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Throughout this paper, R denotes the set of real numbers. The Kronecker product is represented
by ⊗. For a symmetric matrix P ∈ Rn×n, vec(P ): the n2-dimensional vector formed by stacking the

columns of P on top of one another, β(P ) = vec(P ) = [p1,1, p1,2,. . . , p1,n,. . . , pn,1, pn,2,. . . , pn,n]
⊤ ∈ Rn2

.
P > (⩾)0 and P < (⩽)0 indicates that the symmetric matrix P is positive definite (semidefinite) and
negative definite (semidefinite), respectively. For A ∈ Rn×n, all the eigenvalues of A are denoted by
λi(A), i = 1, 2, . . . , n, and the real part of each eigenvalue is denoted by Re(λi(A)), i = 1, 2, . . . , n.

Appendix A Proof of Theorem 1

Assumption 1. The pair (A,B) is controllable and Re(λi(A)) ̸= ρ, i = 1, . . . , n.

Lemma A1. [1] Regarding the operators L and H defined in Definition 1, the following facts hold.

1. The matrices P ∗ and K∗ satisfy H(K∗, P ∗) = 0, where P ∗ = P ∗⊤ > 0 can be obtained uniquely by solving the

ARE 0 = R(P ) and K∗ can be determined as K∗ = K(P ∗) accordingly.

2. The matrices P ∗
s and K∗

s satisfy H∫ (K
∗
s , P

∗
s ) = 0, where P ∗

s = Ps
∗⊤ > 0 can be obtained uniquely by solving the

ARE 0 = R∫ (P ) and K∗
s can be determined as K∗

s = K(P ∗
s ) accordingly.

3. L(Aρ, P ) ⩽ (<)0 implies P ⩾ (>)0, if Aρ is Hurwitz.

Lemma A2. [2] 0 ⩾ R(P1) ⩾ R(P2) implies P ∗ ⩽ P1 ⩽ P2 for Pi = PT
i with i = 1, 2.

Proof.

1) We prove by mathematical induction.

i) We have R(Φ0,0) ⩽ 0, R(Ψ0,0) ⩽ 0, i = 0, s = 0. First, the recursion (5) is identical to the Newton iteration,

which can be rewritten as Φ0,1(Aρ + BK(Φ0,0)) + (Aρ + BK(Φ0,0))⊤Φ0,1 + K(Φ0,0)⊤RK(Φ0,0) + Q = 0. Therefore,

we can get Φ0,0 ⩾ Φ0,1 ⩾ P∗ based on [3]. The recursion (7) is also identical to the Newton iteration with the state

weight matrix zero, which can be rewritten as Ψ0,1(Aρ + K(Ψ0,0)) + (Aρ + K(Ψ0,0))⊤Ψ0,1 + K(Ψ0,0)⊤RK(Ψ0,0) = 0.

Therefore, we can get Ψ0,0 ⩾ Ψ0,1 ⩾ P ∗
s based on [4]. Next, the recursion (6) is essentially a Chord iteration. It ensures

L(Aρ +BK(Φ0,0),Φ0,1 −Φ0,2) = R(Φ0,1) ⩽ 0. Considering the Hurwitz matrix Aρ +BK(Φ0,0) and Lemma A1, the above

fact implies Φ0,0 ⩾ Φ0,1 ⩾ Φ0,2. Therefore, Φ0,0 − Φ0,2 ⩾ Φ0,0 − Φ0,1 ⩾ 0 and (Φ0,0 − Φ0,1)BR−1B⊤(Φ0,0 − Φ0,1) ⩽
(Φ0,0 − Φ0,2)BR−1B⊤(Φ0,0 − Φ0,2) which implies that

Φ0,0BR
−1B⊤(Φ0,1 − Φ0,2) + (Φ0,1 − Φ0,2)BR

−1B⊤Φ0,0 ⩾ Φ0,0BR
−1B⊤Φ0,0 − Φ0,2BR

−1B⊤Φ0,2.

