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Abstract Large kernel polar codes can provide outstanding error-correction performance for finite-length coding, which is

expected to support ultra-high reliability and ultra-low latency communication (URLLC) for 6G. However, the complexity

of decoding for large kernel polar codes grows exponentially with the kernel size. In this paper, we study Tanner-graph-

assisted (TGA) decoding to further reduce complexity while maintaining satisfactory error-correction performance. We first

construct a low-complexity parallel TGA belief propagation (TGA-BP) decoder. The decoder takes the kernel matrix that

achieves the optimal exponent as the Tanner graph and selects key nodes for iterative decoding. In particular, the Tanner

graph and iterative decoding equations for arbitrary dimensional linear binary kernels are derived. Then, a two-step Tanner

graph optimization strategy is further proposed to enhance the TGA-BP. It includes a kernel matrix generation method

that obtains different kernels with the optimal exponent and a kernel matrix selection method that maximizes the mean

log-likelihood ratios (mLLR). The simulation results demonstrate that our scheme achieves significant complexity reduction

and error-correction improvement compared to large kernel polar codes under successive cancellation (SC) decoding over the

additive white Gaussian noise (AWGN) channel.
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1 Introduction

Polar codes, capable of theoretically achieving Shannon’s capacity, have already made their way into the
specification for the reliable channel control in 5G new radio [1, 2]. The original design of polar codes
was based on the polarization phenomenon caused by the Kronecker product of the two-dimensional

kernel F2 = [1 0

1 1
]. When it comes to the ultra-reliability and ultra-low latency communication (URLLC)

scenarios of 6G, 5G polar codes can hardly meet the stringent requirements. The reason is that shorter
code length will be employed for error-correction codes to reduce latency in 6G URLLC. In this case, the
channel polarization is greatly weakened, thus dramatically eroding the performance of polar codes [3].
Consequently, improving the polarization capability of polar codes under short block lengths has become
an urgent need.

Large kernel polar codes, which can improve polarization capabilities by constructing large polarization
kernel matrices [4,5], have attracted increased attention. Ref. [6] validated that better polarization effect
can be achieved for a large kernel size, where the necessary and sufficient conditions for a large kernel
matrix with polarization effect are also provided. In [7], decompositions were used to design good binary
kernels. In [8], non-binary kernels with a larger exponent based on Reed-Solomon codes are provided.
In [9], linear and non-linear binary kernels with maximal polarization exponents up to dimension 16 were
investigated. With these technologies, polar codes have been shown to improve the asymptotic error
probability and are poised to enhance their competitiveness compared to other state-of-the-art channel
coding schemes.
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Despite the promising theoretical results, large kernels pose challenges for implementing the polar
decoders. Generally, the complexity of straightforward successive cancellation (SC) decoder for kernel
Fl-based polar codes with length N behaved like O(2lN loglN) [6], which grows exponentially with the
kernel size l. Taking the kernel size l = 16 and the code length N = 256 as an example, the classic
polar SC decoding requires 2048 XOR units for computational complexity [10]. When it comes to large
kernel polar codes, the direct computation cost may increase by 216 times. Therefore, it is not suitable to
straightforwardly apply conventional decoding algorithms for large kernel polar codes, and low-complexity
schemes should be put forward.

There exist several studies that address the decoding complexity challenge of large kernel polar codes.
An l-formula method for simplification of the log-likelihood ratio (LLR) expressions was suggested in [11].
However, only l-formula for F3 and F4 were given. Ref. [12] tried to generalize this formulation, but
provided l-formula of kernels up to dimension 11. An approximate kernel processing method based on
window decoding was suggested in [13], and some kernels of dimensions 16 and 32 were published together.
The corresponding polar codes were shown to have lower decoding complexity compared to F2-based polar
codes with the same performance. Notably, not all kernels support this approach in an efficient way. To
this end, Ref. [14] proposed a unified scheme for kernel processing based on the recursive trellis, which
uses the max operator to approximate the summation operator in the computation of kernel processing.
Unfortunately, the window decoding or recursive trellis, both have a tradeoff between complexity and
error correction performance. Recently, aW -expression method has been proposed by considering the bit
channel transition probability [15], which reduces the complexity of the straightforward SC decoder to
O(l2N loglN) while maintaining the error correction performance advantage of the large kernels. However,
the maximum kernel processing dimension is 16, and the computational complexity is still higher than
that of the classic polar codes.

To summarize, the above-mentioned studies mainly improved serial SC decoding to reduce complexity.
On the one hand, the computational complexity grows at least quadratically with the kernel size, which
is still higher than that of the classic polar codes. On the other hand, the serial decoding structure
will incur additional delay, which deviates from the ultra-low latency vision of 6G URLLC. Consequently,
finding large kernels with good polarization properties and low decoding complexity to meet the stringent
constraints of 6G URLLC remains, in general, an open problem.

It is a fact that classical F2-based polar codes exploit the Tanner graph tool, which enables their
serial or parallel decoding with low complexity [16,17]. Motivated by this, Tanner-graph-assisted parallel
decoding for large kernel polar codes is studied in this paper. The challenges of applying the Tanner
graph for large kernel polar decoding lie in two aspects. First, the Tanner graph of classic polar and
low-density parity-check (LDPC) codes [18] is no longer applicable, and one must redesign the Tanner
graph and decoding algorithm for large kernels. Second, given the kernel size, there are a large number
of kernel matrices with optimal polarization effect, which leads to a huge potential candidate space for
the Tanner graphs. Therefore, selecting the most suitable one for decoding is very tricky. We address
these two challenges by designing a unified low-complexity decoding framework and then investigating
the Tanner graph optimizing problem. The main contributions can be summarized as follows.

