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Abstract This paper presents a zero-sum game-based control strategy for the confrontation between the pursuit multi-
quadrotor unmanned aerial vehicle (QUAV) and an evaded QUAV via reinforcement learning (RL) and sliding mode control
(SMC) techniques. The SMC mechanism drives the attitude states of the multi-QUAV system asymptotically to the pre-
defined trajectory. The RL provides a feasible solution to the Hamilton-Jacobi-Isaacs (HJI) equation to obtain the Nash
equilibrium in zero-sum games, while conventional analytical methods often struggle with the complexity. Then, under the
identifier-double actor-critic (I-DAC) architecture, RL is executed to optimize the consensus control in zero-sum games. The
proposed method presents two distinct advantages: (i) adaptive identifier strategies in RL design can compensate for un-
known dynamics, and the update rules for actor and critic in RL are significantly simplified; (ii) by integrating RL with the
sliding mode mechanism, the Nash equilibrium point can be successfully obtained for both multi-QUAV and single-QUAV
zero-sum games when solving the HJI equation. The proposed method will provide an effective game control strategy for
unmanned confrontation systems.
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1 Introduction

At present, the application scenarios for multi-quadrotor unmanned aerial vehicle (multi-QUAV) systems
have become increasingly extensive, including military and civilian sectors [1-3]. The control of multi-
QUAV systems has emerged as a focal area, particularly in complex adversarial settings [4-6]. Game
theory has proven highly effective in strategic choice, where each player is influenced by both its own
actions and those of the other participants [7,8]. A zero-sum game is a strategic interaction in which
each player chooses a strategy to maximize its own gain, resulting in losses of an equal total amount for
the other players [9,10]. The control of multi-UAV confrontation systems is fundamentally viewed as a
game-theoretic problem, characterized by its zero-sum nature. This property dictates that the system
state converges towards an optimal solution. In this solution, the increase in benefit for one party is
directly proportional to the decrease in benefit for the other. This characteristic of direct proportionality
between the benefits of opposing parties makes zero-sum games ideal for describing the confrontational
relationships between pursuers and evaders in multi-QUAV systems.

In the pursuer-evader problem, the pursuer tries to minimize the attitude error between the pursuer
and the evader, while the evader tries to maximize the error. The optimal solution to this kind of game
theory problem can be obtained by finding its Nash equilibrium or saddle point [11]. The saddle point
of a zero-sum game is the optimal intersection of the return functions of both parties in the game, which
corresponds to the optimal strategy of each party, making it impossible for either party to obtain a
better result by unilaterally changing the strategy [12]. In a nonlinear dynamic environment, saddle
points typically require solving the Hamilton-Jacobi-Isaacs (HJI) equation, and it can ensure that both
parties achieve the optimal game equilibrium in a complex nonlinear environment [13]. The HJT equation
is due to its capability to precisely delineate the dynamic optimization process within a zero-sum game
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between two parties, through the introduction of the Hamiltonian function, integration of states, control
inputs, and respective cost functions [14].

Although the HJT equation provides a theoretical basis for the optimal control, it is often very difficult to
solve analytically in practical applications, especially for highly complex systems and uncertainties [15]. In
addition, in some traditional optimal control methods, the reinforcement learning (RL) algorithm is very
complex and requires known dynamics about the system, making it difficult to expand and apply [16-19].
To overcome this challenge, this study improves the identifier-actor-critic (IAC) framework [20] in RL
S0 as to generate the novel I-DAC arithmetic through the continuous iterative training of the adaptive
neural network. In the context of the game, both participants can derive suitable actions based on
the evaluative feedback provided by the system response. So as to continuously improve the system
performance. Within this framework, the identifier serves to recognize environmental or state conditions,
transmitting this information to the critic for evaluation. The critic, in turn, assesses the situation and
provides feedback to the actor, who takes actions or makes decisions based on the critic assessments.
This cycle guides the intelligent system in determining the next appropriate action under the current
environment [21].

In the multi-QUAYV attitude system, the robustness of the control strategy is very important since the
system has strong nonlinearity and uncertainty [22]. To achieve stable and robust performance in an un-
certain environment, sliding mode control (SMC) presents an effective solution [23]. The SMC guarantees
system stability after entering the sliding mode plane by designing a suitable sliding mode surface, and
can effectively control multiple state variables and constrain the system state on a predetermined sliding
mode hyperplane [24,25]. In the game control of pursuer and evader, SMC can effectively constrain error
dynamics [26]. Combined RL with SMC, a stable and robust control strategy can be realized for the
uncertain environment [27].