By adding A⊤
ρ (Φ0,2 − Φ0,1) and (Φ0,2 − Φ0,1)Aρ to both sides, one has

R′
Φ0,0

(Φ0,2 − Φ0,1) = [Aρ +BK(Φ0,0)]
⊤(Φ0,2 − Φ0,1) + (Φ0,2 − Φ0,1)[Aρ +BK(Φ0,0)]

⩾ A⊤
ρ Φ0,2 +Φ0,2Aρ − Φ0,2BR

−1B⊤Φ0,2 +Q−A⊤
ρ Φ0,1 − Φ0,1Aρ +Φ0,1BR

−1B⊤Φ0,1 −Q

= R(Φ0,2)−R(Φ0,1).

(A1)

From (6) and (A1), one has −R(Φ0,1) ⩾ R(Φ0,2)−R(Φ0,1), i.e., R(Φ0,2) ⩽ 0. Therefore, we observe Φ0,2 ⩾ P ∗ according

to Lemma A2. One can conclude that Φ0,0 ⩾ Φ0,1 ⩾ Φ0,2 = Φ1,0 ⩾ P ∗. Apparently, Ψ0,0 ⩾ Ψ0,1 ⩾ Ψ0,2 = Ψ1,0 ⩾ P ∗
s .

ii) Suppose R(Φi) ⩽ 0, R(Ψi) ⩽ 0, and i > 0, s > 0. Let us show that R(Φi+1) ⩽ 0, R(Ψi+1) ⩽ 0, Φi,0 ⩾ Φi,1 ⩾ Φi,2 =

Φi+1,0 ⩾ P ∗ and Ψs,0 ⩾ Ψs,1 ⩾ Ψs,2 = Ψs+1,0 ⩾ P ∗
s . First, the recursion (5) is identical to the Newton iteration, which

can be rewritten as Φi,1(Aρ + BK(Φi,0)) + (Aρ + BK(Φi,0))
⊤Φi,1 + K(Φi,0)

⊤RK(Φi,0) + Q = 0. Therefore, we can get
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Φi,0 ⩾ Φi,1 ⩾ P∗ based on [3]. The recursion (7) is also identical to the Newton iteration with the state weight matrix as zero,

which can be rewritten as Ψs,1(Aρ+K(Ψs,0))+(Aρ+K(Ψs,0))⊤Ψs,1+K(Ψs,0)⊤RK(Ψs,0) = 0. Therefore, we can get Ψs,0 ⩾
Ψs,1 ⩾ P ∗

s based on [4]. Next, the recursion (6) is essentially a Chord iteration. It ensures L(Aρ +BK(Φi,0),Φi,1 −Φi,2) =

R(Φi,1) ⩽ 0. Considering the Hurwitz matrix Aρ + BK(Φi,0) and Lemma A1, the above fact implies Φi,0 ⩾ Φi,1 ⩾ Φi,2.

Therefore, Φi,0−Φi,2 ⩾ Φi,0−Φi,1 ⩾ 0 and (Φi,0−Φi,1)BR
−1B⊤(Φi,0−Φi,1) ⩽ (Φi,0−Φi,2)BR

−1B⊤(Φi,0−Φi,2) which

implies that Φi,0BR
−1B⊤(Φi,1 − Φi,2) + (Φi,1 − Φi,2)BR

−1B⊤Φi,0 ⩾ Φi,0BR
−1B⊤Φi,0 − Φi,2BR

−1B⊤Φi,2. By adding

A⊤
ρ (Φi,2 − Φi,1) and (Φi,2 − Φi,1)Aρ to both sides, one has

R′
Φi,0

(Φi,2 − Φi,1) = [Aρ +BK(Φi,0)]
⊤(Φi,2 − Φi,1) + (Φi,2 − Φi,1)[Aρ +BK(Φi,0)]

⩾ A⊤
ρ Φi,2 +Φi,2Aρ − Φi,2BR

−1B⊤Φi,2 +Q−A⊤
ρ Φi,1 − Φi,1Aρ +Φi,1BR

−1B⊤Φi,1 −Q

= R(Φi,2)−R(Φi,1).