(1) We propose a parallel Tanner-graph-assisted belief propagation (TGA-BP) decoder for large kernel
polar codes. The decoder takes the kernel matrix that achieves the optimal polarization exponent as
the Tanner graph and selects key nodes for iterative decoding. In particular, the Tanner graph and
iterative decoding equations for arbitrary dimensional linear binary kernels are derived. To the best of
our knowledge, this is the first time that the Tanner graph is employed to assist large kernel polar codes
decoding.

(2) Since different kernel matrices with the same polarization exponent result in differentiated Tanner
graphs, which will cause fluctuations in TGA-BP decoding performance. We construct a large polarization
kernel matrix generation method based on a genetic algorithm, which has the ability to obtain different
kernels with the optimal polarization exponent. Furthermore, a Tanner graph selection strategy that
maximizes the mean log-likelihood ratios (mLLR) is designed. This enables the TGA-BP decoder to
select the appropriate Tanner graph for decoding.

(3) Extensive numerical results validate our proposed TGA-BP decoder is capable of providing signif-
icant performance gain over existing SC decoders for large kernel polar codes. Particularly, under the
additive white Gaussian noise (AWGN) channel, when the kernel dimension l = 7 and the code length
N = 343, a frame error rate (FER) performance gain of 0.3 dB is obtained. Moreover, TGA-BP decoding
has a lower computational cost, reducing the complexity from O(l2N log2N) to O(2EN

l
loglN), where the
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maximum of E is l2−2l+2
2 . In addition, we simulate TGA-BP list (TGA-BPL) decoding, which also has

great performance advantages compared with classic polar successive cancellation list (SCL) decoding.
The remainder contents are organized as follows. In Section 2, we introduce the basics of polar codes

and large kernel polar codes. A detailed Tanner graph design and iterative decoding formula derivation
are given in Section 3. In Section 4, we elaborate on the designed kernel matrix generation scheme and
Tanner graph selection strategy of the enhanced TGA-BP. Section 5 presents extensive simulation results.
Finally, we conclude our paper in Section 6.

2 Preliminaries

2.1 Polar codes

Owing to the channel polarization phenomenon, the capacity of N binary-input coordinate channels
is extremely distributed in [19]. Symbol (N,K) is defined as a polar code with code length N and
information length K. I indicates the index set that belongs to information bits, which can be effectively
constructed by [20]. Assuming uN1 as the input vector, codeword xN1 is generated by Kronecker power
F2
⊗n as follows:

xN1 = uN1 F
⊗n
2 ,F2 =

[

1 0

1 1

]

. (1)

Decoding of polar codes is performed by SC decoding on the Tanner graph of the code. We assume
that xN1 is binary phase shift keying (BPSK) modulated and transmitted over an AWGN channel. The
received sequence yN1 is converted to log-likelihood ratio (LLR) and then input into the Tanner graph
for decoding. Specifically, the sequence uN1 is decoded bit by bit in the order from u1 to uN . Taking the
code length N = 4 as an example, the Tanner graph is illustrated in Figure 1. Nodes receive channel
LLRs and are expressed as LLRi =

2yi

σ2 . According to the LLR5 and LLR7 of nodes 5 and 7, the LLR
value of node a is calculated as

LLRa = f(LLR5,LLR7). (2)

Similarly, the LLR value of node b is computed as

LLRb = f(LLR6,LLR8). (3)

Furthermore, the LLR of node 1 is obtained by

LLR1 = f(LLRa,LLRb), (4)

where the function f is defined as f(x, y) = ln(1+ex+y

ex+ey ). Decoding of u1 can be implemented using LLR1;
i.e., one can make decisions:

ûi =











0, i /∈ I,

1, LLRi < 0, i ∈ I,

0, LLRi > 0, i ∈ I.

(5)

According to the decoding result û1 of node 1, the LLR of node 2 is calculated as

LLR2 = g(LLRa,LLRb, u1), (6)

where the function g is expressed as g(x, y, ui) = (−1)uix+ y. By analogy, one can deduce the decoding
result of each ui based on the Tanner graph.

2.2 Large kernel polar codes

Similar to polar encoding, the codeword x of large kernel polar codes can also be obtained from the
generator matrix GN , which is expressed as xN1 = uN1 GN . The difference is that the generator matrix
of the large kernel polar codes consists of a high-dimensional polarization kernel matrix. Specifically, the
generator matrix of a (N,K) large kernel polar code is specified as GN = F

⊗n
l , where N = ln, and Fl

denotes polarization kernel with a size of l × l.
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Figure 1 Tanner graph of the F2-based polar code with N = 4.

The code structure of large kernel polar codes has the same function as the generator matrix, which
represents the internal relationship between the input vector and the codeword. An example with a kernel
size of 3 is shown in Figure 2. It is divided into p stages from right to left, and each stage contains N/l
kernels of the same size. The key to code structure design for large kernel polar codes is to obtain the
connection vector between any two adjacent stages. The detailed acquisition process of the connection
vectors is summarized as follows.

Step 1. Calculate the connection vectors between stage 1 and stage p− 1, which can be calculated as

wi = (αi, αi + βi+1, αi + 2× βi+1, . . . , αi + (N/βi+1 − 1)βi+1), (7)

where i ∈ [2, p− 1], β1 = 1, βi =
∏i−1

j=1 lj, αi = (1, li+1, 2× li+ 1, . . . , (βi − 1)× li+ 1, . . . , li, li+ li, 2×
li+ li, . . . , (βi − 1)× li+ li).

Step 2. Compute the connection vector wp between the (p− 1)-th stage and the p-th stage, which is
defined as

wp = (1, lp+ 1, 2× lp+ 1, . . . , (βp − 1)× lp+ 1, . . . , lp, lp+ lp, 2× lp+ lp, . . . , (βp − 1)× lp+ lp). (8)

Step 3. Obtain w1, which represents the connection vector between the codeword x and the first
stage. In particular, the existence of vector w1 makes the codeword generated according to the generator
matrix strictly consistent with that obtained from the Tanner graph.

