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Throughout this paper, R denotes the set of real numbers. The Kronecker product is represented
by ®. For a symmetric matrix P € R™*", vec(P): the n?-dimensional vector formed by stacking the
columns of P on top of one another, S(P) = vec(P) = [p1.1,P1.2, - - yPlins- - - Py Pr2se - - Prm] | € R,
P > (>)0 and P < ()0 indicates that the symmetric matrix P is positive definite (semidefinite) and
negative definite (semidefinite), respectively. For A € R™*"  all the eigenvalues of A are denoted by
Ai(A),i=1,2,...,n, and the real part of each eigenvalue is denoted by Re(\;(4)), i =1,2,...,n.

Appendix A Proof of Theorem 1

Assumption 1. The pair (A, B) is controllable and Re(\;(A)) # p,i=1,...,n.
Lemma Al. [1] Regarding the operators £ and H defined in Definition 1, the following facts hold.

1. The matrices P* and K* satisfy H(K™*, P*) = 0, where P* = P*T > 0 can be obtained uniquely by solving the
ARE 0 = R(P) and K* can be determined as K* = IC(P*) accordingly.
2. The matrices Py and K satisfy H (K3, Py) = 0, where Py = P;*T > 0 can be obtained uniquely by solving the

s

ARE 0 =R, (P) and K} can be determined as K3 = K(Py) accordingly.
3. L(Ap, P) < (<)0 implies P > (>)0, if A, is Hurwitz.

Lemma A2. [2] 0 = R(P1) = R(P2) implies P* < P, < P> for P; = PiT with ¢ =1, 2.
Proof.

1) We prove by mathematical induction.

i) We have R(®o,0) < 0, R(¥o,0) < 0, 4 = 0,s = 0. First, the recursion (5) is identical to the Newton iteration,
which can be rewritten as ®g1(A, + BK(®0,0)) + (Ap + BK(®0,0)) T ®o,1 + K(Po,0) T RK(Po,0) + Q = 0. Therefore,
we can get @99 > Po,1 > P« based on [3]. The recursion (7) is also identical to the Newton iteration with the state
weight matrix zero, which can be rewritten as Wo,1(A, + K(¥0,0)) + (Ap + K(¥0,0)) " ¥o,1 + K(¥o,0) T RK(¥o,0) = 0.
Therefore, we can get o o > Wo,1 > PF based on [4]. Next, the recursion (6) is essentially a Chord iteration. It ensures
L(Ap+ BK(®0,0), Po,1 — Po,2) = R(Po,1) < 0. Considering the Hurwitz matrix A, + BK(®o,0) and Lemma A1, the above
fact implies ®g,0 > ®o,1 > Po,2. Therefore, ®g,0 — Po,2 > Po,0 — Po,1 > 0 and (Po,0 — Po,1)BR™IBT (Po,0 — Po,1) <
(<I>0,0 — @072)BR713T(‘P0,0 — @072) which implies that

B, 0BR™'BT (®0,1 — ®o,2) + (®o,1 — Po,2)BR™IB &g, > B9 oBR B &9 — ®92BR™'B ®q 2.
By adding ApT (®o,2 — Po,1) and (Po,2 — Po,1)A, to both sides, one has

R o(Po,2 — Po,1) = [Ap + BK(20,0)] ' (Po,2 — ®o,1) + (Po,2 — o,1)[Ap + BK(P0,0)]
> A;‘I)o,g + @072Ap — @072BR71BT¢072 +Q - A;q>071 — @0’1Ap + @0’1BR71BT(D0’1 -Q (Al)
=R(Po,2) — R(Po,1).-

From (6) and (A1), one has —R(®o,1) = R(Po,2) — R(Po,1), i.e., R(Po,2) < 0. Therefore, we observe ®g o > P* according
to Lemma A2. One can conclude that ®g,0 > ®o,1 = Po,2 = 1,0 > P*. Apparently, ¥o,0 > Vo1 > Vo2 = V1,0 > P;.

