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Abstract This paper presents a zero-sum game-based control strategy for the confrontation between the pursuit multi-

quadrotor unmanned aerial vehicle (QUAV) and an evaded QUAV via reinforcement learning (RL) and sliding mode control

(SMC) techniques. The SMC mechanism drives the attitude states of the multi-QUAV system asymptotically to the pre-

defined trajectory. The RL provides a feasible solution to the Hamilton-Jacobi-Isaacs (HJI) equation to obtain the Nash

equilibrium in zero-sum games, while conventional analytical methods often struggle with the complexity. Then, under the

identifier-double actor-critic (I-DAC) architecture, RL is executed to optimize the consensus control in zero-sum games. The

proposed method presents two distinct advantages: (i) adaptive identifier strategies in RL design can compensate for un-

known dynamics, and the update rules for actor and critic in RL are significantly simplified; (ii) by integrating RL with the

sliding mode mechanism, the Nash equilibrium point can be successfully obtained for both multi-QUAV and single-QUAV

zero-sum games when solving the HJI equation. The proposed method will provide an effective game control strategy for

unmanned confrontation systems.
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1 Introduction

At present, the application scenarios for multi-quadrotor unmanned aerial vehicle (multi-QUAV) systems
have become increasingly extensive, including military and civilian sectors [1–3]. The control of multi-
QUAV systems has emerged as a focal area, particularly in complex adversarial settings [4–6]. Game
theory has proven highly effective in strategic choice, where each player is influenced by both its own
actions and those of the other participants [7, 8]. A zero-sum game is a strategic interaction in which
each player chooses a strategy to maximize its own gain, resulting in losses of an equal total amount for
the other players [9, 10]. The control of multi-UAV confrontation systems is fundamentally viewed as a
game-theoretic problem, characterized by its zero-sum nature. This property dictates that the system
state converges towards an optimal solution. In this solution, the increase in benefit for one party is
directly proportional to the decrease in benefit for the other. This characteristic of direct proportionality
between the benefits of opposing parties makes zero-sum games ideal for describing the confrontational
relationships between pursuers and evaders in multi-QUAV systems.

In the pursuer-evader problem, the pursuer tries to minimize the attitude error between the pursuer
and the evader, while the evader tries to maximize the error. The optimal solution to this kind of game
theory problem can be obtained by finding its Nash equilibrium or saddle point [11]. The saddle point
of a zero-sum game is the optimal intersection of the return functions of both parties in the game, which
corresponds to the optimal strategy of each party, making it impossible for either party to obtain a
better result by unilaterally changing the strategy [12]. In a nonlinear dynamic environment, saddle
points typically require solving the Hamilton-Jacobi-Isaacs (HJI) equation, and it can ensure that both
parties achieve the optimal game equilibrium in a complex nonlinear environment [13]. The HJI equation
is due to its capability to precisely delineate the dynamic optimization process within a zero-sum game
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between two parties, through the introduction of the Hamiltonian function, integration of states, control
inputs, and respective cost functions [14].

Although the HJI equation provides a theoretical basis for the optimal control, it is often very difficult to
solve analytically in practical applications, especially for highly complex systems and uncertainties [15]. In
addition, in some traditional optimal control methods, the reinforcement learning (RL) algorithm is very
complex and requires known dynamics about the system, making it difficult to expand and apply [16–19].
To overcome this challenge, this study improves the identifier-actor-critic (IAC) framework [20] in RL
so as to generate the novel I-DAC arithmetic through the continuous iterative training of the adaptive
neural network. In the context of the game, both participants can derive suitable actions based on
the evaluative feedback provided by the system response. So as to continuously improve the system
performance. Within this framework, the identifier serves to recognize environmental or state conditions,
transmitting this information to the critic for evaluation. The critic, in turn, assesses the situation and
provides feedback to the actor, who takes actions or makes decisions based on the critic assessments.
This cycle guides the intelligent system in determining the next appropriate action under the current
environment [21].

In the multi-QUAV attitude system, the robustness of the control strategy is very important since the
system has strong nonlinearity and uncertainty [22]. To achieve stable and robust performance in an un-
certain environment, sliding mode control (SMC) presents an effective solution [23]. The SMC guarantees
system stability after entering the sliding mode plane by designing a suitable sliding mode surface, and
can effectively control multiple state variables and constrain the system state on a predetermined sliding
mode hyperplane [24,25]. In the game control of pursuer and evader, SMC can effectively constrain error
dynamics [26]. Combined RL with SMC, a stable and robust control strategy can be realized for the
uncertain environment [27].

In this paper, the zero-sum game control of multi-QUAV confrontation via RL and SMC is studied.
The primary contributions of this study are summarized as follows.