In this paper, the zero-sum game control of multi-QUAV confrontation via RL and SMC is studied.
The primary contributions of this study are summarized as follows.

(i) An optimization approach based on zero-sum game theory is proposed for the attitude game control
problem involving multi-QUAV and single-QUAYV. In this zero-sum framework, the losses incurred by one
party are exactly equal to the gains of the other one. Consequently, the optimal strategies obtained by
solving the HJI equations constitute a saddle point equilibrium for the game.

(ii) The I-DAC scheme is presented to solve the HJI equation to obtain the saddle-point solution.
Unlike conventional zero-sum game methods, this approach significantly simplifies the optimal game
control algorithm by deriving the reinforcement learning weight update laws via a simple positive function
that equivalently represents the HJI equation.

(iii) The proposed zero-sum game-based control method eliminates the need for persistent excitation
conditions and complete dynamic knowledge, as the adaptive identifier in the I-DAC framework can effec-
tively compensate for unknown dynamic functions, and the RL algorithm can effectively train adaptive
parameters to eliminate continuous excitation conditions. Finally, the stability is conducted by using the
Lyapunov theory.

2 Preliminaries

2.1 Attitude system description

For an interconnected multi-QUAV system, the attitude dynamic of each QUAV [28] can be expressed
using the Newton-Euler formulation, which is

.. T _ z G .

wk(t) lka +¢k( ) ( ) (IZkI_kIwk> B kalwk(t)u k= 1,2,...,”,
Y

Ty Ty
i l . Ipp — 1 Goxl -
Bult) = T2+ du(ente) () - S0, o

where ¢ (t), ¥ (t) and i (t) are the roll, pitch and yaw angles, constrained in ¢ € [-5, 5], ¥ € [-F, §]
and 0y, € [—7, 7|; Ty, Tyr and Tk are control torques; Ik, Iyx and I, are rotational inertia on the x,y, 2
coordinate; Ggr, Gyr and Goj are drag coefficients, and [ is the length from mass center to rotor center.
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For designing the optimized game control, the pursuer attitude dynamic model in (1), is reformulated
as

xpk(t) = ka(t), ka(t) = Uzk =+ Fk(xpka I’Uk)v k = 15 27 sy (2)

where i (t) = [0k (t), Vi (t), 0 (t)]" € R® and wur(t) = [dr (), vr (), 00(t)]" € R, wop = [Iron/ Lok,
lka/ka,lTek/Izk]T. € R3, Fi(@p, wok) = [We(0)0k()Tyk — Lek)/Tor — Gorldr(t)/ Lok, o (t)0k () Lk
—Lok) /Ly — Gl () Tyi, () 0r () (Lo — Iyr) /Lo — Goil O () /Li] " € R3.

The dynamic mode of the evader attitude is

ips (t) = Tys (t); ivs (t) = us + Fs (xps; Ivs)y (3)

where 2,6 (t) = [ps(t), s (1), 05 (1)]T € R3 | s (t) = [hs(t), 15 (1), 65(1)]T € R3, and uy = [lugs/ Le, luygs /1y,
lugs/I.)T € R3, F, (2ps, Tvs) is a continuous nonlinear function.

Definition 1. The multi-QUAV system (1) is said to achieve the second-order pursuer-evader consensus,
if tlggo lzpk(t) — zps(t)|| = 0 and tlggo |xok () — zys(t)|| = 0 hold.

Control objective. For the multi-QUAV system (1), the goal is to determine the optimal consensus
control, such that (i) the optimal control algorithm based on zero-sum differential game can keep the
dynamic equilibrium of the controller at saddle point; (ii) all control signals are guaranteed to be semi-
globally uniformly ultimately bounded (SGUUB), ensuring stability and performance within a specified
bound; (iii) the consensus described by the pursuer-evader in Definition 1 can be obtained.

2.2 Algebraic graph theory

The communication network within the multi-QUAV system is characterized through an undirected
topological graph, denoted as G = (II, ¥, A), where A = [a;;] € R™*", 1T = {IIy,,,...,II,}, ¥ C II x IT
represent the adjacency matrix, the node set, and edge set, respectively. If there exists a pathway for
information communication from node II; to node II;, then node II; is considered to be a neighbor of
node II;, where the node II; is the behalf of the ith agent of multi-QUAV attitude system. Furthermore,
the element a;; of the adjacency matrix A is set to 1; otherwise a;; = 0 and also a; = 0. The G is said
to be an undirected graph if and only if the adjacency matrix A is symmetrical, i.e., a;; = a;;.The set of
neighbors of II;, is denoted by A; = {j|(IL;,II;) € T}.
The Laplacian matrix L of the graph GG can be constructed as

L=V A, (4)

where ¥ = diag{®¥y, ¥, -+, ¥, } and ¥; = 37, az;, ¥ = diag{>"}_ a1;,..., > an;}.

