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Recent advances in autonomous surface vehicles (ASVs)

and maritime communication technologies have significantly

enhanced ASV performance in dynamic marine environ-

ments [1,2]. These capabilities make ASVs valuable in mar-

itime security missions like interception, escort, and area de-

nial, where interactions are often modeled as target-defense-

differential (TDD) games involving a target, an attacker,

and a defender [3, 4]. Most existing TDD studies assume

linear individual dynamics and restrict the defender’s role

to attacker interception, limiting model realism. In prac-

tice, the defender usually frequently chooses between inter-

cepting the attacker or rendezvousing with the target. This

strategic flexibility is indispensable, as optimal actions de-

pend on the players’ positions and velocities. To address

this issue, we propose a dual-mode defender model with

two strategies: (i) attacker capturing and (ii) rendezvous

with the target. This manner enriches game dynamics and

switching equilibria. We analyze the outcomes under both

strategies and thereby provide conditions for determining fa-

vorable defender decisions. Additionally, since real ASVs ex-

hibit coupled nonlinear dynamics, we describe all three roles

nonlinearly and introduce a model transformation approach

that enables Hamiltonian-based analysis. The contributions

of this study are two-fold: (i) establishing a dual-strategy

defender model for TDD games, and (ii) proposing a non-

linear ASV transformation enabling tractable equilibrium

computation.

Consider the kinematics of the defender, the target, and

the attacker ASVs as in [5]
ẋℓ = wℓ sin(ψℓ)− vℓ cos(ψℓ),

ẏℓ = wℓ cos(ψℓ) + vℓ sin(ψℓ),

ψ̇ℓ = rℓ, ẇℓ = kℓ1wℓ + kℓ2vℓrℓ + kℓ3τ
ℓ
ω ,

v̇ℓ = kℓ4vℓ + kℓ5wℓrℓ, ṙℓ = kℓ6rℓ + kℓ7τ
ℓ
r ,

(1)

where the subscript ℓ ∈ {D,A, T} is the label of the de-

fender, attacker and target, respectively; [xℓ, yℓ]
T and ψ

are the positions and the moving direction of the ASV, re-

spectively; w, v, r denote the surge, sway, and yaw velocities

of the ASV in a body-fixed reference frame, respectively;

τ = [τω , τr ]T the control input, τu the actuator power, τr
the actuator jetting nozzle angle, and w, v, r the nominal for-

ward, sway and angular velocities, respectively. Moreover,
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, where mℓ
1,m

ℓ
2, m

ℓ
3 are ASV iner-

tia including added mass effects; and dℓ1, d
ℓ
2, d

ℓ
3 the hydro-

dynamic damping coefficients in the surge, sway, and yaw,

respectively.

Letting the actual speed uℓ :=
√

ω2
ℓ
+ v2

ℓ
, one has u̇ℓ =

ωℓω̇ℓ+vℓv̇ℓ
uℓ

. Letting τℓr = 1
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(2)

where rℓ
I
and uℓ

I
are the control inputs with kℓr < 0, kℓν < 0.

Then, Eq. (1) can be rewritten as

ẋℓ = uℓ sin(ψℓ), ẏℓ = uℓ cos(ψℓ),

ψ̇ℓ = rℓ, ṙℓ = kℓrrℓ + rℓ
I
, u̇ℓ = kℓuuℓ + uℓ

I
.

(3)

In the TDD game, the variables RD , RT and RA rep-

resent the distance ‖DA‖, ‖DT‖ and ‖AT‖, respectively;

θA = ∠TAD, θT = ∠DTA with θA ∈ [0,π], θD ∈ [0,π]. In

this letter, RD, RT and RA are used to determine the result

of the TDD game. The TDD gaming state space is denoted

by G = {RA > 0, RD > 0, RT > 0}, with initial conditions

RD0 > 0, RT0 > 0, RA0 > 0. Specifically, the winning and

failing conditions for the defender are defined as follows. By

virtue of (3), one has
ṘD(t) = −uD(t) cos φD(t) − uA(t) cosφA(t),

ṘT (t) = −uD(t) cos ΥD(t) − uT (t) cosΥT (t),

ṘA(t) = uT (t) cosφT (t) − uA cos(θA(t) − φA(t))

(4)

with λ = ∠XAT , φA = θA+λ−ψA , φD = π−λ−θA +ψD ,

φT = ψT − λ, ψA = arctan
(

ẏA
ẋA

)

, ψD = arctan
(

ẏD
ẋD

)

,
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ψT = arctan
(

ẏT
ẋT

)

, ΥD = ψD − (π − ∠xTD), ΥT =

∠xTD − ψT .

