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Appendix A Derivations of Equation (1)

The revised payoff of the prisoner’s dilemma with the incentive parameter un is

π̃s(x
n, un) =

{
πs(xn)− xnun + (1− α)un, s = C,

πs(xn)− xnun, s = D,
(A1)

where πs(xn) is the payoff for s-strategists without incentive, and xn is the fraction of cooperators in the n-player population.

In (A1), the second term denotes the capitation tax, and the third term is the subsidy treated as 0 when this term is non-

existent.

The derivations, inspired by [1], are as follows. For the pairwise comparison update process, no more than one player

modifies their strategy in each step, which can be expressed as

Prob
(
|xn(τ + 1)− xn(τ)| > 1/n

∣∣xn(τ)
)
≡ 0, τ ∈ N.

Then the analysis reduces to the case where |xn(τ + 1)− xn(τ)| 6 1/n, which encompasses the following three scenarios.

The first scenario is that a defector is chosen to mimic one of the xn · n cooperators, resulting in xn increased by 1/n.

The probability for this situation with the incentive parameter un is denoted as

P+(xn, un) = (1− xn) ·
nxn

n− 1
·

1

1 + exp
(
− ω(π̃C(xn, un)− π̃D(xn, un))

) , (A2)

where the first term on the right-hand side measures the probability of choosing defectors, the subsequent term represents

the probability of choosing the cooperator as exemplar, and the terminal term denotes the probability of successful imitation.

The second scenario is that a cooperator is chosen to copy defectors when the fraction of cooperators is xn at step τ ,

which leads to the population state decreasing from xn to xn − 1/n. The probability relevant to this scenario with un is

P−(xn, un) = xn ·
n(1− xn)

n− 1
·

1

1 + exp
(
− ω(π̃D(xn, un)− π̃C(xn, un))

) . (A3)

The last scenario, in which no player changes strategies, has the probability expressed as

P 0(xn, un) = 1− P+(xn, un)− P−(xn, un). (A4)

Let F (xn, τ) denote the probability for the population state xn at step τ . Based on Chapman-Kolmogorov equation

in [2], F (xn, τ + 1) satisfies:

F (xn, τ + 1) =P+(xn − 1/n, un)F (xn − 1/n, τ) + P−(xn + 1/n, un)F (xn + 1/n, τ) + P 0(xn, un
)
F (x, τ)

=P+(xn − 1/n, un)F (xn − 1/n, τ) + P−(xn + 1/n, un)F (xn + 1/n, τ) + F (xn, τ)

− P+(xn, un)F (xn, τ)− P+(xn, un)F (xn, τ),

(A5)

where the second equality follows from (A4). Introducing the re-scaled time t = τω/n, the Taylor expansions of the proba-

bility ρ(x, t) = F (xn, τ) for the re-scaled process {x(t)}t∈R>0
with the incentive policy {u(t) : u(t) = un(btn/ωc)}t∈R>0

is

given by

ρ(x, t+ ∆t) = ρ(x, t) + ∂tρ(x, t)∆t+ o(∆t), (A6)
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where ∂t = ∂/∂t, and ∆t = ω/n.

Analogously, the Taylor expansions of P+
(
x − 1/n, u

)
ρ(x − 1/n, t), P−

(
x + 1/n, u

)
ρ(x + 1/n, t) in terms of x can be,

respectively, calculated as:

P+(x− 1/n, u)ρ(x− 1/n, t)

=P+(x, u)ρ(x, t)−
1

n
∂x
(
P+(x, u)ρ(x, t)

)
+

1

2n2
∂xx
(
P+(x, u)ρ(x, t)

)
+ o
(
n−2

)
,

(A7)

P−(x+ 1/n, u)ρ(x+ 1/nx, t)

=P−(x, u)ρ(x, t) +
1

n
∂x
(
P−(x, u)ρ(x, t)

)
+

1

2n2
∂xx
(
P−(x, u)ρ(x, t)

)
+ o
(
n−2

)
,

(A8)

where ∂x = ∂/∂x, and ∂xx = ∂2/∂x2. Eliminating ρ(x, t) in (A5) and substituting the expressions given by (A6), (A7),

and (A8), we get

∂tρ(x, t)∆t+ o(∆t) =−
1

n
∂xP

+ (x, u) ρ(x, t) +
1

n
∂xP

− (x, u) ρ(x, t)

+
1

2n2
∂xxP

+ (x, u) ρ(x, t) +
1

2n2
∂xxP

− (x, u) ρ(x, t) + o
(
n−2

)
.