Assumption 1. The communication topology of the multi-QUAV system in (1) is represented by an
undirected connected graph.

Lemma 1 ([29]). If the communication topology graph G is an undirected and connected graph, then
the Laplacian matrix L defined in (4) is classified as an irreducible matrix.

Lemma 2 ([29]). When the Laplacian matrix L possesses the property of being irreducible, then
L =L+ B, where B = diag{by,...,b,,} and by +ba + -+ + by, > 0, is a positive definite matrix.

2.3 Neural network (NN)

In [30], it is proved that a nonlinear and continuous function K(¢) : R” — R™, which is delineated on a
compact domain €2, the formulation for the NN approximation can be articulated as

K() =w™(s), (5)

where w € RP*™ is the weight matrix associated with the NN, and p denotes the count of neurons
comprising the network, and 7(s) = [r1(s),...,7p(c)]T represents the basis function vector, on which
7i(s) = exp[—(s — o) (s — 0x)/2p3], o € R™ and pj, € R are the centroid of the receptive field and the
breadth of the Gaussian function, respectively.

In (5), an optimal weight matrix is denoted as w* = argmin,, cpyxm { Sup.cq | K(s) — wT7(s)||}, then
the function K () is redefined as
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K() = w* (<) + (<), (6)

where the approximation error () satisfies ||e(¢)|| < v, and v > 0 is a constant. Furthermore, by
selecting an appropriate number of NN neurons, the error (¢) can be sufficiently small.

3 Main results

3.1 Zero-sum game formulation description

Define the tracking errors of pursuer-evader as
Cok () = @pie(t) — Tps(t), Con(t) = Tor(t) — xys(t), k=1,2,...,n. (7)
Based on (2) and (3), dynamic of the tracking error can be formulated as
épk(t) = Gui (1), évk(t) = Uz — Us + Fr(@p, Tor) — Fs(Tps, Tos), E=1,2,...,n. (8)

To achieve pursuer-evader consensus for the multi-QUAYV system, a sliding mode variable, incorporating
attitude errors, is introduced as

sk(Cr) = BGr(t) + CGur(t), k=1,2,...,n, 9)

where 3 > 0 denotes a constant to be designed later, and (x(t) = | ok Gl T € R¥3. Tt is worth noting
that, utilizing the sliding mode mechanism [23], the attitude tracking error is limited to a small zero
neighborhood when sy () — 0.

Drawing upon (8), the dynamics of the sliding mode can be derived as

S = ﬁc'uk(ﬂ + Uz + Fk(xpkv'r'uk) — Us — Fs(IpSa Ivs)
= F (p, Typs) — FJ (Xps, Tus) + Uzl —us, k=1,2,....n, (10)

where F} (Tpr, Tvs) = Brok(t) + Fi(Tpr, Tok) and Fy (Tps, Tus) = BTys(t) + Fs(Tps, Tus)-
Define the term that incorporates neighboring states for consensus as

E]i(t) = Z Qi ((ﬂxpk + ka) - (ﬂxpz + xvz)) + bksk(t)v k= 1725 s Ny (11)
1€EANE

where Aj is the neighbor tag set associated with agent k.
By adding and subtracting the term Sz,s + 2,5, the consensus term (11) can be reformulated as

Ei(t) = ani(s(t) — si(t)) + bpse(t), k=1,2,....n. (12)
1€ENE

Taking derivative of E}(t) and combining (10) can obtain

Eli(t) =Mk (FR (Tph Tvs) = FJ (Tps, Tos) + tzk — us) — Z aisi(t), (13)
P1€ENE

where )\, = ZiGAk agi + bg.
3.2 Zero-sum differential game-based optimal controller design

Define the performance index as

J(0) = /000 (s, uz, us)dv, (14)

where c(s,u.,us) = s*(t) (IN/TIN/ ® I3)s(t) € R is the cost function, s(t) = [sT,...,s ]T € R3" u, =
Wh,...,ul T €R* and L = L+ B.
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Definition 2 (Admissible control [19]). A control input pair {u., us} is called as admissible with respect
o (14) on the set Q, if u, and us are continuous to stabilizes (13) on € with u.(0) = 0 and u4(0) = 0,
and make (14) finite.

