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Appendix A The proof of Lemmas 1 and 2

Some common analytical steps are outlined before the proofs of Lemmas 1 and 2. First, we address the scenario i)(D-A
capturing), considering the cost function J := —R4(ty) with the terminal constraint

p(z,tf) = Rp(ty) =0,

where © := [Ra,Rp|" € G is the TDD game state. For conciseness, the time variable ¢ is omitted in the subsequent
derivations. Define the Hamiltonian of the TDD game as

H(x,¢p,da,dr,0)=a&

(A1)
=aa(ur cos ¢ —uacos(0a — ¢a)) —ap(up cosdp +uacosda),
where a := [a4,ap]” denotes the adjoint vector for the TDD game, and their dynamics are given by
. _ OH __ . _ OH __
aA——m—O,aD——%—O.
The terminal adjoint values are obtained from the transversality condition as
Ié] °]
aT(ty) = % +twgl =[-10+w[01],
which implies
aa(t)=-1,ap(t) =w, (A2)
where w is an additional adjoint variable. It follows from the cost function
J:= —Ra(ty). (A3)

that the defender-target group (DTG) should strive to minimize the Hamiltonian (Al), whereas the attacker aims to
maximize it. Moreover, the control inputs ¢4, ¢p, ¢ in Hamiltonian (A1) are decoupled, which satisfies Isaacs’ condition,
ie.,
H(z, ¢p, ¢ 97, )
— 3 H * * *
Jmin max (x, 0%, 0%, 7, ) (A4)

max min H(x, ¢}, ¢%, ¢4, a), Ve € G.
ba ¢p,dT

Second, we address the scenario ii) (D-T rendezvous) and define the cost functional for the TDD game as
J = —Ra(ty). (AB)

The terminal constraint for the TDD game are

p(&,ty) = Rr(ty) =0,
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where & := [R4, Rr]" € G is the TDD game state under scenario ii). Define the Hamiltonian of the TDD game as

H(i:»TD’(bthTvd):&Ti (A6)
=—aa(urcos(p + Tr) +uacos(0a —pa)) — ar(upcosYp + upcosTr),
where & := [a4, ar]" denotes the adjoint vector for the TDD game, and their dynamics are given by

. . OH
O{Aszzo,aT:*WZO

The terminal adjoint values are obtained from the transversality condition as

a'(ty) = 8mf +w =[-10]+ &[0 1],
which implies
aplt)=—-1ar(t) =, (A7)

where @ is an additional adjoint variable. Analogously to (A4), it follows from the cost function (A5) that

H(&,Yp,¢pa, YT, &)

= Tgl}{} nzaxH(w ,Tp,04, YT, &) (A8)

= max min H €, T (17 T V&.
TH,T ( D,%A, 1T, )
Then, a necessary definition is given as

Definition 1. The Defender-failing and winning conditions are defined as
e Defender-failing: 241 « Ep(t) ,pq Balh) o Er(t)

up (t) up (t) up(t) up(t)°
e Defender-winning;: 5:((:)) > fDD((:)) o 15:((:)) > fgg’;

Remark 1. This paper considers two distinct behavioral modes for the defender: D—A capturing and DT rendezvous.
The success conditions for the defender in these two scenarios are, respectively, RA((I)) > fD(t) and RA ((:)) > f;gg, both
of which can be intuitively interpreted as the defender reaching its destination faster than tﬁne attacker In contrast, the

RA(t) < Ep@®) Ra(®) - RTJ which implies that the

failure condition is unified across both modes and is given by - o) and wa(®)
attacker reaches the target faster than the defender, regardless o? what kmé of strategies adopte
Now, we are ready to give the proofs of Lemmas 1 and 2. Specifically, Lemmas 1 and 2 formulate the equilibrium
state-feedback controller (ESFC) and delineate the winning conditions for the defender in the D—A capturing scenario and
the D-T rendezvous scenario.
proof of Lemma 1
Proof. Rewrite the Hamiltonian (A1) as

H(x,¢p,pa,dT, )

(A9)
= —urpcospr —wup cos pp + (uacosfy —wug)cosda +uasinhgsingy.
It follows from (A4) that the optimal solutions ¢%., ¢% and ¢7, of are the ESFC. Solving (A9), one has
* * * cosfp—w
cos ¢, = 1,cos ¢}, = sgn(w), cos ¢ = \/(COS FymEREy ,
: * sin 6 4 (AlO)
sin g% =
\/(COS 04 —w)2+sin Gi
and ug, £ € {D, A, T} satisfy
u’, = sgn(cos up®, up, = sgn(w cos up?x,
T gn( ¢>T) D gn( D) (A11)

u’ =sgn((cosfs — w)cospg + sinb 4 sin ¢ 4)up>>.

It follows from cos¢7, in (A10) that w must be positive to drive the defender D chasing the attacker A. The terminal
Hamiltonian satisfies

H(tf) =0.

