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Appendix A The proof of Lemmas 1 and 2

Some common analytical steps are outlined before the proofs of Lemmas 1 and 2. First, we address the scenario i)(D-A

capturing), considering the cost function J := −RA(tf ) with the terminal constraint

ρ(x, tf ) = RD(tf ) = 0,

where x := [RA, RD]T ∈ G is the TDD game state. For conciseness, the time variable t is omitted in the subsequent

derivations. Define the Hamiltonian of the TDD game as

H(x, ϕD, ϕA, ϕT ,α)=αTẋ

=αA(uT cosϕT − uA cos(θA − ϕA))− αD(uD cosϕD + uA cosϕA),
(A1)

where α := [αA, αD]T denotes the adjoint vector for the TDD game, and their dynamics are given by

α̇A = − ∂H
∂RA

= 0, α̇D = − ∂H
∂RD

= 0.

The terminal adjoint values are obtained from the transversality condition as

αT(tf ) =
∂J
∂xf

+ ω ∂ρ
∂xf

= [−1 0] + ω[0 1],

which implies

αA(t) = −1, αD(t) = ω, (A2)

where ω is an additional adjoint variable. It follows from the cost function

J := −RA(tf ). (A3)

that the defender-target group (DTG) should strive to minimize the Hamiltonian (A1), whereas the attacker aims to

maximize it. Moreover, the control inputs ϕA, ϕD, ϕT in Hamiltonian (A1) are decoupled, which satisfies Isaacs’ condition,

i.e.,

H(x, ϕ∗D, ϕ
∗
A, ϕ

∗
T ,α)

= min
ϕD,ϕT

max
ϕA

H(x, ϕ∗D, ϕ
∗
A, ϕ

∗
T ,α)

= max
ϕA

min
ϕD,ϕT

H(x, ϕ∗D, ϕ
∗
A, ϕ

∗
T ,α), ∀x ∈ G.

(A4)

Second, we address the scenario ii) (D-T rendezvous) and define the cost functional for the TDD game as

Ĵ := −RA(tf ). (A5)

The terminal constraint for the TDD game are

ρ̂(x̂, tf ) = RT (tf ) = 0,
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where x̂ := [RA, RT ]T ∈ G is the TDD game state under scenario ii). Define the Hamiltonian of the TDD game as

H(x̂,ΥD, ϕA,ΥT , α̂)=α̂T ˙̂x

=−αA(uT cos(θT +ΥT ) + uA cos(θA − ϕA))− αT (uD cosΥD + uT cosΥT ),
(A6)

where α̂ := [αA, αT ]T denotes the adjoint vector for the TDD game, and their dynamics are given by

α̇A = − ∂H
∂RA

= 0, α̇T = − ∂H
∂RT

= 0.

The terminal adjoint values are obtained from the transversality condition as

αT(tf ) =
∂Ĵ
∂x̂f

+ ω ∂ρ̂
∂x̂f

= [−1 0] + ω̂[0 1],

which implies

αA(t) = −1, αT (t) = ω̂, (A7)

where ω̂ is an additional adjoint variable. Analogously to (A4), it follows from the cost function (A5) that

H(x̂,ΥD, ϕA,ΥT , α̂)

= min
ΥD,ΥT

max
ϕA

H(x̂,ΥD, ϕA,ΥT , α̂)

= max
ϕA

min
ΥD,ΥT

H(x̂,ΥD, ϕA,ΥT , α̂), ∀x̂.

(A8)

Then, a necessary definition is given as

Definition 1. The Defender-failing and winning conditions are defined as

• Defender-failing:
RA(t)
uA(t)

<
RD(t)
uD(t)

and
RA(t)
uA(t)

<
RT (t)
uD(t)

.

• Defender-winning:
RA(t)
uA(t)

⩾ RD(t)
uD(t)

or
RA(t)
uA(t)

⩾ RT (t)
uD(t)

.

Remark 1. This paper considers two distinct behavioral modes for the defender: D–A capturing and D–T rendezvous.

The success conditions for the defender in these two scenarios are, respectively,
RA(t)
uA(t)

⩾ RD(t)
uD(t)

and
RA(t)
uA(t)

⩾ RT (t)
uD(t)

, both

of which can be intuitively interpreted as the defender reaching its destination faster than the attacker. In contrast, the

failure condition is unified across both modes and is given by
RA(t)
uA(t)

<
RD(t)
uD(t)

and
RA(t)
uA(t)

<
RT (t)
uD(t)

, which implies that the

attacker reaches the target faster than the defender, regardless of what kind of strategies adopted.