By considering that F4(t) = (f) ® I3)s(t), and Ey(t) = [E5T(t),..., EsT(t)]T € R®", the cost function
¢(s,uz, ug) can be re-described as

c(s,uz,us) = sT(t) (I:JTI:J @ I3)s(t) + ul (P, @ I)u. — ul Pous
= EJ (t)Es(t) + ul (P1 ® I)u. — u} Pyus, (15)

S

where Py, P, € R3*3, Then, the distributed performance function is formulated as

J(0) = /000 c(Es, uz, ug)dv. (16)

Utilizing (16), the definition of the distributed performance function is

J(Es) = /too c¢(Eg,uz,ug)dv. (17)

Letting uf € R3" and u} € R3 denote the optimal pursuer and evader controls and considering the
zero-sum game theory, the optimal distributed performance index J*(Ey) € R is expressed as

J*(Es :/ c¢(Esyul,ul)dv = min  max {/ c(Es,uy, ug du}, 18
(Es) . ( ) u€(Q) us€9(Q) [ Sy ( ) (18)
where 2 € R" is a given compact set.

Definition 3 ([9]). The control policy denoted by (u},u}) is the saddle point equilibrium solution in a
zero-sum game, if

J(Es,ul,us) < J(Eg,ul,ul) < J(Es,uz,ul). (19)
Taking the time derivative of (18) along (13), the distributed HJI equation is

~ dJ*(Ey
HJ(Esvuzvuzv‘]*) :C(Esvuzvu:) + T(t)
dJk ES)

=||Eq(t H2+Zusz1uzk—u P2u5+z BT

(Ak (F]: (xpkv x'uk) + Uz — Usg

- Fs*(xpsu xvs)) - Z A (F‘i*(xpiu ‘T’Ui) - F;(xpsaxvs) + Uz — us)) = 07
1EAE

k=1,2,....n, (20)

where J(Ef) is k-th optimal distributed performance index.

As previously indicated, the optimal game pursuer-evader controls u} and u} must exclusively fulfill
the optimal performance function given in (18). Consequently, the optimal solution to the distributed
HJI equation presented in (20). Subsequently, the determination of u} can be achieved as

OH ;(ES vk, u*, J*)
ou’

—~ dJi(E})
dB;

1

k=1

where ny = > 7 by, and >, d‘]géfi) = dJ;}SﬁSS).
k E]
Due to the dynamic coupling game relationship in the game, to avoid ambiguity in the local derivation
of the global index, the local optimization problem of a single pursuer is extracted from (20), u.,, can be

calculated from the partial differential equation as

dJ5 (B

H (B ul,, ul, J5) =cm (B2 ul,, ul) + n

zm7 ER m zm7
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s dJ;,(Ey,) .
:HEm(t)H2 + urzrmpl’uZm - ursrp2us + W)\M(Fm(xpmvxvm)
X dJz (
_Fs (xpsvxvs)'i_uzm_us) EST Z U«sz =1,2,...,n, (22)
1€NA,

where m is the index of a single pursuer, which is equivalent to the global index k£ and can traverse all
pursuers.
By transforming (22), the optimal strategy u?,, of any agent among the multiple pursuers is

OHJ (E3, ur,, u*, J%) 1, dJE(ES)
ma—ml_EmE ST M =) = —= P A, —— =12,...,n. 23
8’(1;1” :>uzm 2 1 dEysn , M Dab) ,n ( )
Substituting (23) into (22), the HJI equation is derived as
- "dgr(Es) o dJr 1 - Es) __,dJr(ES)
HJ ES * J* —|ES (t 2__)\2 m m) p 1 - 1 m m
m( m7uzm7us7 m) || m( )” 4 mm:1 dEfnT 1 dEs 4 Z: dEsT 2 dEfn
dJy( .
+ Z dEST < (Fm(xpm; Ivm) - F xp57x'us Z Amg
P€ENA,

1 dJF (E?
X <Fi*(xpi,xvi) — F} (xps, Tus) — §AiP1_1%>>,m =1,2,...,n. (24)

3.3 Reinforcement learning (RL) design

To derive the game optimized consensus control for multi-QUAV attitude system (1), an RL is designed

and the term d‘]é*"E(SET’S”) of (24) is decomposed as
dJ, (E;) 2P1 s 2P, s P s

where JO (B2, ) = —2pum Py ES (1) — 2F55 + Ay Py B poe — pr( ) — FF (s, Tus)s

dEsT
T = [€, Th] 5 and f, > 0 is the design constant.