Then, substituting (A10) and (A2), one has

H(x, ¢%, o%, oo ty) = —up(ty) — wup(ty) +uA\/(c059A —w)2 +sin? 6,4,

which yields

(% — u?)w? + 2(urup + v cosOa)w + uZ —u? = 0.
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It follows from the terminal constraint Rp(ty) = 0 that 84(ty) = 0, then

w = —btV/bi—dac (A12)
2a
with
a:= u2D — ui,b = 2urup,c:= u% — ui,
the condition
ud 4 uZ > ud uh —ud - > UZ;LD (A13)
A

ensuring the existence of the solutions of (A12), and w > 0.
Furthermore, substituting (A10) and (A12) into

Rp(t) = —up(t)cos¢pp(t) —ua(t)cospal(t),
Ry (t) = —up(t) cos T p(t) — up(t) cos T (t), (A14)
Ra(t) = up(t) cos ¢r(t) — ua cos(0a(t) — pa(t)),

one has
Rp=—up(t) —ua(t * (1),
tD up(t) —ua(t)cosd}(t) (A15)
Ra =ur(t) —ua(t)cos(0a(t) — ¢% (1))

In other words, for scenario i), the winning and failing conditions for the defender can be expressed as in Lemma 1 according

to Definition 1, which completes the proof.

proof of Lemma 2
Proof. Rewrite the Hamiltonian (A6) as

H(#,Yp,¢a, YT, &)
= (@ur + uyp cosOr) cos T — up sin O sin T (A16)
—wupcosTp +ugcosfacospa +uasinfysingy.
It follows from (A4) that the optimal solutions ¢%., ¢% and ¢, of are the ESFC. Solving (A9), one has
sin O @+cos O

(&+cos 07 )2+sinZ O (&+cos O7)2+sin2 64’ (A17)
cos 17, = sgn(w),sin ¢% = sinf 4, cos ¢’ = cosf4

. . *
sin Y7, = yco8 Y7 = —

and ug, ¢ € {D, A, T} should satisfy

= —sgn((@ + cos O) cos Y7, — sin O sin Y% )uP>>, (A18)
uy, = sgn(wcos Y )up>™, vl = uh>>.
It follows from (A17) that sgn(&) >

Then, substituting Y7, = arccos (

0 should be satisfied to drive the defender rendezvous with the target.
@W+cos O

—m) ;0% = 04,5 =0, and (A7) into (A16) with ¢ = ¢y, one has

H(é,TE,Q&;,T;,df)
= ((Z)’U,T +ur COSQT)COST} — up sin Op sinT} —wup +up

= up/(© + cos 01)2 + sin? Oy — Qup + u4,

which yields

o= —brVb2-de \2/52’—4 (A19)
with

2

a:= uT—u2D,b:: Q(U%COSOT-FQUAUD), and & := u2 2

T~ Wa-
It follows from the terminal constraint Ry (ty) = 0 that 07 (ty) = 0, which yields

b% — 4aé = 4(3uiud + duaupud + udud + uZu?) > 0.

Then,
sgn(u% — u%)\/(u% cosOp +2uaup)? — (u% — uQD)(u% — u%) (A20)
> sgn(u% — u%)u% cos O + 2uaup
immediately leads to @ > 0.
Furthermore, substituting (A17) and (A19) into (A14), one has
Ry = —up cos T} —urcos Y7, (A21)

Ra=—ur cos(Y% +60r) —ua.

In other words, for scenario i), the winning and failing conditions for the defender can be expressed as in Lemma 2 according
to Definition 1, which completes the proof.
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Appendix B The proof of Theorem 1

Proof. The relationships between the angles are described as

¢4 = LxAD —1p, = arctan <7yA7yD) — g,

TA—TpD
¢ =Y — Lz AT = )7 — arctan (%) ,
_ _ _ YD=YA ) _
¢p = LADzx — ¢p = arctan (ID*1A> Uvp, (B1)

Yr = ZxTD — o = arctan (%) — Y,
Tp =vp — (x— LaTD)
=p — (7r — arctan (z;—yD )) .

—zp

It follows from
&y = ugsin(¢y),
Yo = ugcos(vye),
Yo = 7, (B2)
o = kfrg+ré,
g = kfug +uf,
that
P = /'r‘Adt-i-C (B3)

with constant C. Combining with conditions 4 = ZzAD — ¢} in (B1) and ¢% in Lemmas 1 and 2, one has C' = 0 and
ra = fa, which implies )
Fa = fa. (B4)

Then, substituting (B1) and (B4) into (B2), the lower-level TDD gaming regulator r7 for attacker can be obtained as

i = fa— ki fa, vT = fr — kL fr, P = fo — kP fp, (B5)
where

fa = arctan (z;‘:zg) — &%,
arctan  £A=YT if o(t) =1

fr = TATEIT L] ’
arctan y;:zg - Yk, ifo(t) =2,
arctan | £2—YA if o(t)=1

fp = epra ) '
T — arctan (;’;:zg) ,  ifo(t)=2.

The lower-level TDD game regulators r?, 7‘ID, for both the target and the defender, respectively, can be derived using the
(B1)—(B4) and are thus omitted here, thereby solving Problem 1.

