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Cooperation is pivotal for social prosperity and population

survival, but it often comes at the expense of private inter-

ests, thereby generating an inherent conflict between collec-

tive and private interests. Several exogenous incentive mech-

anisms have been identified to mitigate such conflicts [1, 2].

Extending this line of research, recent studies have further

focused on optimal incentive mechanisms to minimize imple-

mentation costs incurred by the institution [3–5]. However,

the cost-based incentive mechanisms may expose the insti-

tution to financial problems from a long-term perspective.

In response to these financial challenges, this study pro-

poses an adaptive tax-subsidy incentive mechanism to main-

tain budget balance. Specifically, taxes collected from all

players form an incentive budget and a portion of this bud-

get is allocated as subsidies to reward cooperative behaviors.

To verify the effectiveness of such a mechanism in driving co-

operation, the prisoner’s dilemma is employed as a metaphor

to characterize the aforementioned inherent conflict. Mean-

while, the analysis is confined to unstructured populations

to eliminate the interference of network reciprocity.

Building on the above setup, this study formulates the

mean-field equation that approximates the aggregate be-

havior of the population. For this equation, the conditions

for the tax-subsidy incentive to achieve a target cooperative

state are first derived. Notably, the value of the target state

is contingent upon the objective, typically involving either

improving cooperation or enhancing social welfare, which is

assumed by default to promote cooperation in this study.

When these conditions are satisfied, the expression of the

optimal incentive policy, which minimizes implementation

costs during allocation, is further derived. Moreover, the

conditions to prevent the conflict between cooperation im-

provement and social welfare enhancement under optimal

policy are also identified. Finally, the validity of theoretical

results is corroborated through Monte Carlo simulations.

Problem formulation. Consider a well-mixed population

that consists of large but finite anonymous players, denoted

as N = {1, · · · , n}. Within this population, each player

repeatedly interacts with others. Departing from the best

response strategy, players revise their strategies based on a

revision protocol, as exemplified in [4]. In the interaction,

every player i ∈ N selects a strategy si ∈ {C,D} to engage

in the prisoner’s dilemma with others, where C,D respec-

tively represent cooperation and defection. A C-player (co-

operator) incurs a cost c to provide a benefit b (b > c > 0) to

its interaction opponent. In contrast, a D-player (defector)

saves the cost and provides nothing to the opponent. Then

the instantaneous payoff for s-strategists is

πs(x
n) =

{

xnn−1
n−1

b− c, s = C,
xnn
n−1

b, s = D,

where xn, referred to as the population state, denotes the

fraction of cooperators in the n-player population.

The revision protocol follows the pairwise comparison

rule, which aligns with the rule employed in [4]. To formal-

ize this evolutionary process explicitly, at each step τ ∈ N,

a focal player i is randomly selected for strategy revision.

Subsequently, another player j is uniformly chosen as an ex-

emplar. The probability that player i imitates the strategy

of player j under the population state xn is determined by

the Fermi function

W =
(

1 + e
−ω

(

πsj
(xn)−πsi

(xn)
)

)

−1
,

where ω > 0 denotes the intensity of selection, and si de-

notes the strategy of player i.

To facilitate cooperation, a controller referred to as the

institution is introduced. The institution implements a tax-

subsidy incentive mechanism. More concretely, this insti-

tution levies a capitation tax, which is a uniform tax im-

posed on every player. A fraction α of the collected taxes

is retained to cover implementation costs, with α ∈ [0, 1]

representing the inefficiency ratio. After deducting the

implementation costs, the remaining taxes are distributed

equally among cooperators, providing each with a subsidy

of (1 − α)u. Here, u ∈ [0, b] specifies the subsidy amount

in the absence of inefficiency, and it serves as the incentive

parameter.
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The stochastic process {xn(τ)}τ∈N with incentive policy

{un(τ)}τ∈N for the large population n ≫ 1 with weak se-

lection ω ≪ 1 could be approximated by the solution of a

mean field equation

ẋ =
1

2
x(1 − x)

[

(1− α)u− c
]

, (1)

after a re-scaled time t = τω/n, where u(t) =

un(⌊tn/ω⌋), t > 0 denotes the re-scaled incentive policy. Ap-

pendix A shows the detailed derivation of (1).

