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Recent advances in autonomous surface vehicles (ASVs)
and maritime communication technologies have significantly
enhanced ASV performance in dynamic marine environ-
ments [1,2]. These capabilities make ASVs valuable in mar-
itime security missions like interception, escort, and area de-
nial, where interactions are often modeled as target-defense-
differential (TDD) games involving a target, an attacker,
and a defender [3,4]. Most existing TDD studies assume
linear individual dynamics and restrict the defender’s role
to attacker interception, limiting model realism. In prac-
tice, the defender usually frequently chooses between inter-
cepting the attacker or rendezvousing with the target. This
strategic flexibility is indispensable, as optimal actions de-
pend on the players’ positions and velocities. To address
this issue, we propose a dual-mode defender model with
two strategies: (i) attacker capturing and (ii) rendezvous
with the target. This manner enriches game dynamics and
switching equilibria. We analyze the outcomes under both
strategies and thereby provide conditions for determining fa-
vorable defender decisions. Additionally, since real ASVs ex-
hibit coupled nonlinear dynamics, we describe all three roles
nonlinearly and introduce a model transformation approach
that enables Hamiltonian-based analysis. The contributions
of this study are two-fold: (i) establishing a dual-strategy
defender model for TDD games, and (ii) proposing a non-
linear ASV transformation enabling tractable equilibrium
computation.
Consider the kinematics of the defender, the target, and
the attacker ASVs as in [5]
&y = wygsin(yhy) — ve cos(te),
Yo = wy cos(yy) + ve sin(e),
i
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(1)

e, Wy = k){’we + kgvﬂ“g + kg‘l'f”
kl kl R kZ kl 0
4Ve + kswere, 7 = kgre + ko7,

where the subscript £ € {D, A, T} is the label of the de-
fender, attacker and target, respectively; [xg,y,]T and ¢
are the positions and the moving direction of the ASV, re-
spectively; w, v, r denote the surge, sway, and yaw velocities
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of the ASV in a body-fixed reference frame, respectively;
T = [1w, 7] T the control input, 7, the actuator power, 7
the actuator jetting nozzle angle, and w, v, r the nominal for-
ward, sway and angular velocities, respectively. Moreover,
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kg = e kr = @, where m{, m5, m3 are ASV iner-

tia including added mass effects; and d{,dg,dg the hydro-
dynamic damping coefficients in the surge, sway, and yaw,
respectively.

Letting the actual speed uy := 1/wg + v?, one has 1y =
Vptvpv : e __ 1 £ 4 0
%{WW, Letting 7 = k_g(_kﬁw +kprg +17),

£ 1
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where rf and u§ are the control inputs with kf <0, k¢ <o.
Then, Eq. (1) can be rewritten as

Ty = ugsin(ty), Yo = ug cos(y),
/Ll}e = 1y, Ty = kf.’f‘( +7‘§, Up = kﬁ,uf +u§

®3)

In the TDD game, the variables Rp, R and R4 rep-
resent the distance ||DA||, ||DT|| and ||AT||, respectively;
0a = LTAD, O = ZDTA with 04 € [0,7],0p € [0,7]. In
this letter, Rp, R and R 4 are used to determine the result
of the TDD game. The TDD gaming state space is denoted
by G ={Ra > 0,Rp > 0, Rr > 0}, with initial conditions
Rpo > 0,Rpo > 0, Ra0 > 0. Specifically, the winning and
failing conditions for the defender are defined as follows. By
virtue of (3), one has
Rp(t) = —up(t) cos ¢p(t) — ua(t) cos pa(t),
Rr(t) = —up(®) cos Tp(t) — up(®) cos Tr(t), (@)
Ra(t) = ur(t) cos ¢r(t) —ua cos(0a(t) — da(t))

with A = LZXAT, pp =04+ A—Y4a, dp =1—AN—04 +9¢p,

¢ = Y — A\, Y = arctan (g—g), Yp = arctan (g—g),
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Y = arctan (z—;), Yp = ¢Yp — (n — L&TD), Y =
ZxTD — .
Define the cost function for the TDD game as