Now, we are ready to give the proofs of Lemmas 1 and 2. Specifically, Lemmas 1 and 2 formulate the equilibrium

state-feedback controller (ESFC) and delineate the winning conditions for the defender in the D–A capturing scenario and

the D-T rendezvous scenario.

proof of Lemma 1

Proof. Rewrite the Hamiltonian (A1) as

H(x, ϕD, ϕA, ϕT ,α)

= −uT cosϕT − ωuD cosϕD + (uA cos θA − ωuA) cosϕA + uA sin θA sinϕA.
(A9)

It follows from (A4) that the optimal solutions ϕ∗T , ϕ∗A and ϕ∗D of are the ESFC. Solving (A9), one has

cosϕ∗T = 1, cosϕ∗D = sgn(ω), cosϕ∗A = cos θA−ω√
(cos θA−ω)2+sin θ2

A

,

sinϕ∗A = sin θA√
(cos θA−ω)2+sin θ2

A

(A10)

and uℓ, ℓ ∈ {D,A, T} satisfy

u∗T = sgn(cosϕ∗T )umax
T , u∗D = sgn(ω cosϕD)umax

D ,

u∗A = sgn((cos θA − ω) cosϕA + sin θA sinϕA)umax
A .

(A11)

It follows from cosϕ∗D in (A10) that ω must be positive to drive the defender D chasing the attacker A. The terminal

Hamiltonian satisfies

H(tf ) = 0.

Then, substituting (A10) and (A2), one has

H(x, ϕ∗D, ϕ
∗
A, ϕ

∗
T , tf ) = −uT (tf )− ωuD(tf ) + uA

√
(cos θA − ω)2 + sin2 θA,

which yields

(u2D − u2A)ω2 + 2(uTuD + u2A cos θA)ω + u2T − u2A = 0.



Sci China Inf Sci 3

It follows from the terminal constraint RD(tf ) = 0 that θA(tf ) = 0, then

ω =
−b+

√
b2−4ac
2a

(A12)

with

a := u2D − u2A, b := 2uTuD, c := u2T − u2A,

the condition

u2D + u2T > u2A, u
2
D − u2T − u2A >

u2Tu
2
D

u2A
(A13)

ensuring the existence of the solutions of (A12), and ω > 0.

Furthermore, substituting (A10) and (A12) into

ṘD(t) = −uD(t) cosϕD(t)− uA(t) cosϕA(t),

ṘT (t) = −uD(t) cosΥD(t)− uT (t) cosΥT (t),

ṘA(t) = uT (t) cosϕT (t)− uA cos(θA(t)− ϕA(t)),

(A14)

one has

ṘD = −uD(t)− uA(t) cosϕ∗A(t),

ṘA = uT (t)− uA(t) cos(θA(t)− ϕ∗A(t)).
(A15)

In other words, for scenario i), the winning and failing conditions for the defender can be expressed as in Lemma 1 according

to Definition 1, which completes the proof.

proof of Lemma 2

Proof. Rewrite the Hamiltonian (A6) as

H(x̂,ΥD, ϕA,ΥT , α̂)

= (ω̂uT + uT cos θT ) cosΥT − uT sin θT sinΥT

−ω̂uD cosΥD + uA cos θA cosϕA + uA sin θA sinϕA.

(A16)

It follows from (A4) that the optimal solutions ϕ∗T , ϕ∗A and ϕ∗D of are the ESFC. Solving (A9), one has

sinΥ∗
T = sin θT

(ω̂+cos θT )2+sin2 θT
, cosΥ∗

T = − ω̂+cos θT
(ω̂+cos θT )2+sin2 θT

,

cosΥ∗
D = sgn(ω̂), sinϕ∗A = sin θA, cosϕ

∗
A = cos θA

(A17)

and uℓ, ℓ ∈ {D,A, T} should satisfy

u∗T = −sgn((ω̂ + cos θT ) cosΥ∗
T − sin θT sinΥ∗

T )umax
T ,

u∗D = sgn(ω̂ cosΥ∗
D)umax

D , u∗A = umax
A .

(A18)

It follows from (A17) that sgn(ω̂) > 0 should be satisfied to drive the defender rendezvous with the target.

Then, substituting Υ∗
T = arccos

(
− ω̂+cos θT

(ω̂+cos θT )2+sin2 θT

)
, ϕ∗A = θA,Υ

∗
D = 0, and (A7) into (A16) with t = tf , one has

H(x̂,Υ∗
D, ϕ

∗
A,Υ

∗
T , α̂f )

= (ω̂uT + uT cos θT ) cosΥ∗
T − uT sin θT sinΥ∗

T − ω̂uD + uA

= uT
√

(ω̂ + cos θT )2 + sin2 θT − ω̂uD + uA,

which yields

ω̂ = −b̂+
√

b̂2−4ĉ
2â

, (A19)

with

â := u2T − u2D, b̂ := 2(u2T cos θT + 2uAuD), and ĉ := u2T − u2A.