With a code structure, SC decoding can be performed on it. However, due to the lack of graph analysis
tools, such as the Tanner graph of polar codes, the kernels in the code structure are considered black
boxes. Therefore, SC decoding of large kernel polar codes relies on the basic iterative formula of a general
kernel matrix Fl:

W
(i)
l (yl

1, u
i−1
1 |ui) =

1

2l−1

∑

ul
i+1

Wl(y
l
1|u

l
1) =

1

2l−1

∑

ul
i+1

W (y1|(u
l
1Fl)1) · · ·W (yl|(u

l
1Fl)l), (9)

where uli+1 ∈ {0, 1}l−i. The LLR of the i-th bit channel is defined as

LLR
(i)
l = ln

W
(i)
l (yl

1, u
i−1
1 |ui = 0)

W
(i)
l (yl

1, u
i−1
1 |ui = 1)

= ln

∑
ul
i+1

W (y1|(u
l
1,ui=0Fl)1) · · ·W (yl|(u

l
1,ui=0Fl)l)

∑
ul
i+1

W (y1|(ul
1,ui=1Fl)1) · · ·W (yl|(ul

1,ui=1Fl)l)
, (10)

where ul1,ui=1 represents (ui−11 , ui = 1, uli+1 ∈ {0, 1}l−i). As the kernel size increases, the complexity of
(10) will increase exponentially. Obviously, it is not practical to directly perform SC decoding.

Several studies have focused on reducing the complexity of (10), such as l-formula [12] and W -
expressions [15], but these measures can only handle kernels up to 16. To make matters worse, compared
with the classic polar codes SC decoding, the computational complexity is still high.

2.3 Motivation

By comparing the decoding process of polar codes and large kernel polar codes, we can observe that
although both employ SC decoding, polar codes can greatly reduce the computational complexity using
the Tanner graph tool. As for large kernel polar codes, although decoding can be performed according
to the code structure shown in Figure 2, the intrinsic connection between the input and output of each
kernel, referred to as the kernel Tanner graph (KTG) in this paper, is a black box. Therefore, the LLR of
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Figure 2 Code structure of the F3-based polar code with N = 9.

each kernel needs to be calculated according to (10), which brings about huge computational complexity.
If the Tanner graph for a given kernel is available, then the computation of (10) can be replaced. This
motivates us to find suitable kernel Tanner graphs for large kernel polar codes, which can efficiently assist
in their decoding.

3 TGA-BP decoding for large kernel polar

In this section, we design a highly parallel belief propagation decoding by employing kernel Tanner
graph for polar codes with arbitrary dimension linear binary kernel. Moreover, we give the complexity
representation of the conceived TGA-BP decoding.

3.1 Kernel Tanner graph design

The Tanner graph of the classic polar codes is essentially another representation of its generator matrix
GN , which represents the internal relationship between the input vector uN1 and the codeword xN1 .
Inspired by this, the polarization kernel matrix is regarded as a generator matrix, and the intrinsic
connection between its input and output is explored. In [9], the linear binary kernel with the maximum
exponent in different dimensions has been given, take the kernel of size 5 as an example:

F5 =



















1 0 0 0 0

1 1 0 0 0

1 0 1 0 0

1 0 0 1 0

1 1 1 0 1



















. (11)

The codewords generated by F5 can be expressed as x51 = u51F5, and each codeword xi is determined
by the element 1 in the i-th column of F5. For example, the elements in the third and the fifth row of
the third column are 1, i.e., F3,3 = 1 and F5,3 = 1; then x3 is obtained by the XOR operation of the
input bits u3 and u5, which is called a check function. More specifically, the parity functions of x51 are
represented as































x1 = u1 ⊕ u2 ⊕ u3 ⊕ u4 ⊕ u5,

x2 = u2 ⊕ u5,

x3 = u3 ⊕ u5,

x4 = u4,

x5 = u5.

(12)

According to (12), codeword x5 equals input bit u5. Therefore, u5 and x5 are directly connected in the
kernel Tanner graph corresponding to F5. Likewise, u4 and x4 are also directly connected by a straight
line. As for x3, it is obtained by exclusive or (XOR) u3 and u5, forming an XOR circuit structure between
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Figure 3 (Color online) Different kernel Tanner graphs corresponding to F5. (a) Kernel Tanner graphs with x1 = u1⊕u2⊕u4⊕x3;

(b) kernel Tanner graphs with x1 = u1 ⊕ u3 ⊕ x2 ⊕ u4.

u3, u5, x3, and x5. When comes to x2, an XOR structure is generated by u2, u5, x2, and x5. Unlike x
5
2,

each codeword can be uniquely determined. The check function of x1 has multiple representations, such
as x1 = u1 ⊕ u2 ⊕ u4 ⊕ x3 or x1 = u1 ⊕ u3 ⊕ x2 ⊕ u4. It is certain that these two different check functions
for x1 lead to different kernel Tanner graphs, which are plotted in Figures 3(a) and (b), respectively.
Notably, the leftmost nodes 1–5 in the kernel Tanner graph represent input u51, and the rightmost nodes
6–10 represent codewords x51. Selecting a suitable one from the differentiated kernel Tanner graphs will
be discussed in Subsection 4.2.

Given any polarization kernel matrix and the same process, one can easily obtain its corresponding
kernel Tanner graph based on the check functions. Equipped with the kernel Tanner graph, the code
structure is no longer a black box, and a Tanner graph is formed for the large kernel polar code. Note
that in this work, the kernel Tanner graph and the Tanner graph are strictly corresponding, that is, given
a kernel Tanner graph, by filling it with the black boxes in the code structure, a unique Tanner graph
is obtained. Then, large kernel polar codes can be decoded like polar codes by tracking the evolution of
LLR values in the Tanner graph. Next, the belief propagation decoding based on the Tanner graph is
given for large kernel polar codes.