Substituting (25) into (23) yields
Ul = —pmES (1) — FSF — —J% (B2, Z), m=1,2,...,n, (26)

which is infeasible due to the uncertainty JO,(E%,, Z,,) and F3*. Therefore, NNs are harnessed to approx-
imate the terms within the confines of the compact set §2, which is

Py = (I)?;rngfm(jm) + Efm(i"m)v (27)
JO(ES Tp) = O 6, (B T) + e (B2 B), m=1,2,...,n, (28)

where ®%, € R?*? and @}, € R%*? are the ideal NN weight vectors, &m (Zn) € R and &, (E,, Tm) €
R? are the basis function vectors. The bounded errors associated with the NN approximations are
represented by €, € R? and e, € R, ice., |lefm| < 0fm and |len| < om.

dJz (ES) 2P1 . 2Py (.7 ) _ P/ ; -
SR = om0+ 5 (®7nrm @) term(En) ) +5 (0 (B ) 4o (i, ) ) (29)
* s * = * 1 s
ULy = — pm B, () — (I)frvrngfm(xm) —efm(Tm) — —(I) Tgm( Tm) — gsm(Em’ Tm),
m=1,2,...,n. (30)

Since %, and @7, constitute two unknown constant vectors, the feasibility of the optimal control in
(29) remains compromised. To find a feasible and optimized control strategy, RL is implemented through
the adaptive identifier, actor, and critic NNs.
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Figure 1 (Color online) Identifier-critic-actor RL framework for evader u},,.
For the purpose of approximating the uncertain dynamic function, the identifier NN is constructed as
ES (Bm) = O, ()& fm (Zm), m=1,2,...,n, (31)

where ® f,,, (t) € R7*3 represents the estimation of the ideal weight for the identifier NN, % (Z,,) denotes
the output produced by the adaptive identifier. The weight P #m(t) of the adaptive identifier NN is trained
according to the following update law as

Dyt = 6 (Erm @m) ESE (1) = 0pm® (), m = 1,2, im, (2)
where ¢y, 0pm € R are the positive constants.
The formulation for the critic NN, tasked with approximating the unknown term % is
dip(By) 2P . 2Pig P .

where ‘i)gm (t) € R%2*3 refers to the adaptive weight of the critic NN. The description of the updating
rule for ®.,,(t) is outlined as

B (t) = — Kem (gm(E:‘n, T )EL (B2, Tm) + amIq)ci)m(t), m=1,2,....n, (34)

where r¢m > 0 represents the critic gain constant, I, denotes the ga X g2 identity matrix and o, > 0 is
the design constant.
The actor NN of the optimized consensus control 4}, is

1.
_q)g‘m(t)gm(E’rsnv‘fm)a m = 1,2,...,TL, (35)

Wy = —pim By (1) = 5 (08 m (Tm) = 5

where @y, (t) € R%*3 is the actor adaptive NN weight. The updating rule for @, (t) is

X N N 1 o

(I)am (t) = — Kam (gm (E',Snu jm)&;{; (Efna i'm)"i_o—mlq) ((I)am (t) _(I)cm (t)) - §§m(E7Sna jm)ggz(Efna :z'm)(l)am (t)u
m=1,2,...,n, (36)

where Kgy, > 0 denotes the actor gain constant. Figure 1 depicts the identifier-critic-actor RL algorithm
framework of the pursuer u},,.
Design the NN about evader u} as

dJ3(E) P .p s = Py .
T = E‘IDS (B2, Ts) + EES(ES,IES), (37)
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u = =g (BTG (B 2 e 7)), (38)

where ®F € R%*3 is the ideal NN weight vectors, {(E%,7s) € R% is the basis function vectors,
es(ES,Z5) < o5 represents the bounded errors associated with the NN approximations, and zy =
[Zpss Tos] T

The critic NN of dJ*(E3)/dE? is

AIS(BS) _Prgore g -
dEsT - s (I)cs 58 (Es7x8)7 (39)

where @:S € R%*3 denotes the adaptive weight of the critic NN, the updating rule for @cs(t) is

Deo(t) = — ties (£, T)ET (B3, 7) + 0,1 ) b 1), (40)

where k.5, 05 € R represent two positive design constants that comprise the gain matrix.
The actor NN of u} is