Define the cost function for the TDD game as

J := −RA(tf ). (5)

The terminal time tf is defined as the moment when one of

the following three conditions is first satisfied: RA(t) = 0,

RD(t) = 0, or RT (t) = 0. The defender and the target aim

to minimize (5), whereas the attacker aims to maximize it.

Now, we are ready to give the main problem addressed by

this study.

Problem 1 (TDD game problem). Considering the TDD

game governed by (4), calculate the equilibrium state-

feedback controllers (ESFC) rℓI = fr(xℓ, yℓ, t), uℓI =

fu(xℓ, yℓ, t), ℓ ∈ {D,A, T} according to the cost func-

tion (5). Then, reveal the conditions to determine the win-

ner of the TDD game and determine the defender’s destina-

tion (T or A).

To solve Problem 1, the following Lemmas and Theorem

are proposed, the proofs of Lemmas 1, 2 and Theorem 1 are

given in Appendixes A and B.

Lemma 1. Considering the TDD gaming governed by (4),

under the D-A capturing scenario, and the condition u2D +

u2
T
> u2

A
, u2

D
− u2

T
− u2

A
>

u2

T
u2

D

u2

A

and the ESFC

φ∗D = 0, φ∗T = 0,

φ∗A = arccos

(

cos θA−ω
√

(cos θA−ω)2+sin θ2
A

)

,
(6)

and

u∗
T

= sgn(cos φ∗
T
)umax

T
, u∗

D
= sgn(ω cosφD)umax

D
,

u∗
A

= sgn((cos θA − ω) cosφA + sin θA sinφA)umax
A

,
(7)

the conditions to determine the defender-winning DW or

failing DL can be given as DL = {x |
h1(t)
uD(t)

−
h2(t)
uA(t)

> 0},

DW = {x | h1(t)
uD(t)

− h2(t)
uA(t)

6 0} with distances h1(t) :=

RD(0) +
∫ t
0 ṘD(t)dt, h2(t) := RA(0) +

∫ t
0 ṘA(t)dt.

Lemma 2. Considering the TDD gaming governed

by (4), under D-T rendezvous scenario and the con-

dition sgn(u2
T
− u2

D
)η > sgn(u2
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D
)u2

T
cos θT + 2uAuD

with η =
√
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and ESFC
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(8)

and

u∗T = −sgn((ω̂ + cos θT ) cosΥ∗
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T )umax
T ,
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(9)

the conditions to determine the defender-winning DW or

failing DL can be given as DL = {x | ĥ1(t)
uD(t)

− ĥ2(t)
uA(t)

> 0},

DW = {x | ĥ1(t)
uD(t)

− ĥ2(t)
uA(t)

6 0} with ĥ1(t) := RT (0) +
∫ t
0 ṘT (t)dt, ĥ2(t) := RA(0) +

∫ t
0 ṘA(t)dt.

Lemma 3. Considering the TDD gaming governed by (4),

if

RD

uD(t)+uA(t) cosφ∗
A
(t)

6
RT

uD cosΥ∗

D
+uT cosΥ∗

T

(10)

holds, the defender D will capture the attacker A; otherwise,

it proceeds rendezvous with the target T .

Theorem 1. Considering the TDD gaming governed

by (4), the upper-level signals ψ∗

T
, ψ∗

A
, ψ∗

D
of target, at-

tacker and defender governed by (3) can be governed to the

optimal equilibrium state-feedback controllers (6) and (8)

under the lower-level TDD gaming regulators rA
I

= f̈A −

kAr ḟA, r
T
I = f̈T − kTr ḟT , r

D
I = f̈D − kDr ḟD, where fA =

arctan
(
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)
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A
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Figure 1 (Color online) The TDD game process under D-T

rendezvous and D-A capturing switching scenario, where the

red circles denote the initial positions of the three players.

Numerical experiments. The TDD gaming process of D-

A capturing and D-A rendezvous switch scenario is given in

Figure 1, the switch behavior occurs at 98.1 s. More details

can be found in Appendix C.
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