3.2 Belief propagation decoding

In general, the TGA-BP decoding of large kernel polar codes relies on the iteration of left information
L and right information R between adjacent stages in the Tanner graph. Consequently, the crucial to
TGA-BP decoding is to calculate the L and R information of the kernel Tanner graph. Specifically, the
kernel Tanner graph is divided into s layers from left to right, each layer contains T nodes, where T is
the dimension of the kernel matrix. There are a total of T (s−2) nodes in the kernel Tanner graph except
for its own input and output. It is worth noting that not all of these T (s− 2) nodes are meaningful, only
some contain valuable L and R information, which are called key nodes (KN). All key nodes are gathered
into a set Q = (Q1, Q2, . . . , Qz), where z is the number of KN. When the kernel matrix is obtained, its
corresponding kernel Tanner graph and Q are also determined. What pays more attention is that Q needs
to satisfy the flowing constraints: (i) the L and R information of any Qi can be expressed by Qj (j 6= i),
as well as the input and output nodes of the kernel Tanner graph; (ii) the number of KN should be as
small as possible. Relying on the calculated L and R of Q, one can deduce the left and right information
of the kernel Tanner graph based on the kernel F2 processing.

For further explanation, we utilize the F5 kernel Tanner graph in Figure 3(a) to illustrate. In particular,
the kernel Tanner graph is divided into 5 layers, with a total of 15 nodes excluding input and output.
According to the constraint principles of Q, it requires at least two KN, depicted as a and b in Figure 3(a),
to satisfy condition (i). Precisely, the L and R information of node a can be calculated through b and the
input and output nodes of kernel Tanner graph according to the left and right information processing of
kernel F2, which are expressed as

La = g(g(L6, g(R3, R5 + Lb) + L8), R4 + L9), (13)

Ra = g(R1, R2 + g(L7, Rb + L10)), (14)

where the function g is defined as

g(x, y) =
1 + x× y

x+ y
. (15)

In the same manner, the L and R information of node b are computed as

Lb = L10 + g(R2 + g(R1, La), L7), (16)
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Algorithm 1 TGA-BP for large kernel polar codes.

Require: N , yN
1 , p, Niter, w, I, Q;

Ensure: ûN
1 ;

1: Initial: L
(i)
1 = LLR(yi), R

(i)
p = 0(i ∈ I), R(i)

p = +∞(i ∈ IC);

2: for t = 1 to Niter do

3: for s = 1 to p do

4: if Fls = F2 then

5: Calculate L of all kernels in the s-th stage according to traditional polar;

6: else

7: Calculate L of all KTG in the s-th stage based on the obtained L and R of Q;

8: end if

9: L(i)
s = L

w−1
s (i)

s , i = 1, 2, . . . , N ;

10: end for

11: for s = p to 1 do

12: if Fls = F2 then

13: Compute R of all kernels in the s-th stage according to traditional polar;

14: else

15: Compute R of all KTG in the s-th stage based on the obtained L and R of Q;

16: end if

17: R(i)
s = Rws(i)

s , i = 1, 2, . . . , N ;

18: end for

19: Add L(i)
p and R(i)

p to obtain the LLR value LLRN
1 ;

20: end for

21: Make a hard decision on the LLRN
1 to obtain the decoding result ûN

1 ;

Rb = R5 + g(R3, L8 + g(g(Ra, R4 + L9), L6)). (17)

Furthermore, after possessing the L and R of nodes a and b obtained by (13)–(17), the L information
of the input side nodes of the kernel Tanner graph can be derived as

L1 = g(La, R2 + g(L7, Rb + L10)), (18)

L2 = g(L7, Rb + L10) + g(R1, La), (19)

L3 = g(L8 + g(g(Ra, R4 + L9), L6), R5 + Lb), (20)

L4 = L9 + g(Ra, g(L6, g(R3, R5 + Lb) + L8)), (21)

L5 = Lb + g(R3, L8 + g(g(Ra, R4 + L9), L6)). (22)

Similarly, the R information of the nodes on the output side of the kernel Tanner graph is calculated
as

R6 = g(g(Ra, R4 + L9), g(R3, R5 + Lb) + L8), (23)

R7 = g(R2 + g(R1, La), Rb + L10), (24)

R8 = g(R3, R5 + Lb) + g(g(Ra, R4 + L9), L6), (25)

R9 = R4 + g(Ra, g(L6, g(R3, R5 + Lb) + L8)), (26)

R10 = Rb + g(R2 + g(R1, La), L7). (27)

TGA-BP decoding for large kernel polar codes is described in detail in Algorithm 1. In the Tanner

graph, the L and R information of all KN are initialized to 0, the left information L
(i)
1 in the first stage

and the right information R
(i)
p in the p-th stage are initialized, where

L
(i)
1 = LLR(yi), (28)

R(i)
p =

{

0, if i ∈ I,

+∞, if i ∈ IC .
(29)

As described in lines 1–20 of Algorithm 1, TGA-BP decoding starts from the first stage of the Tanner
graph. According to the L and R information calculation formula of KN, the L information corresponding
to the kernel Tanner graph of each stage is calculated sequentially to the left. After reaching the p-th
stage, the R information of the kernel Tanner graph corresponding to each stage in the Tanner graph
is calculated from left to right. When the number of iterations T is arrived, TGA-BP decoding is
accomplished with the estimated decoding sequence ûN1 .
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Figure 4 (Color online) Construction architecture of polarization kernel matrix based on genetic algorithm.

Remark 1. For dimension l = 2, the kernel matrix with the optimal polarization effect is F2 = [1 0

1 1
].