’&: - %(i):fs(t)gs(ESa 1_75)5 (41)

where 4} denotes the escape optimal strategy, the actor adaptive NN weight B os (t) € RB3*3 is

(i)as(t) = — Ras (fs(E557 js)g.;r(Essa :z's) + USIn) ((i)as(t) - (i)cs(t))a (42)
where k45 > 0 is the actor gain constant.
3.4 Main theorem and proof

Lemma 3 ([31]). If the positive continuous function P(t) € R satisfies P(t) < —wP(t) + Z, where
w > 0 and = > 0 are constants, then, the following inequality holds true

P(t) < e P(0) + = (1—e™™). (43)

Theorem 1. For the multi-QUAV attitude system described in (1) with the bounded initial values, if
the design parameters fulfill the subsequent conditions

1

Kam > —5 Kem > Kam, Kes > Kas >0, 0 >0, 05 >0, (44)

m > T
Hm =
where )\,Lm»n represents the minimum eigenvalue of L = L+ B, the designed I-DAC RL algorithm (34)-(39)
for optimized consensus control in the zero-sum game can achieve

(i) All control signals are SGUUB;

(ii) The tracking errors (pm;(t), m =1,2,...,n, j = 1,2,...,1, can converge to a small neighborhood
of zero.

Proof. The Lyapunov function is constructed as

+ % zn: T {7, (1) ®am () | + % > T {BLOde()} + % zn: {oL0dus},  (45)

where s(t) = [sT,53,.... 52|, @y (t) = Py (t) — ©5,, Pem(t) = P (t) — T, Pam (1) = Pam (t) — @5,
i)cs(t) = écs(t) — o5, i (t) = B s (t)—®;, I is the 3 x 3 identity matrix and ® is the Kronecker product.

Drawing upon Lemma 2, it can infer that matrix L = L+ B € R"*" is positive definite. Furthermore,
according to Fs(t) = (L ® I5)s(t), the subsequent equation can be derived

sT)(L @ I3)s(t) = EX () (L @ I3) " Eq(t) = sT(¢)(L @ I3)(L @ I3) (L ® I3)s(t). (46)
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Utilizing (46) can obtain

)\L T IE)? < sT(O(L ® I3)s(t) < A%nmwn% (47)

where )\,Lmu and )\,an are the maximum and minimum values of the matrix L.

Taking the time derivative of V' (¢) along (10), (32), (34), (36), (40) and (42) and the substitution of
(30), (38) and (41) results in

V(t) = Z EvsnT(t) (@?%g.fm(jm) + Efm(*i'm) - p,mEfn(t) - (i)}‘m(t)gfm(jm)

PERER ) R S CICRESEA TR}
=1
3 mcmTr{ () (6 (B 2R (B2 ) + 0 o8} = 3BT (06,52,

n

- ZTr{(i)aTm(t)(“am(gm( mo m)gm( mo _m)+Umlq)((i)am(t)_(i)cm(t)))
+ 5 (B2 R B ) on(0)| e T BE0) (652, 2068 (B2, ) 4 0.0, ) )

o T B0 (6 (B2, 2T (B2, 2) + 0.1 (08 ~ 800 . (15)
By applying Young’s inequality, the subsequent inequalities can be inferred as
S B OB (6 (5 ) < 1B O + T 8T, (06 (5, *m>§£<E;,fm><i>m<t>},
SR 06 (B2 7)< 1B W7 + (T L6 E 2l (B 2080 (). (49)

Inserting inequality (49) into (48) has

<y (3-1m) 1201 + 1B P - Z i T 8,080 | + 3 z e pmm)]
5 o D0, 0) (60 (B )R B ) + oy ()

- mz T 80,0 (a6 (B2 ) B ) 7 1y) (Bu0) -~ B 0))

3 5 5 R B om0}~ TR0 (6B )€ (B2 7)o,

)| o T B0 (682,268 (B2, 2) + 0.,) (80sl0) — 800 . (50)

Moreover, the following equations hold

an T B2, (0 (6 (B 2R ) + 00, ) B ()} < 52T 85, 0) (60 (B )8 55,0
40Ty o (1)} + 52Tl 8, 0 (60 (B )68 (B ) + Ty Ben(0)