(i) An optimization approach based on zero-sum game theory is proposed for the attitude game control
problem involving multi-QUAV and single-QUAV. In this zero-sum framework, the losses incurred by one
party are exactly equal to the gains of the other one. Consequently, the optimal strategies obtained by
solving the HJI equations constitute a saddle point equilibrium for the game.
(ii) The I-DAC scheme is presented to solve the HJI equation to obtain the saddle-point solution.

Unlike conventional zero-sum game methods, this approach significantly simplifies the optimal game
control algorithm by deriving the reinforcement learning weight update laws via a simple positive function
that equivalently represents the HJI equation.
(iii) The proposed zero-sum game-based control method eliminates the need for persistent excitation

conditions and complete dynamic knowledge, as the adaptive identifier in the I-DAC framework can effec-
tively compensate for unknown dynamic functions, and the RL algorithm can effectively train adaptive
parameters to eliminate continuous excitation conditions. Finally, the stability is conducted by using the
Lyapunov theory.

2 Preliminaries

2.1 Attitude system description

For an interconnected multi-QUAV system, the attitude dynamic of each QUAV [28] can be expressed
using the Newton-Euler formulation, which is

φ̈k(t) =
lτφk
Ixk

+ ψ̇k(t)θ̇k(t)

(

Iyk − Izk
Ixk

)

−
Gφkl

Ixk
φ̇k(t),

ψ̈k(t) =
lτψk
Iyk

+ φ̇k(t)θ̇k(t)

(

Izk − Ixk
Iyk

)

−
Gψkl

Iyk
ψ̇k(t), k = 1, 2, . . . , n,

θ̈k(t) =
lτθk
Izk

+ φ̇k(t)ψ̇k(t)

(

Ixk − Iyk
Izk

)

−
Gθkl

Izk
θ̇k(t), (1)

where φk(t), ψk(t) and θk(t) are the roll, pitch and yaw angles, constrained in φk ∈ [−π

2 ,
π

2 ], ψk ∈ [−π

2 ,
π

2 ]
and θk ∈ [−π,π]; τφk, τψk and τθk are control torques; Ixk, Iyk and Izk are rotational inertia on the x, y, z
coordinate; Gφk, Gψk and Gθk are drag coefficients, and l is the length from mass center to rotor center.
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For designing the optimized game control, the pursuer attitude dynamic model in (1), is reformulated
as

ẋpk(t) = xvk(t), ẋvk(t) = uzk + Fk(xpk, xvk), k = 1, 2, . . . , n, (2)

where xpk(t) = [φk(t), ψk(t), θk(t)]
T ∈ R

3 and xvk(t) = [φ̇k(t), ψ̇k(t), θ̇k(t)]
T ∈ R

3, uzk = [lτφk/Ixk,

lτψk/Iyk, lτθk/Izk]
T ∈ R

3, Fk(xpk, xvk) = [ψ̇k(t)θ̇k(t)(Iyk − Izk)/Ixk − Gφklφ̇k(t)/Ixk, φ̇k(t)θ̇k(t)(Izk
−Ixk)/Iyk −Gψklψ̇k(t)/Iyk, φ̇k(t)ψ̇k(t)(Ixk − Iyk)/Izk −Gθilθ̇k(t)/Izk]

T ∈ R
3.

The dynamic mode of the evader attitude is

ẋps(t) = xvs(t), ẋvs(t) = us + Fs(xps, xvs), (3)

where xps(t) = [φs(t), ψs(t), θs(t)]
T ∈ R

3 , xvs(t) = [φ̇s(t), ψ̇s(t), θ̇s(t)]
T ∈ R

3, and us = [luφs/Ix, luψs/Iy,
luθs/Iz]

T ∈ R
3, Fs(xps, xvs) is a continuous nonlinear function.

Definition 1. The multi-QUAV system (1) is said to achieve the second-order pursuer-evader consensus,
if lim
t→∞

‖xpk(t)− xps(t)‖ = 0 and lim
t→∞

‖xvk(t)− xvs(t)‖ = 0 hold.

Control objective. For the multi-QUAV system (1), the goal is to determine the optimal consensus
control, such that (i) the optimal control algorithm based on zero-sum differential game can keep the
dynamic equilibrium of the controller at saddle point; (ii) all control signals are guaranteed to be semi-
globally uniformly ultimately bounded (SGUUB), ensuring stability and performance within a specified
bound; (iii) the consensus described by the pursuer-evader in Definition 1 can be obtained.