Applying the kernel Tanner graph design method in Subsection 3.1 to F2, we can find that there is only
one, and its corresponding check functions are x1 = u1 ⊕ u2 and x2 = u2. This means that when the
kernel size is 2, TGA-BP decoding degenerates into the classic polar belief propagation decoding.

It can be seen from Algorithm 1 that the decoding complexity of TGA-BP is negligible compared to
that of polar belief propagation decoding. When the standard Landau notation O(·) is employed for
denoting the complexity, a belief propagation (BP) decoder for classic polar can be implemented with
complexity O(TN log2N). Algorithm 1 requires 2EN

l
left and right information calculations at each stage

of the Tanner graph, where E is the number of XORs in the kernel Tanner graph. Therefore, assuming
that the code structure is composed of the same kernel Tanner graph, the complexity of Algorithm 1 is
O(T 2EN

l
loglN).

4 Enhanced TGA-BP decoding

In this section, we propose a two-step scheme to improve TGA-BP decoding for large kernel polar codes.
First, we generate a polarization kernel matrix construction architecture, which provides as many candi-
dates of kernel Tanner graph as possible. Subsequently, the most suitable kernel Tanner graph is chosen
to assist belief propagation decoding.

4.1 Kernel construction

Differentiated Tanner graphs lead to fluctuations in TGA-BP decoding performance. The factors that
affect the Tanner graph under the same kernel size mainly include different kernel matrices and different
parity functions designed under the same kernel. Therefore, it is crucial to obtain as many Tanner graph
candidates as possible and select the appropriate ones for decoding.

We first designed a kernel matrix construction strategy to obtain as many kernel Tanner graphs as
possible. The kernel matrix is expected to have excellent polarization effects, such as smaller scaling
exponents or larger error exponents (EE). More importantly, considering the complexity of decoding,
under the same kernel size and polarization performance, it demands to have minimum number of 1 in
the kernel matrix. Based on the above premise, an offline kernel matrix construction scheme based on
genetic algorithm (GA) is illustrated in Figure 4. Specifically, we take the position indices of element 1
in Fl as the target to be optimized by the GA. The selection, crossover, and mutation of the GA are
regarded as a kernel constructor, which continuously generates better positions for elements 1 according
to the fitness value, as shown by the red mark in Figure 4. In particular, the fitness value is defined as
an indicator representing the performance of the kernel, which can be calculated as

EE(Fl) =
1

l

l−1
∑

i=0

logl(Di), (30)

where D is referred to as the partial distances profile. To sum up, given the kernel size l and the required
EE, the construction steps of GA are outlined as follows.
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(1) Initialize the kernel population. GA usually starts with a randomly generated population
of candidate individuals, where each candidate individual competes with each other and only a few
of the fittest survive. Surviving individuals will then undergo evolutionary transitions (i.e., mutation
and crossover) to produce offspring representative of the new population. In this work, the initialized
population contains S kernel matrix individuals, and the number of elements 1 in all kernels is consistent,
assumed to be k. In addition, it is worth noting that the kernel individual in any step is in the standard
form [9], which is a lower triangular matrix with all diagonal elements set to 1 and needs to satisfy the
polarization conditions.

(2) Generate new kernel population. Calculate the fitness value of the population, and employ

the obtained EE
(j)
k (j = 1, . . . , S) of each individual as the input of the kernel constructor. Then, perform

selection, crossover, and mutation operations of the GA to generate a new population. The purpose of
this process is to create kernel matrices with better polarization effects under the constraint k.

As an example, we show the process of generating a new matrix by the kernel constructor when the
kernel size is 4. For space considerations, the size of the kernel matrix is converted from 4× 4 to 1× 16.

For the kernel individuals F
(1)
4 = [1 0 0 0 1 1 0 0 1 1 1 0 1 0 1 1] with k = 9, suppose the individual

crossed with it is F
(2)
4 = [1 0 0 0 1 1 0 0 0 1 1 0 1 1 1 1] and the simplest single midpoint crossover is

adopted. Since all kernel matrices are in standard form, only the elements at positions {5, 9, 10, 13, 14, 15}

in F
(1)
4 and F

(2)
4 participate in the crossover operation. Then, the elements located at 13, 14, and 15

in F
(1)
4 are replaced by the corresponding elements in F

(2)
4 , resulting in the formation of a new kernel

F
(1)
4 = [1 0 0 0 1 1 0 0 1 1 1 0 1 1 1 1]. It is worth noting that the number of 1 in F

(1)
3 is 10 now, and

one of the positions {5, 9, 10, 13, 14, 15} must be selected to be reversed to 0. Assuming it is 10, thereby

completing the crossover operation, the final kernel is F
(1)
4 = [1 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1].

(3) Obtain required kernel matrices. Loop step (2) continuously. Meanwhile, the polarization

kernel matrix with the most advanced polarization performance EE
(o)
k is recorded. If EE

(o)
k < EE, go to

step (4), otherwise, keep the current k unchanged and record all subsequent kernels with required EE
until the maximum number of iterations is reached.

(4) Let k = k + 1 and repeat the above process.

F
(2)
5 =



















1 0 0 0 0

1 1 0 0 0

1 0 1 0 0

1 1 1 1 0

1 1 1 0 1



















. (31)

For further explanation, we compared one of the GA-based polarization kernel F
(1)
5 in (11) with F

(2)
5

in (31). It can be seen that while they have the same kernel size and error exponent, the kernel Tanner

graph obtained by F
(1)
5 has lower complexity, as shown in Figure 3, where there are 5 XOR structures.

In contrast, F
(2)
5 has at least 6 XOR structures. The consistent phenomenon also exists when coming to

other larger kernels, such as kernel F
(1)
10 with the maximum exponent constructed in [9], and

F
(2)
10 = [800;C00;A00; 500; 180;D40; 5A0; 350;F28; 5FC] (32)

with the same EE is designed by GA. In particular, in (32), in order to save space we divide the rows
of the original kernel into 4-bit segments and complement the last segment to 4-bit by 0. Then, convert
these segments into corresponding hexadecimal numbers.