Remark 2. To focus on theoretical clarity, this work neglects external disturbances in ASV dynamics. Nonetheless, the
proposed framework can be extended to handle bounded additive disturbances. Suppose the surge and yaw dynamics are
perturbed as:

g = ko g + ugr +dyo(t), 7o =FEpere+7er +dre(t),

where dy, ¢(t), dy¢(t) are bounded: |dy, ¢(t)| < u e, |dre(t)] < 0y ¢. The upper-level Hamiltonian can be extended via:

H,opust = min maxmaxan(x,u,d),
ur,up ua deD

to preserve Isaacs’ condition. For the lower-level, robust tracking (e.g., sliding mode control) compensates external distur-
bances:
rer = —kpse —dro(t) + GF, S0 =0 — &

These modifications do not alter the core structure of the present equilibrium strategy.

Appendix C Numerical experiments

The ASV dynamics are described by [1]
&y = wpesin(yy) — ve cos(¢y),
Yo = wecos(te) + vesin(yy),
ot kit ©

wy = kjwye + ksvere + k57,

vy = k‘five + k‘ﬁ’were,

Ty = k‘gre + k:ng,
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Figure C1 The TDD game process under D-A capturing scenario (scenario i), the red circles denote the initial positions of the

three players.

Error between upper and lower-level controllers(®)

350

300

250 |

200

150

100

50

-100
0

— Defender
— — Target |4
-------- Attacker

10 20 30 40 50
Time(s)

Figure C2 The temporal evolution of the tracking errors e, = ¢y — ¢; between the upper-level reference signal and lower-level

output.
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were identified with the parameters: kf = —1.2235, k§ = 0.95, k§ = 0.00122, k§ = —1.437, kf = —0.105, k§ = —1.399, and
k$ = 0.043. According to Lemmas 1 and 2, the velocities were picked as up = 150, uq = 80, and upr = 50, ensuring that
the conditions outlined in Eqgs. (A13) and (A20) are satisfied.

Appendix C.1 D-A capturing scenario

The initial states of the TDD gaming scenario were given as [xp,yp] = [10000cm, 8000cm], [zr,yr]| = [-10000cm, Ocm],
and [za,ya] = [2000cm, —9000cm], resulting in distances of Rp = 18788cm, R4 = 15000cm, and Rpr = 21541cm, thus
fulfilling the condition specified in

RD < RT
up (t)+ua(t) cos ¢* (t) = up cos T3 +ur cos T,

(C2)

According to Lemma 1, the defender D initially prioritizes capturing the attacker A. During period [0, ], the defender-win
condition f;((?) — Zi((tt)) < 0 in Lemma 1 always hold. As shown in the TAD gaming process in Figure C1, D captures A
in 30 seconds. As shown in Figure C2, the tracking error e, = ¢y — ¢; between the upper and lower levels settles to zero

in 30 seconds, which verifies the effectiveness of Theorem 1.

TAD gaming process (scenario i and ii switching)
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Figure C3 The TDD game process under D-T rendezvous and D-A capturing switching scenario, the red circles denote the initial
positions of the three players, and the switching behavior occurs at 98.1s.
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Figure C4 The temporal evolution of the tracking errors ey = ¢y — ¢, (scenario i), ea = pa—¢4,ep =Yp—"Yph, er =L —-T7}
(scenario ii) between the upper-level reference signal and lower-level output.

Appendix C.2 D-T rendezvous and D-A capturing switch scenario

The initial states of the TDD gaming scenario were given as [zp,yp] = [4000cm, 8000cm], [z7, yr] = [-5000cm, —3000cm],
and [z4,ya] = [0cm, —9000cm], resulting in distances of Rp = 17029cm, R4 = 13454cm, and Ry = 13601cm, thus fulfills
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the condition specified in Eq. (C2) at the initial instant. However, the condition (C2) is violated at 98.1s. Based on
Lemma 1, the defender D initially prioritizes capturing the attacker A and rendezvous with the target T' after 98.1s, and
the TAD gaming process is shown in Figure C3. During period [0s, 98.1s], the defender-win condition hi(t) ha (1) < 0in

) ) up(t) ~ ual(t)
() ha(t) < 0 in Lemma 2 also holds. As shown
up(t) ua(t)

in Figure C4, the tracking errors e, = ¢y — ¢ (scenario i), ea = ¢4 — ¢%, ep = Tp — T}, e = T — T} (scenario ii)
between the upper and lower levels experiences oscillation in 98.1s and then settles to zero in 120 seconds, which verifies
the effectiveness of Theorem 1.

Lemma 1 holds. During period [98.1s,tf], the defender-win condition

Appendix C.3 Comparation

The initial states of the TDD gaming scenario were given as [zp,yp] = [5000cm, 17000cm], [z1,yr] = [0cm,0cm], and
[xa,ya] = [0cm,—4500cm]. When the defender uses the proposed switching strategy (between Lemmas 1 and 2), it
successfully meets the target before the attacker reaches it (as shown in Figure C6). However, the pure pursuit strategy
fails to provide effective defense (as shown in Figure C5), which shows the efficacy of the proposed method.

TAD gaming process
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Figure C5 The TDD game process under the pure pursuit method proposed in [2].
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Figure C6 The TDD game process under the method proposed in this letter.
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