(A9)

Let us now divide both sides of (A9) by ∆t. For n � 1, we first neglect higher-order terms in n−1 (= ∆t) and then

substitute (A2) and (A3) into (A9). On this basis, the Fokker-Planck equation for ρ(x, t) is derived as

∂tρ(x, t) =− ∂xµ(x, u)ρ(x, t) +
1

2
∂xxσ

2(x, u)ρ(x, t),

where

µ(x, u) =
1

ω

n

n− 1
x(1− x) tanh

(ω
2

(
π̃C(x, u)− π̃D(x, u)

))
(A10)

is the drift coefficient and

σ2(x, u) =
1

ωn
x(1− x)

is the diffusion coefficient. Using Itô calculus, the stochastic differential equation is given by

dx = µ(x, u)dt+ σ(x, u)dBt. (A11)

where Bt is the Wiener process. For the weak selection ω � 1, we get

tanh
(ω

2

(
π̃C(x, u)− π̃D(x, u)

))
=
ω

2

(
π̃C(x, u)− π̃D(x, u)

)
+ o(ω2). (A12)

By substituting (A12) into (A10), and subsequently neglecting higher-order terms in ω, the stochastic differential equation

(A11) reduces to

dx =
1

2

n

n− 1
x(1− x)

(
π̃C(x, u)− π̃D(x, u)

)
dt+

√
x(1− x)

ωn
dBt.

As n→∞, n
n−1

and
√
x(1−x)
n

converge to 1 and 0, respectively, leading to the deterministic equation

ẋ =
1

2
x(1− x)

(
π̃C(x, u)− π̃D(x, u)

)
. (A13)

Substituting (A1) into (A13) completes the derivation.

Appendix B Proof of Theorem 1

Proof. For the case where x1 = x0, leading the terminal time T = t0, which leads

J(u) = 0, u ∈ U,

where U = [0, b] is the admissible incentive parameter set. Obviously, u∗ = 0 is the optimal policy.

For the other cases, introduce the value function as

V (x, t) = inf
u[t,T ]∈U[t,T ]

∫ T

t

1

2
x2u2ds, t ∈ [t0, T ],
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where u[t,T ] is the incentive policy restricted to the interval [t, T ]. Based on the Hamilton-Jacobi-Bellman equation in [3],

the value function V (x, t) follows:

− ∂tV (x, t) = inf
u∈U

{1

2
x2u2 + ∂xV (x, t) ·

1

2
x(1− x)

[
(1− α)u− c

]}
. (B1)

Expressing the above equation in terms of the Hamiltonian function, it is straightforward to verify that (B1) is equivalent

to

−∂tV (x, t) = inf
u(t)∈U

H(x, u, ∂xV (t, x)),

where the Hamiltonian function is defined as

H(x, u, p) = L(x, u) + p · f(x, u)

=
1

2
x2u2 + p ·

1

2
x (1− x)

[
(1− α)u− c

]
,

with canonical equations
∂pH = ẋ,

∂xH = −ṗ,
(B2)

and a stationary condition

H
(
x(T ), u(T ), p(T )

)
= 0.

For the optimal state x∗(t) driven by optimal control u∗
[t0,t]

, we obtain the following inequality:

H
(
x∗(t), u∗(t), ∂xV (t, x∗(t))

)
6 H

(
x∗(t), u, ∂xV (t, x∗(t))

)
, u ∈ U,

which yields that the optimal policy u∗(t) is given by

u∗(t) =


ũ(t), ũ(t) ∈ [0, b],

0, ũ(t) < 0,

b, ũ(t) > b,

where
ũ = arg min

u
H(x, u, p)

=
{
u :

∂H(x, u, p)

∂u
= 0
}
,

(B3)

enables the convex function H
(
x(t), u, ∂xV (t, x(t))

)
to attain the minimum value.

By introducing (B2) and (B3), we obtain that for each t ∈ [t0, T ]

H
(
x(t), ũ, ∂xV (t, x(t))

)
= −

∫ T

t

(
∂xH · ẋ+ ∂uH

∣∣
u=ũ
· u̇+ ∂pH · ṗ

)
dt+H

(
x(T ), ũ, ∂xV (T, x(T ))

)
= H

(
x(T ), ũ, ∂xV (T, x(T ))

)
(B4)

= 0.

By combining (B3) and (B4), we derive

ũ(t) ∈
{

0,
2c

1− α
}
.

