Monte Carlo simulation. Particularly, the
PGaPLN is obtained by directly unfolding the 2D-IFGaPL algorithm without integrating the CNN in the
image precision estimation module. Moreover, due to their limited network capacity, 2D-ADN, HCM-
AMPN and PGaPLN cannot achieve robust imaging under varying observation conditions. Therefore,
they should be trained separately utilizing samples with fixed SNR and DMR to achieve the optimal

imaging performance.
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Figure 6 (Color online) Monte Carlo results of different methods.
(b) the average RMSE under different DMR conditions.

(a) The average RMSE under different SNR conditions;

Firstly, the reconstruction performance under different SNR conditions is evaluated. The DMR is set to
50%, and the SNR varies from 0 to 10 dB in steps of 2 dB. For each SNR, 100 independent experiments are
conducted, and the average RMSE is depicted in Figure 6(a). It is observed that RGaPLN can obtain the
lowest RMSE under different SNR conditions, indicating its superior reconstruction accuracy. Moreover,
EGaPLN can achieve higher reconstruction accuracy than PGaPLN under different SNR conditions
without retraining, demonstrating the effectiveness of the CNN incorporated in EGaPLN.

Furthermore, we evaluate the reconstruction performance of EGaPLN and RGaPLN under different
DMR conditions. The SNR is fixed at 0 dB, while the DMR ranges from 30% to 70% with an interval
of 10%. For each DMR, 100 experiments are performed and the average RMSE is depicted in Fig-
ure 6(b). It is observed that RGaPLN still obtains the highest reconstruction accuracy under different
DMR conditions.

4.4 Imaging results with electromagnetic simulated data

We utilize the electromagnetic simulated data from the F-16 airplane to validate the proposed method in
this section. The radar parameters are f. = 16 GHz and B = 2 GHz. The full-aperture echoes comprise
128 pulses, with each pulse having 128 samples. For the full-aperture and noise-free data, the ISAR image
obtained using the RD algorithm is presented in Figure 7.

The ISAR imaging is performed with SNR of 0 and 5 dB, and DMR of 30%, 50%, and 70%. Figures 8
and 9 present the ISAR images obtained by different methods. It can be seen that the 2D-ADN and HCM-
AMPN methods suffer from background noise and excessively sparse scattering centers, compromising the
completeness of the target structure. In contrast, since the proposed EGaPLN and RGaPLN methods
can exploit the statistical characteristics of both the target and the environment, they produce well-
focused images with cleaner background and more complete target structure under different SNR and
DMR conditions.
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Figure 7 (Color online) RD image of electromagnetic simulated data of the F-16 airplane with full-aperture, noise-free data.
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Figure 8 (Color online) Imaging results of electromagnetic simulated data of the F-16 airplane for SNR of 0 dB.

For a quantitative comparison, the peak signal-to-noise ratio (PSNR) and the structural similarity index
measure (SSIM) between the imaging results and the RD image presented in Figure 7 are calculated.
As shown in Table 2, the proposed EGaPLN and RGaPLN methods achieve higher PSNR and SSIM
compared to the available methods under different observation conditions, with RGaPLN, enhanced by
the hypernetwork, outperforming EGaPLN.

4.5 Imaging results with measured data

To further validate the effectiveness of the proposed method, we perform the imaging experiments with
measured data of the Yak-42 airplane. The RD image of the full-aperture data is shown in Figure 10.
Similarly, imaging experiments are carried out with SNR of 0 and 5 dB, and DMR. of 30%, 50%, and
70%. The imaging results are illustrated in Figures 11 and 12. As can be seen, imaging results of 2D-ADN
and HCM-AMPN suffer from background noise and incomplete target structure, especially when SNR is
0 dB and DMR is 70%. In contrast, EGaPLN and RGaPLN can still achieve well-focused imaging with
clearer background and better structural completeness under varying conditions. Furthermore, Table 3
lists the corresponding SSIM and PSNR between the imaging results and the corresponding RD image,
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Figure 9 (Color online) Imaging results of electromagnetic simulated data of the F-16 airplane for SNR of 5 dB.

Table 2 Numerical results of electromagnetic simulated data of the F-16 airplane. Bold values indicate the optimal results.

SNR DMR Evaluation index 2D-ADN HCM-AMPN EGaPLN RGaPLN
30% PSNR 34.5669 35.2380 36.7730 37.0269
< 0

SSIM 0.8969 0.8354 0.9387 0.9435
PSNR 33.6246 33.9168 34.6842 35.1908

0 dB 50%

SSIM 0.8774 0.8595 0.9068 0.9186

0% PSNR 32.4549 32.4111 32.9055 32.9734
(9]

SSIM 0.8368 0.8402 0.8750 0.8792

30% PSNR 38.4132 39.0805 42.7479 42.8692
< 0

SSIM 0.9552 0.9397 0.9854 0.9861

5 PSNR 36.3104 36.6003 39.3371 40.1949

5 dB 50%

SSIM 0.9235 0.9683 0.9764 0.9737
70% PSNR 34.1466 33.6738 35.5841 35.7879
(9]
SSIM 0.8762 0.8727 0.9294 0.9317
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Figure 10 (Color online) RD image of measured data of the Yak-42 airplane with full-aperture data.
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Figure 11 (Color online) Imaging results of measured data of the Yak-42 airplane for SNR of 0 dB.
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Figure 12 (Color online) Imaging results of measured data of the Yak-42 airplane for SNR of 5 dB.

where the proposed methods achieve higher SSIM and PSNR, further demonstrating their superiority.

5 Conclusion

To achieve robust ISAR imaging in varying observation environments, this paper proposes an SBL network
called RGaPLN. Firstly, the 2D-IFGaPL algorithm is unfolded into a deep network. Then, a CNN is
incorporated into the unfolded network to increase the robustness against the SNR variation. On this
basis, a hypernetwork is further incorporated to generate algorithm parameters dynamically according
to DMR, thereby achieving robust high-resolution imaging under various SNR and DMR conditions
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Table 3 Numerical results of measured data of the Yak-42 airplane. Bold values indicate the optimal results.

SNR DMR Evaluation index 2D-ADN HCM-AMPN EGaPLN RGaPLN
30% PSNR 37.2183 38.7350 41.0074 41.2900
(0]
SSIM 0.9265 0.8979 0.9635 0.9670
PSNR 36.2296 37.3932 38.6509 38.9834
0 dB 50%
SSIM 0.9200 0.9175 0.9464 0.9515
0% PSNR 35.0028 35.4947 36.8829 36.9030
0
SSIM 0.9086 0.9042 0.9343 0.9330
30% PSNR 40.7104 42.8980 46.2290 46.3290
(0]
SSIM 0.9598 0.9650 0.9879 0.9890
PSNR 38.8328 40.1703 42.3064 43.4822
5dB 50%
SSIM 0.9484 0.9575 0.9755 0.9807
0% PSNR 36.7746 36.8230 38.9765 39.0406
0
SSIM 0.9294 0.9246 0.9574 0.9575

without model retraining. The experimental results have validated the effectiveness and robustness of
the proposed method under different SNR and DMR conditions.
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