(A2)

From (6) and (A2), one has −R(Φi,1) ⩾ R(Φi,2)−R(Φi,1), i.e., R(Φi,2) ⩽ 0. Therefore, we observe Φi,2 ⩾ P ∗ according

to Lemma A2. One can conclude that Φi,0 ⩾ Φi,1 ⩾ Φi,2 = Φi+1,0 ⩾ P ∗. Apparently, Ψs,0 ⩾ Ψs,1 ⩾ Ψs,2 = Ψs+1,0 ⩾ P ∗
s .

2) The fact Φi ⩾ Φi+1 ⩾ P ∗ implies limi→∞ Φi = Φ∞ and limi→∞ K(Φi) = K∞; See [3]. On the other hand, the

recursion (5), (7) indicates that R(Φ∞) = 0. Recalling the fact that the ARE has a unique solution P ∗, one can conclude

that Φ∞ = P ∗ and K(Φ∞) = K∗. similarly, lims→∞ Ψs = Ψs∞ = P ∗
s and lims→∞ K(Ψs) = Ks∞ = K∗

s .

Appendix B The connection between Theorem 1 and the Chebyshev iteration

The Chebyshev Iteration algorithm has a periodically updated Fréchet derivative, which is composed of a Newton step and

a Chord step. Recursion (5) and (7) are identical to the Newton iteration. To reduce computational burden, the Newton

iteration for solving ARE does not update the Fréchet derivative after the first iteration, which is essentially the Chord

iteration, as shown in recursion(6) and (8).

Appendix C The symbol definitions for (14) and (15)

Θi(t, t+ kT ) =


θ̄i(t, t+ T )

...

θ̄i(t+ (k − 1)T, t+ kT )

 , Γs(t, t+ kT ) =


γ̄s(t, t+ T )

...

γ̄s(t+ (k − 1)T, t+ kT )

 ,
where θ̄i(t, t+ T ) = [θx(t, t+ T ), θi(t, t+ T ), δt], γ̄s(t, t+ T ) = [θx(t, t+ T ), γs(t, t+ T ), δt],

x̄j =
[
([xj ]1)

2, [xj ]1[xj ]2, . . . , [xj ]1[xj ]n, [xj ]2[xj ]1, ([xj ]2)
2, . . . , [xj ]2[xj ]n, . . . , [xj ]n[xj ]1, [xj ]n[xj ]2, . . . , ([xj ]n)

2
]⊤

,

θx(t, t+T ) = E
[
e−ρ(t+T )x̄j(t+ T )− e−ρtx̄j(t)

]
, θi(t, t+T ) = 2θxu(t, t+T )·(In×m⊗R)−2θxx(t, t+T )·(In×n⊗K(Φi)

⊤R),

γs(t, t+ T ) = 2θxu(t, t+ T ) · (In×m ⊗R)− 2θxx(t, t+ T ) · (In×n ⊗K(Ψs)⊤R), δt = e−ρ(t+T ) − e−ρt,

θxx(t, t+ T ) = E
[∫ t+T

t e−ρτxj(τ)⊗ xj(τ)dτ
]
, θxu(t, t+ T ) = E

[∫ t+T
t e−ρτxj(τ)⊗ αj(τ)dτ

]
.

φ̄i,1(t, t+ kT ) =


φi,1(t, t+ T )

...

φi,1(t+ (k − 1)T, t+ kT )

 , ψ̄s,1(t, t+ kT ) =


ψs,1(t, t+ T )

...

ψs,1(t+ (k − 1)T, t+ kT )

 ,

where φi,1(t, t+ T ) = −θxx(t, t+ T ) · vec
[
Q+K(Φi)

⊤RK(Φi)

]
, ψs,1(t, t+ T ) = −θxx(t, t+ T ) · vec

[
K(Ψs)⊤RK(Ψs)

]
.

ξi,1 =


β(Φi,1)

vec(K(Φi,1))

θ1

 ∈ Rr, ζs,1 =


β(Ψs,1)

vec(K(Ψs,1))

θ2

 ∈ Rr,

where r = n2 +mn+ 1, θ1 = 1
ρ
Tr(DD⊤Φi,1), θ2 = 1

ρ
Tr(DD⊤Ψs,1).