It follows from the terminal constraint RT (tf ) = 0 that θT (tf ) = 0, which yields

b̂2 − 4âĉ = 4(3u2Au
2
D + 4uAuDu

2
T + u2Tu

2
D + u2Tu

2
A) ⩾ 0.

Then,

sgn(u2T − u2D)
√

(u2T cos θT + 2uAuD)2 − (u2T − u2D)(u2T − u2A)

> sgn(u2T − u2D)u2T cos θT + 2uAuD
(A20)

immediately leads to ω̂ > 0.

Furthermore, substituting (A17) and (A19) into (A14), one has

ṘT = −uD cosΥ∗
D − uT cosΥ∗

T ,

ṘA = −uT cos(Υ∗
T + θT )− uA.

(A21)

In other words, for scenario i), the winning and failing conditions for the defender can be expressed as in Lemma 2 according

to Definition 1, which completes the proof.
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Appendix B The proof of Theorem 1

Proof. The relationships between the angles are described as

ϕA = ∠xAD − ψA = arctan
(

yA−yD
xA−xD

)
− ψA,

ϕT = ψT − ∠xAT = ψT − arctan
(

yA−yT
xA−xT

)
,

ϕD = ∠ADx− ψD = arctan
(

yD−yA
xD−xA

)
− ψD,

ΥT = ∠xTD − ψT = arctan
(

yT−yD
xT−xD

)
− ψT ,

ΥD = ψD − (π − ∠xTD)

= ψD −
(
π − arctan

(
yT−yD
xT−xD

))
.

(B1)

It follows from

ẋℓ = uℓ sin(ψℓ),

ẏℓ = uℓ cos(ψℓ),

ψ̇ℓ = rℓ,

ṙℓ = kℓrrℓ + rℓI ,

u̇ℓ = kℓuuℓ + uℓI ,

(B2)

that

ψA =

∫
rAdt+ C (B3)

with constant C. Combining with conditions ψA = ∠xAD − ϕ∗A in (B1) and ϕ∗A in Lemmas 1 and 2, one has C = 0 and

rA = ḟA, which implies

ṙA = f̈A. (B4)

Then, substituting (B1) and (B4) into (B2), the lower-level TDD gaming regulator rAI for attacker can be obtained as

rAI = f̈A − kAr ḟA, r
T
I = f̈T − kTr ḟT , r

D
I = f̈D − kDr ḟD, (B5)

where

fA = arctan
(

yA−yD
xA−xD

)
− ϕ∗A,

fT =

arctan
(

yA−yT
xA−xT

)
, if σ(t) = 1,

arctan
(

yT−yD
xT−xD

)
−Υ∗

T , if σ(t) = 2,

fD =

arctan
(

yD−yA
xD−xA

)
, if σ(t) = 1,

π − arctan
(

yT−yD
xT−xD

)
, if σ(t) = 2.

The lower-level TDD game regulators rTI , rDI , for both the target and the defender, respectively, can be derived using the

(B1)–(B4) and are thus omitted here, thereby solving Problem 1.

Remark 2. To focus on theoretical clarity, this work neglects external disturbances in ASV dynamics. Nonetheless, the

proposed framework can be extended to handle bounded additive disturbances. Suppose the surge and yaw dynamics are

perturbed as:

u̇ℓ = ku,ℓuℓ + uℓI + du,ℓ(t), ṙℓ = kr,ℓrℓ + rℓI + dr,ℓ(t),

where du,ℓ(t), dr,ℓ(t) are bounded: |du,ℓ(t)| ⩽ δu,ℓ, |dr,ℓ(t)| ⩽ δr,ℓ. The upper-level Hamiltonian can be extended via:

Hrobust = min
uT ,uD

max
uA

max
d∈D

α⊤f(x, u, d),

to preserve Isaacs’ condition. For the lower-level, robust tracking (e.g., sliding mode control) compensates external distur-

bances:

rℓI = −krsℓ − d̂r,ℓ(t) + φ̈∗
ℓ , sℓ = ψ̇ℓ − φ̇∗

ℓ .

These modifications do not alter the core structure of the present equilibrium strategy.