As a result, the optimal tax-subsidy incentive is characterized by u∗ ∈
{

0,min{ 2c
1−α , b}

}
. The optimal population state

trajectory x∗, governed by the dynamics f(x∗, u∗), can be formulated as:

x∗(t) = x0 +
1

2

∫ t

t0

x∗(1− x∗)
[
(1− α)u∗ − c

]
ds =⇒ x∗(t) =

(
1 + ζe−κ(t−t0)

)−1
, (B5)

where κ = 1
2

[(1− α)u∗ − c], and ζ = 1−x0
x0

are auxiliary parameters.

For the scenario where x1 < x0, the optimal state trajectory satisfies the following inequality:(
1 + ζe−κ(T−t0)

)−1
< x0, T > t0 =⇒ e−κ(T−t0) > 1, T > t0,

which results in the condition κ < 0. Consequently, the corresponding optimal policy for this scenario is u∗ = 0.
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Conversely, for the case x1 > x0, the optimal policy satisfies (1− α)u∗ − c > 0, which implies

u∗ = min{
2c

1− α
, b} (B6)

>
c

1− α
.

Notably, a feasible u∗ exists for x1 > x0 if and only if α ∈ [0, 1 − c
b
); otherwise, no feasible policy exists to drive the

population state toward the target state x1.

The terminal condition x∗(T ∗) = x1 enables the optimal terminal time T ∗ to be represented by

T ∗ = κ−1 ln
(
ζ · η−1

)
+ t0. (B7)

where η = 1−x1
x1

.

By substituting (B5) and (B7), the minimum value of the cost function J(u∗) is calculated as

J(u∗) =

∫ T∗

t0

1

2

(
x∗(t)u∗(t)

)2
dt

=
1

2
u∗2κ−1

(
ln(1 + η−1) +

1

1 + η−1
− ln(1 + ζ−1)−

1

1 + ζ−1

)
.

This concludes the proof. �

Appendix C Proof of Corollary 1

This corollary directly follows from the social welfare with the institutional incentive, defined as the average payoff of the

population with an additional deduction of the implementation costs [4]. The social welfare for the state x and the policy

u is defined as

π̃all(x, u) = xπ̃C(x, u) + (1− x)π̃D(x, u)− αxu
= x(b− c− 2αu),

where αux denotes the costs incurred by the institution. Then, the difference between the social welfare at the target state

x1 and that atthe initial state x0 under the optimal policy u∗ is given by

π̃all(x1, u
∗)− π̃all(x0, u∗) = (x1 − x0)(b− c− 2αu∗). (C1)

An increase in the level of cooperation (i.e. x1 > x0), does not impair the social welfare
(
i.e. π̃all(x1, u

∗) > π̃all(x0, u∗)
)

when the coefficient in (C1) is non-negative, which can be expressed as

b− c− 2αu∗ > 0 ⇐⇒ αu∗ 6
b− c

2
, (C2)

where u∗ = min
{

2c
1−α , b

}
is the optimal policy for the case of x1 > x0. Substituting (B6) into (C2), the condition is

equivalent to{
αb 6 b−c

2
, (b, c, α) ∈

{
(b, c, α) ∈ R3

>0

∣∣ ( b/c > 2, α ∈ [1− 2c/b, 1− c/b)
)

or
(
b/c ∈ (1, 2], α < 1− c/b

)}
,

α 2c
1−α 6

b−c
2
, (b, c, α) ∈

{
(b, c, α) ∈ R3

>0

∣∣ b/c > 2, α < 1− 2c/b
}
,

which can be classified into three cases.

For (b, c, α) ∈
{

(b, c, α) ∈ R3
>0

∣∣ b/c > 2, α ∈ [1− 2c/b, 1− c/b)
}

, the condition (C2) imposes the constraint range on the

inefficiency ratio α to be

α ∈
[
1− 2

c

b
, 1−

c

b

)
∩
[
1− 2

c

b
,

1

2
−

c

2b

]
=⇒ α ∈

[
1− 2

c

b
,

1

2
−

c

2b

]
,

where the existence of α requires b/c 6 3. Therefore, the feasible set for this case can be simplified to

{
(b, c, α) ∈ R3

+ : b/c ∈ (2, 3], α ∈
[
1− 2

c

b
,

1

2
−

c

2b

]}
.

Similarly, for (b, c, α) ∈
{

(b, c, α) ∈ R3
+

∣∣ b/c ∈ (1, 2], α < 1− c/b
}

, the condition (C2) is satisfied if the inefficiency ratio

α belongs to

α ∈
[
0, 1−

c

b

)
∩
[
0,

1

2
−

c

2b

]
=⇒ α ∈

[
0,

1

2
−

c

2b

]
,

where the existence of such α is obviously guaranteed.
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For the last case, the condition (C2) yields that

α ∈
[
0, 1− 2

c

b

)
∩
[
0,

b− c
b+ 3c

]
=⇒

{
α ∈

[
0, 1− 2 c

b

)
, b/c ∈ (2, 3],

α ∈
[
0, b−c
b+3c

]
, b/c > 3.