ii) Suppose R(®;) < 0, R(¥;) <0, and i > 0,s > 0. Let us show that R(®;41) <0, R(¥ij41) <0, Pj0=>Pj1 > Pi0 =
D10 = P and Uy > W1 > Wg o = Wei1,0 > PF. First, the recursion (5) is identical to the Newton iteration, which
can be rewritten as ®; 1(A, + BK(®i,0)) + (Ap + B/C(@i,o))-r{)i,l + /C(CI)Z',())TRIC(CDZ-VO) + @Q = 0. Therefore, we can get
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®; 0 > P;1 > Pi based on [3]. The recursion (7) is also identical to the Newton iteration with the state weight matrix as zero,
which can be rewritten as Ws,1 (A, +K(¥s,0))+(Ap+K(Ps,0)) T Ws 1 +K(Fs,0) T RK(F¥s,0) = 0. Therefore, we can get ¥, o >
W 1 > P; based on [4]. Next, the recursion (6) is essentially a Chord iteration. It ensures L(A, + BIC(®;,0), Pi,1 — Pi2) =
R(®;,1) < 0. Considering the Hurwitz matrix A, + BK(®;,0) and Lemma A1, the above fact implies ®; 0 > ®;1 > ®; 2.
Therefore, D;0—Di20>P;0—P;1 > 0and (CDZ',O — ‘I)Z‘yl)BRleT (@i,o — cbi,l) < (‘I)i,() — ‘I)i,g)BRilBT (CDZ',O — @Z‘VQ) which
implies that ®; ) BR™'BT (®;1 — ®;,2) + (®;,1 — @i 2)BR™'BT®; o > ®; 0BR !BT®; g — ®;2BR"'BT &, 5. By adding

A;(‘:I)i’g — ®;1) and (P;,2 — P;,1)A, to both sides, one has

;o (Pi2 — ®ij1) = [Ap + BEK(®40)] T (®i,2 — @i1) + (®i2 — Pi,1)[Ap + BK(Pi0)]
> ApT(I’i,z + @04, — P 2BRT'BT ;0 +Q — A;‘Pm —®; 1A, +®;1BRT'BT®,1 - Q (A2
=R(Pi,2) — R(P4,1).
From (6) and (A2), one has —R(®;,1) = R(Pi,2) — R(Pi,1), i.e., R(Pi,2) < 0. Therefore, we observe ®; 2 > P* according
to Lemma A2. One can conclude that ®; o > ®;1 > ®; 2 = ®;41,0 > P*. Apparently, V50 > W1 > Vg2 =Vsi110 > P
2) The fact ®; > ®;41 > P* implies lim; 00 i = Poo and lim; oo K(P;) = Koo; See [3]. On the other hand, the

recursion (5), (7) indicates that R(®~) = 0. Recalling the fact that the ARE has a unique solution P*, one can conclude
that ®oo = P* and K(Poo) = K*. similarly, lims00 ¥s = U = Py and lims— oo K(Vs) = Ko, = K.

Appendix B The connection between Theorem 1 and the Chebyshev iteration

The Chebyshev Iteration algorithm has a periodically updated Fréchet derivative, which is composed of a Newton step and
a Chord step. Recursion (5) and (7) are identical to the Newton iteration. To reduce computational burden, the Newton
iteration for solving ARE does not update the Fréchet derivative after the first iteration, which is essentially the Chord
iteration, as shown in recursion(6) and (8).

Appendix C The symbol definitions for (14) and (15)
0;(t,t+1T) As(t,t +T)
©i(t,t + kT) = : . Du(t,t+kT) = : ,
0;(t + (k— )T, t + kT) Fs(t + (kK — V)T, t + kT)

where 0;(t,t +T) = [0z (t,t +T),0;(t,t +T), 3], Ys(t,t +T) = [0 (t,t + T),vs(t, t + T), 5¢],

7 = [([2i10)% [ihlzgla, - [ [zg)n, [5)2lzs]n, (25]2)2, - lxglelzsln, - l2g]lzs]ns [glnlegle, o (agln)?]