Appendix C Numerical experiments

The ASV dynamics are described by [1]

ẋℓ = wℓ sin(ψℓ)− vℓ cos(ψℓ),

ẏℓ = wℓ cos(ψℓ) + vℓ sin(ψℓ),

ψ̇ℓ = rℓ,

ẇℓ = kℓ1wℓ + kℓ2vℓrℓ + kℓ3τ
ℓ
ω ,

v̇ℓ = kℓ4vℓ + kℓ5wℓrℓ,

ṙℓ = kℓ6rℓ + kℓ7τ
ℓ
r ,

(C1)
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Figure C1 The TDD game process under D-A capturing scenario (scenario i), the red circles denote the initial positions of the

three players.
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Figure C2 The temporal evolution of the tracking errors eℓ = ϕℓ − ϕ∗
ℓ between the upper-level reference signal and lower-level

output.



Sci China Inf Sci 6

were identified with the parameters: kℓ1 = −1.2235, kℓ2 = 0.95, kℓ3 = 0.00122, kℓ4 = −1.437, kℓ5 = −0.105, kℓ6 = −1.399, and

kℓ7 = 0.043. According to Lemmas 1 and 2, the velocities were picked as uD = 150, uA = 80, and uT = 50, ensuring that

the conditions outlined in Eqs. (A13) and (A20) are satisfied.

Appendix C.1 D-A capturing scenario

The initial states of the TDD gaming scenario were given as [xD, yD] = [10000cm, 8000cm], [xT , yT ] = [−10000cm, 0cm],

and [xA, yA] = [2000cm,−9000cm], resulting in distances of RD = 18788cm, RA = 15000cm, and RT = 21541cm, thus

fulfilling the condition specified in

RD

uD(t)+uA(t) cosϕ∗A(t)
⩽

RT

uD cosΥ∗
D+uT cosΥ∗

T

(C2)

According to Lemma 1, the defender D initially prioritizes capturing the attacker A. During period [0, tf ], the defender-win

condition
h1(t)
uD(t)

− h2(t)
uA(t)

⩽ 0 in Lemma 1 always hold. As shown in the TAD gaming process in Figure C1, D captures A

in 30 seconds. As shown in Figure C2, the tracking error eℓ = ϕℓ − ϕ∗ℓ between the upper and lower levels settles to zero

in 30 seconds, which verifies the effectiveness of Theorem 1.
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Figure C3 The TDD game process under D-T rendezvous and D-A capturing switching scenario, the red circles denote the initial

positions of the three players, and the switching behavior occurs at 98.1s.
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Figure C4 The temporal evolution of the tracking errors eℓ = ϕℓ−ϕ∗
ℓ (scenario i), eA = ϕA−ϕ∗

A, eD = ΥD−Υ∗
D, eT = ΥT −Υ∗

T

(scenario ii) between the upper-level reference signal and lower-level output.

Appendix C.2 D-T rendezvous and D-A capturing switch scenario

The initial states of the TDD gaming scenario were given as [xD, yD] = [4000cm, 8000cm], [xT , yT ] = [−5000cm,−3000cm],

and [xA, yA] = [0cm,−9000cm], resulting in distances of RD = 17029cm, RA = 13454cm, and RT = 13601cm, thus fulfills
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the condition specified in Eq. (C2) at the initial instant. However, the condition (C2) is violated at 98.1s. Based on

Lemma 1, the defender D initially prioritizes capturing the attacker A and rendezvous with the target T after 98.1s, and

the TAD gaming process is shown in Figure C3. During period [0s, 98.1s], the defender-win condition
h1(t)
uD(t)

− h2(t)
uA(t)

⩽ 0 in

Lemma 1 holds. During period [98.1s, tf ], the defender-win condition
ĥ1(t)
uD(t)

− ĥ2(t)
uA(t)

⩽ 0 in Lemma 2 also holds. As shown

in Figure C4, the tracking errors eℓ = ϕℓ − ϕ∗ℓ (scenario i), eA = ϕA − ϕ∗A, eD = ΥD − Υ∗
D, eT = ΥT − Υ∗

T (scenario ii)

between the upper and lower levels experiences oscillation in 98.1s and then settles to zero in 120 seconds, which verifies

the effectiveness of Theorem 1.

Appendix C.3 Comparation

The initial states of the TDD gaming scenario were given as [xD, yD] = [5000cm, 17000cm], [xT , yT ] = [0cm, 0cm], and

[xA, yA] = [0cm,−4500cm]. When the defender uses the proposed switching strategy (between Lemmas 1 and 2), it

successfully meets the target before the attacker reaches it (as shown in Figure C6). However, the pure pursuit strategy

fails to provide effective defense (as shown in Figure C5), which shows the efficacy of the proposed method.
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Figure C5 The TDD game process under the pure pursuit method proposed in [2].
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Figure C6 The TDD game process under the method proposed in this letter.
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