Note that after obtaining the minimum k of the kernel matrix corresponding to the required EE,
the kernel constructor is still working continuously, with the goal of obtaining multiple different kernel
matrices under the k constraint, in other words, enough candidate kernel Tanner graphs.

4.2 Selection of efficient Tanner graph

Of course, the kernel Tanner graph of the same kernel may be different due to different designs of the
parity function. All kernel Tanner graphs corresponding to the kernels obtained by GA constitute the
candidate set for TGA-BP decoding, and the most effective one needs to be selected. The decoding
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performance of a Tanner graph is almost determined by the reliability of each input bit ui, and the upper
bound of the error probability of decoding is defined as

P 6
∑

i∈I

Pe(ui), (33)

where I denotes the information bits set, and Pe(ui) represents the probability of making an incorrect
decision on bit ui. Therefore, one can aim to minimize this upper bound by choosing the information set
IR to contain the K locations with the most reliable metrics. In other words, IR can be regarded as the
solution of the optimization problem

IR = argmin
I⊂[N ]

∑

i∈I

max(Pe(ui)). (34)

Given the Tanner graph of large kernel polar codes, the reliability value of each bit ui can be computed
by tracking the evolution of the mLLR in the graph. In particular, under the Gaussian assumption, the
analytical relationship between the error probability Pe(ui) and the mLLR mi of the i-th bit on the input
side of the Tanner graph is Pe(ui) = Q(

√

mi/2), where Q is defined as

Q(x) =
1

√

(2π)

∫ +∞

x

e−
u2

2 dz. (35)

Furthermore, the decoding error probability of the Tanner graph can hence be lower bound by

P > max
i∈I

Q(
√

mi/2). (36)

The derivative of Q is calculated as

Q′(x) = −
1

√

(2π)
e−

x2

2 . (37)

It can be seen that when x ∈ (0,+∞), Q′(x) < 0. In other words, when x > 0, the Q function is
monotonically decreasing. According to (36), in order to obtain a lower bound on the decoding error
probability, for i ∈ I, one needs to maximize the value of Q(

√

mi/2). Since the value of mi is always

greater than 0, the maximum Q(
√

mi/2) can be obtained by a small mi. Therefore, the optimization
problem in (34) can be transformed into

IR = argmax
I⊂[N ]

∑

i∈I

min(mi). (38)

According to (38), the performance of the Tanner graph is closely related to the mLLR of the input
side bits. To this end, the scheme with the maximization of the sum of mLLR of the information bit
channels is employed as the selection strategy of the Tanner graph, which is defined as

mj = argmax
j∈M

∑

i∈I(j)

mLLRi(j), (39)

whereM = {m1,m2, . . . ,mz} is a set of z candidate Tanner graphs, generated by z kernel Tanner graphs,
I(j) is the information bits positions of the j-th Tanner graph, and mLLRi(j) represents the mLLR value
of the i-th bit channel of Tannrt graph mj .

As for the transfer of mLLR in the Tanner graph, the process is similar to the F2-based polar codes.
By taking a single XOR operation as a unit, from the output side of the Tanner graph, the mLLR of all
nodes is calculated sequentially to the left. Let mi denote the mLLR on the input side of the Tanner
graph, and µi denote the output side. As an example, the mLLR evolution equations for F5 in Figure 3(a)
are calculated as

m1 = φ(φ(φ(µ6 , µ8), µ9), φ(µ7, µ10)), (40)

m2 = φ(φ(µ6, µ8), µ9) + φ(µ7, µ10), (41)

m3 = φ(µ6 + µ8, µ7 + µ10), (42)
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Algorithm 2 Enhanced TGA-BP decoding.

Require: l, S, k, Niter, EE;

Ensure: ûN
1 ;

1: Initialize the kernel population P with S individuals under the restriction of k;

2: while EE(o) 6 EE do

3: for t = 1 to Niter do

4: According to (30), calculate the fitness value EE(j) of each individual in P ;

5: Pnew ← Selection, crossover, and mutation;

6: end for

7: EE(o)← The smallest polarization exponent in P ;

8: k = k + 1;

9: Initialize population P under the restriction of k;

10: end while

11: Initialize the kernel population P with S individuals under the restriction of k;

12: for t = 1 to Niter do

13: According to (30), calculate the fitness value EE(j) of each individual in P ;

14: Pr(i)← All kernels in P where EE(o) = EE;

15: Pnew ← Selection, crossover, and mutation;

16: end for

17: Design all Tanner graphs for each kernel in Pr(i), and the number is |Pr(i)|;

18: M =
∑Niter

i=1 |Pr(i)|;

19: for z = 1 to M do

20: Calculate mLLR(g) (g = 1, 2, . . . , N) of the i-th Tanner graph;

21: m(i) =
∑|I|

g∈I mLLR(g);

22: end for

23: Take the largest m(i) as the Tannrt graph;

24: ûN
1 ← Calling Algorithm 1;

m4 = φ(µ6, µ8) + µ9, (43)

m5 = µ6 + µ7 + µ8 + µ10, (44)

where operation φ is marked as

φ(µ1, µ2, . . . , µj) = ψ−1

(

1−

j
∏

s=1

(1− ψ(µs))

)

, (45)

ψ(µ) = 1−
1

√

(4µπ)

∫ +∞

−∞

tanh
z

2
e−

(z−µ)2

4µ dz. (46)

Based on the above discussion, the Tanner graph selection strategy of large kernel polar codes is
recapitulated as follows.