0o (t,t+T) = E [e P Dzt + T) — e Pt7;(1)], 0:(t, t+T) = 202u(t, t+T) - (Inxm @ R) — 2020 (¢, t+T) - (Inxn K (®;) T R),
Ys(t,t +T) = 2050 (t,t +T) - (Inxm @ R) — 2042 (t,t + T) - (Inxn @ K(¥s)T R), 6 = e PE+T) _ g=pt

Oua(t,t +T) = B [[/TT e PTa;(r) @ a;(r)dr |, Ooult,t+T) = B [ [T e ra;(7) @ aj(r)dr].

wi1(tt+T) Ys1(t,t+T)
@it t+kT) = : . st t+ET) = : ,
win(t+ (k= 1Tt +kT) Ps1(t+ (k— DT, t + kT)

where ; 1(t,t +T) = —0ga(t,t + T) - vec|Q + K(®;) T RK(®;) |, ¥s,1(t,t +T) = =0z (t,t + T) - vec|K(¥s) T RK(¥s) |-

B(®s,1) B(¥s,1)
&1 = |vec(K(®;1))| €ER", (o1 = |vec(K(¥s,1))| €RT,
91 92

where 7 = n? 4+ mn 41, 6; = %Tr(DDTcpi,l), 0y = %TY(DDT\IJSJ).

Appendix D The symbol definitions for (18) and (19)
@i,?(t’t'i'T) ws,Q(tyt‘i‘T)
@ia(t,t+kT) = : v sa(t,t+kT) = : ,

wi2(t+ (k= 1Tt +kT) st + (k— DTt + kT)
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where @; 2 (t,t +T) = —0z4(t,t + T) - vec [Q + IC(fbi)TRIC(@i)} 4+ Oz2(t,t +T) - vec [D(IC(@Z'), ’C(‘I’i,l))} ,

Ys2(t,t +T) = =0z (t,t +T) - vec {IC(\I/S)TRIC(\IJS)] 4+ Ozz(t,t +T) - vec [D(IC(\IJS), IC(\IISJ))] .

B(®;2) B(¥s,2)
Ei2 = |vec(K(®;2))| €ER", (s2= |vec(K(¥s2))| €R",
93 94

where r = n? + mn 41, 03 = L Tr(DDT &, 5), 04 = 1 Tr(DDT ¥, 5).

1 1
P P

Appendix E Proof of Theorem 2

Proof. In each iteration, starting from the stabilizing feedback gain Kj, the iterative gains K(®;,1) and K;i1 can be
uniquely determined, provided that the solutions ®; 2, ¥ 2 to the Lyapunov equation (5)(6) exist. In addition, the matrices
®; 1, Ws,1 satisfy the LS equations (14)(15). The matrices ®; 2, Vs 2 satisfy the LS equations (18)(19), and ©; and I's have
the full column rank. By Theorem 1, the convergence of Algorithm 1 can be ensured.

Appendix F The construction purpose of Algorithm 1

Based on online data, effective cognition is carried out on mean-field models in dynamic uncertain environments. In scenarios
where system matrices are unknown, intelligent online decisions are made relying on real-time data to solve AREs. Then,
actions are formulated based on intelligent decisions, which are aligned with the so-called intelligent ”cognition-decision-
action” framework.

Appendix G Simulation example

In this section, we perform a numerical simulation for a large-population LQG games with 100 agents to validate the
effectiveness of the proposed algorithm.

5 3 0 0.1 0.1
A= , B=||, D= ,
10 12 1 0.1 0.1

where A1 (A) = 2 and A\2(A) = 15, and there exists a matrix K = — [35 25] such that A+ BK is Hurwitz. w; is a standard
two-dimensional Brownian motion.
10 0

0 10
assumption 1 is verifiable. The following analytical solution is obtained by solving ARE:

In this simulation, the parameters of the cost function (2) are given by Q = |: , R =1, and p = 0.01. Clearly,

, 232.2887 59.3007 ,

lim ®; = . lim K(®) = [59.3007 34.5712],
i—o00 50.3007 34.5712| i—eo

, 207.1523 56.5775 ,

lim . — . lim k(W) = [56.5775 33.9803] .
500 56.5775 33.9803|  s—o

The simulation results for the PI model-free algorithm are sketched in Figs. G1-G2. As can be seen from Figs. G1-G2,
the convergence is achieved at the fourth iteration. The simulation results for the Chebyshev iterative model-free algorithm
are sketched in Figs. G3-G4 where one can observe that the convergence is achieved at the second iteration.
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