K:G.S

el 85,0) (652,260 (B2 n)

nasTr{fi)Es(t) (B2 )€l (B2, 8) + 0,1 ) D (t)}
+0ul,)bu) | + 2 80 (6. (B2, 20T (B2, 0 + 0.1, ) e . 61)
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By the weight error relationships éfm,cm@m,a&cs (t) = éfm,cm@m,a&cs( t)— D% m.m.s,s» combined with
(51), Eq. (50) can be redescribed as

V<Y (2o ) im0+ im0 - 3 Z2ndeg, 000
= > e o T 1) (B PR B ) + o) B8
- mZ_ ek LA CHEAENEACIE AR AL MOY
- SR e B 0) (62, 2T (B2, 22) + 00, ) 1)}
- S BT, 0) (652, 2)€T (B2, 2.) + 0.1 ) EL(0) | + =0), (52)

where E(t) = Y20 ) Tr{ 252 @37 @, + 552 ®1 1 (6 (B, T ) (B Tn) + 0l g) O, + 595 € (B, Tn)
X & (BS, Tm)®0 ) + 1Tr{<1>*T(§m( ) (BS ) + 051n) @2} 4+ 550 ) |lefm(@m)||?, which is
bounded by a constant O, i.e., ||Z]| < @ because all of its terms are bounded.

According to the condition (46), Eq. (52) is rewritten as

<> (3o ) 1BLOF + (IO - X ] 85,0850)}

n_l:il Wﬁ{@g (1) }“ lmz: “ Zhom & V)m {@gm(t)&)am(t)}
_ \Kes —;as)UsTr{(i)T( )i) ( } . HasUsTr{(i) z } 2(t). (53)

Letting p = minm=1,.. 2{2(ux — 3/4)}, 0f = Mming,=1,. n{afm(bfm}, Oem = Milm=1,. .n{(Kem —
Kam)Om }y Oam = Milm=1_.. n{(2Kam + 1)om/2}, 0cs = (Kes — Kas)Os, Oas = KasOs, then Eq. (53) turns
into

A R TRt Z S TH{ B3, 081 ()} = 3 T 1] BT, (081
m=1 m=1
-3 T m 8L, (0Bun(n) ) - ”;Sﬂ{éfs(t)écs(t)} -Zenfaloslo)+s0. 6

By applying the inequality (47), Eq. (54) turns into

: /L)\fl}min T\ (T _9r 1 & Tem - 5T (1)
V(t) < — Zmin TN LI, Z¢ Te{ @], (1)@ fm(t)} — ZTr{(bcm(t)d)cm(t)}

_ "2’” m: Tr{(iaTm(t)fi)am(t)} ";S Tr{ch( )écs(t)} —~ %Tr{éfs(t)éis(t)} +E(t). (55)

Letting w = min{,u)\ﬁlm, Of,0cm, Tam, Ocs, aas}, Eq. (55) can be rewritten as

V(t) < —@V(t) +

[
‘o
N

By utilizing the Lemma 3 and (56), the following inequality is obtained

V(t) <e ™V(0)+ =(1—e ™). (57)

SERE



LiZJ, et al. Sct China Inf Sct November 2025, Vol. 68, Iss. 11, 210211:11

[-=-~ single-QUAV attitude angle states —— multi-QUAV Attitude angle states | 5

Roll tracking error of Coke "
s oM ]
: e
o« - 5 A
0 5 10 15 20
Time (s)
5 n — T
= . Pitch tracking error of (.
& 5
0 2 4 6 8 10 12 14 16 18 20 0 5 10 15 20
Time (s) Time (s)
s . . . . . : : : ; g Yaw tracking error of Cok "
3 =
: OW <°
= . ! L , L L L L L -5 .
% 2 4 6 8 10 12 14 16 18 20 0 5 10 15 20
Time (s) Time (S)
Figure 2 (Color online) Three attitude angle states tracking Figure 3 (Color online) The convergence of tracking errors
performance of the pursuer-evader. Cpk-

The aforementioned inequality demonstrates that all error signals, encompassing sy, (t), ® o (), P e (),
Do (t), @ys(t), Pes(t), are SGUUB, Theorem 1(i) is proved. And then through appropriate tuning of the
parameter w, the sliding variable s, can be driven to converge within a vicinity around zero. According
to Lemma 4 in [23], it can be known that condition sx((x) = 0 can ensure all tracking error states, ¢, (t),
m=1,2,....,n,j=1,2...,i, to converge to zero as t — oo, this directly proves Theorem 1(ii).