(1) The rightmost stages of the z independent Tanner graphs are initialized to the mLLR received
from the channel. Note that for BPSK over an AWGN channel, the initial mLLR is given by 2

σ2 , where
σ2 denotes the noise variance.

(2) According to the evolution formula of mLLR on different kernel Tanner graphs, the mLLR of each
stage in the mi (i = 1, 2, . . . , z) Tanner graph is calculated. When the N nodes on the input side of the
first stage are completed, we define it as mN

1 (i) (i = 1, 2, . . . , z).
(3) The indexes corresponding to the largest K values in mN

1 (i) form the information set I(i), where
I(i) ∈ [N ]. According to (39), the Tanner graph with the largest sum of bit channel reliabilities is selected
and used to assist BP decoding.

Enhanced TGA-BP decoding for large kernel polar codes is described in Algorithm 2. It is worth noting
that in practical applications, the determination of the polarization kernel matrix and the final Tanner
graph in lines 1–21 of Algorithm 2 can be done offline. For enhanced TGA-BP decoding, compared with
the original algorithm, only the kernel Tanner graph is changed. Therefore, after obtaining the optimal
kernel Tanner graph, the enhanced TGA-BP can still employ Algorithm 1 for decoding. It should be also
noted that the proposed TGA-BP decoder can be easily extended to a more advanced BP list (BPL) by
permutation of the Tanner graph, which further enhances the error-correction capability of the proposed
decoding scheme.

5 Simulation results

In this section, numerical results are implemented to evaluate the performance of the devised TGA-BP
decoder. We assume BPSK transmission with {+1,−1} over AWGN channel. All code ratesR = N/K are
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Figure 5 (Color online) Different kernel Tanner graphs corresponding to F6. (a) Kernel Tanner graph 1 with x1 = u1⊕u2⊕x3⊕x4;

(b) kernel Tanner graph 2 with x1 = u1 ⊕ u3 ⊕ u4 ⊕ x2.

Figure 6 (Color online) FER performance and average decoding iterations of TGA-BP with F6 under different kernel Tanner

graphs. (a) FER performance; (b) average decoding iterations.

1/2 and the FER is used as a criterion to measure decoding performance. Specifically, we demonstrate the
following aspects: (1) the impact of kernel Tanner graph; (2) comparison of error correction performance
with polar codes, large kernel polar codes, and hybrid kernel codes; (3) computational complexity analysis.

5.1 Impact of Tanner graph

We examined the impact of the kernel Tanner graph of the polarization kernel matrix on the FER
performance of the TGA-BP decoder. Note that the TGA-BP decoder employs an early termination
criterion [21]. Specifically, Figure 5 shows different kernel Tanner graphs corresponding to F6 with error
exponent 0.4512, which is defined as

F6 = [80;C0;A0; 90;E8;D4].

The check functions of kernel Tanner graph 1 of F6 as plotted in Figure 5(a) are designed as x1 =
u1 ⊕ u2 ⊕ x3 ⊕ x4, x2 = u2 ⊕ u5 ⊕ u6, x3 = u3 ⊕ u5, x4 = u4 ⊕ u6, x5 = u5, and x6 = u6. Different
from the codeword x1 of kernel Tanner graph 1, the check equation of kernel Tanner graph 2 as plotted
in Figure 5(b) is x1 = u1 ⊕ u3 ⊕ u4 ⊕ x2. Using the Tanner graph selection strategy of (39), when code
length N = 36 with σ2 = 0.5, the sum of mLLR reliability of Tanner graph 1 is 470.38, while Tanner
graph 2 is 469.59. This implies that the performance of graph 1 is better than that of graph 2, and the
same for other code lengths. This is also verified in Figure 6(a). We can observe that under different
code lengths, the FER of kernel Tanner graph 1 performs better than graph 2.

In addition, the effect of the kernel Tanner graph on the number of iterations of the TGA-BP decoder
is shown in Figure 6(b), where the maximum number of iterations is set to 200. The results show
that a prominent kernel Tanner graph can not only have outstanding error correction performance, but
also significantly reduce the number of decoding iterations, in other words, it has low computational
complexity. A consistent phenomenon also exists when coming to other kernels. Therefore, we can draw
a conclusion that the enhanced TGA-BP for large kernel polar codes is necessary in Section 4.
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Figure 7 (Color online) Enhanced TGA-BP decoding performance for large kernels. (a) Compared with W -expression and

recursive-trellis; (b) compared with hybrid-kernel SC decoding.

5.2 Error-correction performance

Figure 7(a) portrays the FER performance of TGA-BP decoding for large kernel polar codes under
different kernel sizes; the recursive-trellis [14] and W -expression [15] methods are employed to serve as
a benchmark. For kernel F6, its Tanner graph is given in Figure 5(a). F7 with error exponent 0.4579
obtained by GA is expressed as

F7 = [80;C0;A0; 30;B8;E4; 2E].

The check functions of kernel Tanner graph corresponding to F7 are designed as x1 = u1 ⊕ u3 ⊕ u5 ⊕ x2,
x2 = u2 ⊕ u6, x3 = u3 ⊕ x4 ⊕ x6, x4 = u4 ⊕ u5, x5 = u5 ⊕ u7, x6 = u6 ⊕ u7, and x7 = u7.

As can be seen, whether TGA-BP or SC decoding, the error-correction performance of both is almost
determined by the exponent of the kernel matrix. Simulations show that the error-correction capability of
the TGA-BP exceeds both recursive-trellis and W -expression for large kernel polar codes with different
kernel sizes. More specifically, when the kernel size l = 15, code length N = 225, and FER = 10−3,
the devised TGA-BP decoding obtains a gain of about 0.3 dB compared with W -expression method.
Moreover, since the TGA-BP engages in parallel decoding, it is endowed with high throughput and low
latency characteristics to meet 6G URLLC requirements.