In summary, the condition under which increasing cooperation does not worsen social welfare is

{
(b, c, α) ∈ R3

>0

∣∣ (b/c ∈ (1, 3], α ∈
[
0,

1

2
−

c

2b

])
or
(
b/c > 3, α ∈

[
0,

b− c
b+ 3c

])}
,

and the proof is finished. �

Appendix D Simulation results

It is worth noting that the optimal policy u∗ is derived from the mean field equation, which is also a deterministic dynamical

model describing the aggregate behavior of the infinite population. The applicability of the optimal policy for finite but

large populations needs to be verified through Monte Carlo simulations.

For the process {xn(τ)}τ∈N of the n-player population under the incentive policy {un(τ)|un(τ) = u∗}τ∈N, we denote the

state xn(τ) after time scaling as xn(τω/n), by abuse of notation. The corresponding cumulative cost for the rescaled state

xn(τω/n) of the n-player population is denoted by Jn. This time rescaling allows us to compare both the state trajectory

xn(·) against x∗(·), and the cumulative cost Jn against J∗, where x∗(·), J∗ are theoretical quantities derived from the

mean field equation.

In the following, we will compare x∗(t), J∗ with simulation results E
(
xn(τω/n)

)
, E(Jn) for three distinct parameter

configurations (b, c, α). Specifically, these configurations correspondingly determine the different values of u∗. The random-

ness in these variables xn(·), Jn originates from stochastic fluctuations induced by the finite population size. By comparing

the results in Figure D1 and Figure D2, we find that the theoretical approximations can effectively predict the associated

simulated results across all three distinct parameter configurations. Against this backdrop, the explanations presented in

the subsequent analysis are fully applicable to each of the three configurations.

Figure D1 Dynamics of the population state along the time axis t (= ωτ/n). All results are derived through 200 independent

Monte Carlo simulations initialized with x0 until the Monte Carlo step τ reaches T∗n/ω. The red lines indicate E
(
xn(·)

)
by

averaging 200 trials. The shaded regions represent the fluctuation range of the simulation results. The blue lines depict theoretical

values x∗(·). Parameters are fixed to n = 104, ω = 0.01, t0 = 0, x0 = 0.1, x1 = 0.8. For panel (a), b = 8, c = 3, α = 0.2; for

panel (b), b = 8, c = 3, α = 0.5; and for panel (c) b = 8, c = 5, α = 0.2.

As shown in Figure D1, the policy u∗ drives the aggregate cooperative behavior {E
(
xn(τω/n)

)
}τ∈N∩[0,T∗n/ω] of the

n-player population to increase, which in turn verifies the feasibility of the tax-subsidy incentive with respect to promoting

cooperation. The range of random fluctuations reflected by the shaded region exhibits a continuous tendency to grow over

time, which stems from the existence of the Wiener process. More precisely, the variance property of the Wiener process

grows over time. Despite inherent fluctuations, the theoretical prediction x∗(t) and the simulated average E
(
xn(t)

)
exhibit a

high degree of consistency. Moreover, the aggregate behavior E
(
xn(t)

)
successfully approaches the target state x1 with high

precision at the terminal time T ∗. This result indirectly verifies the accuracy of T ∗, which is a theoretical quantity derived

from (B7). The close match between theoretical and simulated values not only validates the accuracy of the theoretical

prediction x∗(t) but also demonstrates the applicability of the optimal policy u∗ in large but finite populations. Figure D2

presents a comparison of the other core indicator for the same three parameter configurations. The combination of close
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alignment between the theoretical predictions J∗ and simulated values E(Jn) across all configurations, along with negligible

error bars, further illustrates the accuracy of the theoretical predictions.

Above all, these results collectively confirm that the theoretical values effectively predict the simulated outcomes in large

but finite populations under policy u∗, and this in turn further validates its effectiveness.

Figure D2 Costs of optimal policies u∗ derived from three parameter configurations (b, c, α). The blue bars represent costs J∗,

the red bars denote simulated averages E(Jn), and the error bars indicate the standard deviation across 200 trials. Parameters are

fixed to n = 104, ω = 0.01, t0 = 0, x0 = 0.1, x1 = 0.8.
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