4 Numerical examples

This part conducts numerical simulations of the multi-QUAV attitude system comprising four QUAVs
in the Matlab environment. The parameters within its dynamic model are I.; = 8.81 x 1073, Iy, =
4.85 x 1073, Iy, = 4.35 x 1073, 1 = 0.325, Gy, = Gy, = Ggp, = 0.6, k = 1,...,4. The initial states are
Tpr=1,..4(0) = [gbk(O),wi(O),@k(O)}T = [n/3,7/3,m/3|%, /4, 7/4, /4T, [n/5,7/5,7/5|T, —[n/3, /3,
/3T and e 4(0) = [$:(0),4:(0),6:(0)] " = [3,3,3],[2,2,2],[1,1,1],[~1, =1, —1]. The communi-
cation relationship between evader and pursuer can be represented by B = diag{0,1,0,0}.

The adjacency matrix described the intercommunication of multi-QUAV attitude system is

A=10,1,0,1;1,0,1,0;0,1,0,1;1,0,1,0].

Additionally, the sliding mode variable in (9) is formulated with the parameter 5 = 8. Subsequently,
the consensus error, which is associated with the adjacency matrix A and the communication weight
matrix B, can be derived by consulting (11).

The NN serving as an identifier, corresponding to (31), is configured with nine nodes. The initial values
of the NN weights are ﬁ)fl _____ 74(0) =[0.4,...,0.4]T € R%. The adaptive training law, which corresponds
to (32), is formulated using gain values ¢1,. 4 = 0.6 and o1, 4 = 0.3. Subsequently, the basis function
vector &1 (Zk), k =1,2,3,4 are constructed by a Gaussian kernel function of width 2.

The actor and critic NNs are configured with 6 nodes that are uniformly distributed within the interval
extending from —[10, 10, 10, 40, 40, 40, 40, 40, 40]T to [10, 10, 10, 40, 40, 40, 40, 40,40]™. Subsequently, the
basis function vector & (e, Tx), k = 1,2, 3,4 is obtained using a Gaussian function with a width of 2. The
updating laws are formulated with the parameters o a4 = 0.3, and K¢1.. a4 = 0.35. The
initial values are ﬁ)al ,,,,,
by assigning pip—1,23.4 = 36, the optimal pursuer controller corresponding to (35) can be derived.

In addition, the NN parameters of u, are designed. The actor NN in (39) and the critic NN in (41),
they both include a total of 6 nodes, respectively. Assign the initial values of the critic and the actor NN
weights as $qs(0) = 0.4 and ®,,(0) = 0.5, respectively. Set the value of the updating laws parameters
associated with (39) and (41) to kes = 0.32, kes = 0.35 and o5 = 0.2. Additionally, the basis function
vector &,(e3, Ts) are constructed by a Gaussian kernel function of width 2.

Figures 2—7 exhibit the three attitude angle states of the pursuer-evader have better tracking perfor-
mance. Figure 2 represents the pursuer composed of four QUAV systems and the evader composed of

.....

...............

.....
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Figure 6 (Color online) The norm |[®., ||, m = 1,2,3,4 of Figure 7 (Color online) The ||[®..|| and ||®,s]| scores repre-
the NN weights for the critic. sent the critic and actor NN weights norm of u.

a single QUAV system, and their attitude game following trajectory performance. Figure 3 displays the
tracking errors for the three attitude angle states (roll, pitch, and yaw) of the 4 agents, demonstrating
their convergence to zero. Figures 46 illustrate the boundedness of the parameter matrices for the identi-
fier, critic, and actor NNs with control inputs u}; .4, respectively. Figure 7 illustrates the boundedness
of the parameter matrices of the actor and critic NNs with respect to evader u}.

5 Conclusion

This paper proposes a novel attitude zero-sum game control approach for multi-QUAV systems and
single-QUAYV system based on the sliding mode control and RL approach. In this game control, the SMC
principle is used to design a sliding mode hyperplane to manage multiple state variables with differential
relationships. To obtain the saddle point of the zero-sum game, we execute RL within the I-DAC
framework, which can derive the optimal control strategy for both parties. As opposed to traditional RL
methods, the proposed RL approach features a simpler algorithm and releases the sustained incentives and
known dynamics. The designed game control algorithm is applicable to a certain range of multi-QUAV
pursuit-evasion problems. The RL-based algorithm we designed provides a new solution for multi-UAV
system confrontation. Finally, the effectiveness of the control method is verified through the Lyapunov
stability theorem and numerical simulation. In future studies, we will consider the non-zero-sum game
control for multi-QUAV attitude systems via sliding mode and fixed-time convergent RL.
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