Ji=—Ra(ty). (5)

The terminal time ¢; is defined as the moment when one of
the following three conditions is first satisfied: R4 (¢) = 0,
Rp(t) =0, or Rp(t) = 0. The defender and the target aim
to minimize (5), whereas the attacker aims to maximize it.
Now, we are ready to give the main problem addressed by
this study.
Problem 1 (TDD game problem). Considering the TDD
game governed by (4), calculate the equilibrium state-
feedback controllers (ESFC) rf = fr(ze,ye,t), u? =
fulze,ye,t), £ € {D,A,T} according to the cost func-
tion (5). Then, reveal the conditions to determine the win-
ner of the TDD game and determine the defender’s destina-
tion (T or A).

To solve Problem 1, the following Lemmas and Theorem
are proposed, the proofs of Lemmas 1, 2 and Theorem 1 are
given in Appendixes A and B.

Lemma 1. Considering the TDD gaming governed by (4),
2

under the D-A capturing scenario, and the condition u7, +

2.2
2 2 2 2 2 urUup
ug > u,up — up —uy > = and the ESFC

¢p =0, ¢ =0,

cos 04 —w

6
@7 = arccos , ©
\/(cos 6.4 —w)2+sin 6%

and

k= sgn(cos ¢k )up?*
max
)

u¥ =sgn((cosfa —w)cospa +sinbysinda)uy

, up, = sgn(wcos ¢p)uf>,

the conditions to determine the defender-winning Dyy or
failing Dy, can be given as Dy = {x | M) ha(t) o 0},

up(t)  uwa(t)
Dy = {= | :]13((?) Si((tt)) < 0} with distances hi(t) :=

Rp(0) + [y Rp(t)dt, ha(t) := Ra(0) + [ Ra(t)dt.
Lemma 2. Considering the TDD gaming governed
by (4), under D-T rendezvous scenario and the con-

dition sgn(uZ — u%)n > sgn(u? — u)u2 cos O + 2uaup

with n =
and ESFC

\/(uzT cos O + 2uaup)? — (ud — u?))(ud — u?),

« ___ wtcosbp T A
T% = arccos ( (G0 67)2 1o 9T> @ =04, T =0,

(8)

and
up = —sgn((@ + cos 01 ) cos T, — sin O sin Y7, )up®™,
L — . * max L — max
uy, = sgn(wcos YT Jup™, v = up?,

)
the conditions to determine the defen@er—winnipg Dy or
hi(t) ha(t) 0},

failing D, can be given as D = {x | @ ua®
hy () ha (1)

Dw = {o | 11 - 12 < 0} with ha(t) == Rr(0) +
S Ry (8)dt, ha(t) := Ra(0) + [ Ra(t)dt.

Lemma 3.
if

Considering the TDD gaming governed by (4),

RD RT
up (t)+ua(t) cos % (t)

holds, the defender D will capture the attacker A; otherwise,
it proceeds rendezvous with the target 7.

< 10
= up cos T, +urp cos T7, (10)
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Theorem 1. Considering the TDD gaming governed
by (4), the upper-level signals o7.,9%, %7, of target, at-
tacker and defender governed by (3) can be governed to the
optimal equilibrium state-feedback controllers (6) and (8)
under the lower-level TDD gaming regulators r? = fa -
kA fa, vF = fr — kL fr, vP = fp — kP fp, where fa =
arctan (774,471;13 ) — &%,

TA—TD
arctan | ZA YT , if o(t) =1,
TA—XT
fr = vr—u
arctan (u) -, ifo(t) =2,
T
T —TD
arctan /2" YA , ifo(t) =1,
TD —TA
fp = I
m—arctan | 2=—22 ) | if o(t) = 2.
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Figure 1 (Color online) The TDD game process under D-T'

rendezvous and D-A capturing switching scenario, where the
red circles denote the initial positions of the three players.

Numerical experiments. The TDD gaming process of D-
A capturing and D-A rendezvous switch scenario is given in
Figure 1, the switch behavior occurs at 98.1 s. More details
can be found in Appendix C.
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