Appendix D The symbol definitions for (18) and (19)

φ̄i,2(t, t+ kT ) =


φi,2(t, t+ T )

...

φi,2(t+ (k − 1)T, t+ kT )

 , ψ̄s,2(t, t+ kT ) =


ψs,2(t, t+ T )

...

ψs,2(t+ (k − 1)T, t+ kT )

 ,
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where φi,2(t, t+ T ) = −θxx(t, t+ T ) · vec
[
Q+K(Φi)

⊤RK(Φi)

]
+ θxx(t, t+ T ) · vec

[
D
(
K(Φi),K(Φi,1)

)]
,

ψs,2(t, t+ T ) = −θxx(t, t+ T ) · vec
[
K(Ψs)⊤RK(Ψs)

]
+ θxx(t, t+ T ) · vec

[
D
(
K(Ψs),K(Ψs,1)

)]
.

ξi,2 =


β(Φi,2)

vec(K(Φi,2))

θ3

 ∈ Rr, ζs,2 =


β(Ψs,2)

vec(K(Ψs,2))

θ4

 ∈ Rr,

where r = n2 +mn+ 1, θ3 = 1
ρ
Tr(DD⊤Φi,2), θ4 = 1

ρ
Tr(DD⊤Ψs,2).

Appendix E Proof of Theorem 2

Proof. In each iteration, starting from the stabilizing feedback gain Ki, the iterative gains K(Φi,1) and Ki+1 can be

uniquely determined, provided that the solutions Φi,2, Ψs,2 to the Lyapunov equation (5)(6) exist. In addition, the matrices

Φi,1, Ψs,1 satisfy the LS equations (14)(15). The matrices Φi,2, Ψs,2 satisfy the LS equations (18)(19), and Θi and Γs have

the full column rank. By Theorem 1, the convergence of Algorithm 1 can be ensured.

Appendix F The construction purpose of Algorithm 1

Based on online data, effective cognition is carried out on mean-field models in dynamic uncertain environments. In scenarios

where system matrices are unknown, intelligent online decisions are made relying on real-time data to solve AREs. Then,

actions are formulated based on intelligent decisions, which are aligned with the so-called intelligent ”cognition-decision-

action” framework.

Appendix G Simulation example

In this section, we perform a numerical simulation for a large-population LQG games with 100 agents to validate the

effectiveness of the proposed algorithm.

A =

[
5 3

10 12

]
, B =

[
0

1

]
, D =

[
0.1 0.1

0.1 0.1

]
,

where λ1(A) = 2 and λ2(A) = 15, and there exists a matrix K = −
[
35 25

]
such that A+BK is Hurwitz. wj is a standard

two-dimensional Brownian motion.

In this simulation, the parameters of the cost function (2) are given by Q =

[
10 0

0 10

]
, R = 1, and ρ = 0.01. Clearly,

assumption 1 is verifiable. The following analytical solution is obtained by solving ARE:

lim
i→∞

Φi =

[
232.2887 59.3007

59.3007 34.5712

]
, lim

i→∞
K(Φi) =

[
59.3007 34.5712

]
,

lim
s→∞

Ψs =

[
207.1523 56.5775

56.5775 33.9803

]
, lim

s→∞
K(Ψs) =

[
56.5775 33.9803

]
.

The simulation results for the PI model-free algorithm are sketched in Figs. G1-G2. As can be seen from Figs. G1-G2,

the convergence is achieved at the fourth iteration. The simulation results for the Chebyshev iterative model-free algorithm

are sketched in Figs. G3-G4 where one can observe that the convergence is achieved at the second iteration.



Sci China Inf Sci 4

0 1 2 3 4 5 6 7

Number of iterations

-5

0

5

10

15

20

25

30

||K
1

k
-K

*
||

Figure G1 Evolution of Parameter of K∗ in PI.
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Figure G2 Evolution of Parameter of K∗
s in PI.
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Figure G3 Evolution of Parameter of K∗ in Chebyshev iter-

ation.
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Figure G4 Evolution of Parameter of K∗
s in Chebyshev iter-

ation.
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