The magnitude of the implementation costs for the incen-

tive u can be indirectly reflected as 1
2
(ux)2. Accordingly, the

optimal tax-subsidy incentive problem for the target state

x1 can be equivalently formulated as

min
u∈U[t0,T ]

J(u) =

∫ T

t0

1

2
(ux)2dt

s. t.











ẋ = 1
2
x(1− x)

[

(1− α)u− c
]

,

x(t0) = x0,

x(T ) = x1,

(2)

where T = inf{t > 0| x(t) = x1} represents the stopping

time for hitting the target state x1, U[t0,T ] denotes the

set of feasible incentives on [t0, T ] with values in [0, b], and

x0 ∈ (0, 1) stands for the initial state.

After formulating the optimization problem, we state the

following results for the feasible conditions and the expres-

sions for optimal policies.

Theorem 1. For the optimization problem (2), no feasi-

ble policy exists if x1 > x0 and α ∈ [1 − c
b
, 1]. Otherwise,

the optimal tax-subsidy policy is given by

u∗ =

{

0, x1 6 x0,

min
{

2c
1−α

, b
}

, x1 > x0, α ∈ [0, 1− c
b
),

(3)

and its corresponding terminal time is T ∗ =

κ−1 ln
(

ζ · η−1
)

+ t0, where the auxiliary parameters are

defined as κ = 1
2
[(1− α) u∗ − c], ζ = 1−x0

x0
, and η = 1−x1

x1
.

Moreover, the optimal state dynamics is governed by

x∗(t) =
(

1 + ζe−κ(t−t0)
)

−1
, and the optimal value of the

cost function J∗ is

J∗ =
1

2
u∗2κ−1

[

ln(1 + η−1) + (1 + η−1)−1

− ln(1 + ζ−1)− (1 + ζ−1)−1
]

.

Remark 1. For x1 6 x0, the system (1) without incen-

tives tends to exhibit a decrease in cooperation, which im-

plies that it can spontaneously reach the target state x1. It

naturally follows that the optimal policy is u∗ = 0, which

signifies no incentives to be implemented.

Since the objective is to promote cooperation, we assume

x1 > x0 by default. The qualitative presentations for opti-

mal values u∗, T ∗, and J∗ are shown in Figure 1. For the

cases where b/c > 2 and α ∈ [0, 1 − 2c/b), the optimal pol-

icy u∗ = 2c
1−α

ensures that the payoffs for cooperators are

greater than those of defectors by c, which ultimately aligns

with the principle of equivalent exchange.

However, the improvement in cooperation does not neces-

sarily lead to an increase in social welfare under institutional

incentives, where the definition of social welfare is presented

in Appendix C. This assertion stems from the fact that in-

stitutional inefficiency reduces social welfare. The institu-

tion can ensure that improved cooperation translates into

increased welfare by adopting the following suitable ineffi-

ciency ratio α.

Figure 1 (Color online) The optimal values u∗, T∗, and

J∗ for various inefficiency ratio α and benefit-to-cost ratio

b/c. (a)–(c) present results for b/c > 2, while (d)–(f) dis-

play those for 1 < b/c 6 2. To emphasize the differences

between u∗ and ũ, the associated results for ũ (gray dashed

line) are added in panels (b) and (c). Parameters are fixed to

x0, x1 (> x0), b, c, t0 (= 0).

Corollary 1. An enhancement of the level of coopera-

tion under the optimal policy (3) does not impair the social

welfare if the inefficiency ratio α satisfies

{

α ∈
[

0, 1
2
− c

2b

]

, b/c ∈ (1, 3],

α ∈
[

0, b−c
b+3c

]

, b/c > 3.

Simulation. To verify the applicability of the optimal

policy (3) in large but finite population, we compare the

discrepancies between the following pairs of values.

• The aggregate behavior of the n-player population

E
(

xn(τω/n)
)

, τ ∈ N∩ [0, T ∗n/ω] versus the theoretical one

x∗(τω/n).

• The cumulative cost of the n-player population E(Jn)

versus the theoretical one J∗.

Monte Carlo simulations are executed to obtain

xn(τω/n), Jn for the n-player population. The simula-

tions are divided into a series of Monte Carlo steps, where

each step, ∆τ = 1, consists of two elementary operations:

interaction and strategy updating. The above operations

are iterated T ∗n/ω times before termination. To mitigate

stochastic fluctuations, 200 independent Monte Carlo trials

are conducted. The comparison analysis between theoretical

values and simulation ones is provided in Appendix D.
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