Hybrid-kernel codes are a more general form of large kernel polar codes, whose generator matrix
can be composed of a mixture of differentiated polarization kernels [22]. Figure 7(b) demonstrates the
performance of the TGA-BP decoder with different code lengths for hybrid-kernel polar codes, and the
SC decoding is also employed to serve as a benchmark. For the hybrid-kernel code with length N = 192,
its generator matrix is expressed as GN = F

⊗6
2 ⊗ F3. For the length N = 384, the generator matrix

GN = F
⊗7
2 ⊗F3, where F3 = [1 0 0 1 1 0 0 1 1]. As for the kernel Tanner graph of F3, its check functions

are designed as x1 = u1 ⊕ u2, x2 = u2 ⊕ u3, and x3 = u3. Overall, we observe that the FER of TGA-BP
outperforms SC decoding for hybrid-kernel polar codes under different code lengths. For example, when
the code length N = 384 and FER = 10−2, the devised TGA-BP decoding obtains a gain of about
0.3 dB compared with SC.

To present further insights, Figure 8(a) plots the error correction performance of the enhanced TGA-
BP at different kernel dimensions. As can be seen, the error-correction performance of enhanced TGA-BP
for larger kernel polar codes is almost determined by the EE. Specifically, the EE of F3, F5, F6, and F7

is smaller than that of F4, so their performance is worse than that of F4-based polar. For F15 and F16,
although their EE values are slightly greater than F4, they achieve a significant improvement in error
correction performance.

Figure 8(b) compares the FER performance of TGA-BPL decoding for large kernel polar codes with
classic F2-based polar SC and SCL decoding. In particular, after the kernel matrix of the enhanced TGA-
BP is determined, the L best-performing ones are selected as the kernel Tanner graph for TGA-BPL.
The simulations confirm that large kernel polar codes with proposed decoding methods achieve significant
error-correction performance gains than F2-based polar under both SC and SCL decoding. For example,
when the code length N = 256, L = 32, and FER= 10−3, the devised TGA-BPL decoding obtains a gain
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Figure 8 (Color online) Enhanced TGA-BP decoding compared with F2-based polar. (a) FER of enhanced TGA-BP under

different kernels; (b) compared with polar SCL decoding.

Table 1 Comparison of the complexity for different decoding schemes.

Classic polar (SC) Large kernel (straightforward SC) Large kernel (W -expression) Proposed (TGA-BP)

O(N log2N) O(2lN loglN) O(l2N loglN) O(T 2EN
l

loglN)

Table 2 Average number of operations for kernel LLR
(i)
l

.

m SC l-formula [12] W -formula [15] TGA-BP

2 3.0 2.0 4.0 6.0

3 9.3 3.7 8.7 8.0

4 22.5 2.0 4.0 12.0

5 49.6 7.8 19.2 12.0

6 105.0 11.3 25.3 14.0

7 217.7 21.9 33.7 15.4

8 446.3 42.8 44.8 18.0

9 908.4 52.1 56.7 20.0

10 1841.4 83.8 67.4 20.4

11 3721.8 246.0 118.5 21.8

12 7505.5 673.8 171.0 23.0

13 15121.8 1271.5 240.2 24.9

14 30425.6 3790.6 372.0 25.7

15 61165.1 10736.6 481.3 27.2

16 122878.1 34145.0 630.1 28.5

of about 0.5 dB compared with SCL.

5.3 Complexity analysis

In the TGA-BP decoding complexity analysis in Subsection 3.2, we obtained the expression of the TGA-
BP decoding complexity as O(T 2EN

l
loglN). Table 1 shows the complexity comparison of different decod-

ing strategies for classical polar and large kernel polar. It can be found that the proposed TGA-BP can
achieve a complexity similar to that of classical polar codes. This is a rough statistic because there are a
lot of differentiated mathematical calculations in the calculation of left and right information. Therefore,
in this subsection, we explain the decoding complexity of TGA-BP in a more detailed way.

The code structure of large kernel polar codes shows that the complexity of both TGA-BP and SC
decoding is proportional to the kernel processing. Therefore, only the decoding computational cost of

a single kernel is considered. The number of mathematical operations required to calculate the LLR
(i)
l

dominates the computation cost of the kernel processing. For the l-formula [12], it mainly contains two
operations, “·” and ♦. A “·” includes one multiplication ×, and a ♦ includes one ×, one division ÷, and
two additions +. Differently, in the W -formula [15], a “·” includes two × and one +, and a ♦ includes
four × and two +. As for TGA-BP, it is mainly g function calculation, which contains one ×, one ÷,
and two +. Because the execution speed of division is lower than multiplication, and both are much
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lower than addition, the additions in our complexity analysis are neglected in this work. In addition, we
assume one ÷ equates two × to simplify the comparison.

The average number of multiplications operations of the kernel LLR
(i)
l by computation straightforward

SC, l-formula, W -formula, and TG-BP are recapitulated in Table 2. It can be observed that the SC
decoding based on theW -formula achieves a considerable reduction in the number of operations compared
with the l-formula, for l > 10. However, both l-formula and W -formula have higher complexity than
TGA-BP when l > 6. What is more noteworthy is that the larger the kernel dimension, the more
significant the advantage of TGA-BP.

6 Conclusion

In this paper, we proposed a Tanner-graph-assisted belief propagation decoding for large kernel polar
codes to meet the stringent reliability and latency constraints in 6G URLLC. The Tanner graph and iter-
ative decoding equations of arbitrary-dimensional linear binary polarization kernel matrices are designed.
Next, we presented an offline machine learning-based kernel matrix generation architecture, which has
the ability to obtain different kernels while ensuring a consistent polarization effect. Benefiting from the
above-mentioned strategies, our scheme achieves significant complexity reduction and error-correction
enhancement compared to large kernel polar codes under SC decoding.
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