2.2 Algebraic graph theory

The communication network within the multi-QUAV system is characterized through an undirected
topological graph, denoted as G = (Π,Ψ, A), where A = [aij ] ∈ R

n×n, Π = {Π1,Π2, . . . ,Πn}, Ψ ⊂ Π×Π
represent the adjacency matrix, the node set, and edge set, respectively. If there exists a pathway for
information communication from node Πj to node Πi, then node Πj is considered to be a neighbor of
node Πi, where the node Πi is the behalf of the ith agent of multi-QUAV attitude system. Furthermore,
the element aij of the adjacency matrix A is set to 1; otherwise aij = 0 and also aii = 0. The G is said
to be an undirected graph if and only if the adjacency matrix A is symmetrical, i.e., aij = aii.The set of
neighbors of Πi, is denoted by Λi = {j|(Πi,Πj) ∈ Ψ}.

The Laplacian matrix L of the graph G can be constructed as

L = Ψ−A, (4)

where Ψ = diag{Ψ1, Ψ2, · · · , Ψn} and Ψi =
∑n

j=1 aij , Ψ = diag{
∑n

j=1a1j , . . . ,
∑n

j=1anj}.

Assumption 1. The communication topology of the multi-QUAV system in (1) is represented by an
undirected connected graph.

Lemma 1 ([29]). If the communication topology graph G is an undirected and connected graph, then
the Laplacian matrix L defined in (4) is classified as an irreducible matrix.

Lemma 2 ( [29]). When the Laplacian matrix L possesses the property of being irreducible, then
L̃ = L+B, where B = diag{b1, . . . , bm} and b1 + b2 + · · ·+ bm > 0, is a positive definite matrix.

2.3 Neural network (NN)

In [30], it is proved that a nonlinear and continuous function K(ς) : Rn → R
m, which is delineated on a

compact domain Ω, the formulation for the NN approximation can be articulated as

K(ς) = ωTτ(ς), (5)

where ω ∈ R
p×m is the weight matrix associated with the NN, and p denotes the count of neurons

comprising the network, and τ(ς) = [τ1(ς), . . . , τp(ς)]
T represents the basis function vector, on which

τk(ς) = exp[−(ς − ok)
T(ς − ok)/2ρ

2
k], ok ∈ R

n and ρk ∈ R are the centroid of the receptive field and the
breadth of the Gaussian function, respectively.

In (5), an optimal weight matrix is denoted as ω∗ = argminω∈Rp×m

{

supς∈Ω ‖K(ς) − ωTτ(ς)‖
}

, then
the function K(ς) is redefined as
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K(ς) = ω∗Tτ(ς) + ε(ς), (6)

where the approximation error ε(ς) satisfies ‖ε(ς)‖ 6 υ, and υ > 0 is a constant. Furthermore, by
selecting an appropriate number of NN neurons, the error ε(ς) can be sufficiently small.

3 Main results

3.1 Zero-sum game formulation description

Define the tracking errors of pursuer-evader as

ζpk(t) = xpk(t)− xps(t), ζvk(t) = xvk(t)− xvs(t), k = 1, 2, . . . , n. (7)

Based on (2) and (3), dynamic of the tracking error can be formulated as

ζ̇pk(t) = ζvk(t), ζ̇vk(t) = uzk − us + Fk(xpk, xvk)− Fs(xps, xvs), k = 1, 2, . . . , n. (8)

To achieve pursuer-evader consensus for the multi-QUAV system, a sliding mode variable, incorporating
attitude errors, is introduced as

sk(ζ̄k) = βζpk(t) + ζvk(t), k = 1, 2, . . . , n, (9)

where β > 0 denotes a constant to be designed later, and ζ̄k(t) = [ζTpk, ζ
T
vk]

T ∈ R
2×3. It is worth noting

that, utilizing the sliding mode mechanism [23], the attitude tracking error is limited to a small zero
neighborhood when sk(ζ̄k) → 0.

Drawing upon (8), the dynamics of the sliding mode can be derived as

ṡk = βζvk(t) + uzk + Fk(xpk, xvk)− us − Fs(xps, xvs)

= F ∗
k (xpk, xvs)− F ∗

s (xps, xvs) + uzk − us, k = 1, 2, . . . , n, (10)

where F ∗
k (xpk, xvs) = βxvk(t) + Fk(xpk, xvk) and F

∗
s (xps, xvs) = βxvs(t) + Fs(xps, xvs).

Define the term that incorporates neighboring states for consensus as

Esk(t) =
∑

i∈Λk

aki
((

βxpk + xvk
)

−
(

βxpi + xvi
))

+ bksk(t), k = 1, 2, . . . , n, (11)

where Λk is the neighbor tag set associated with agent k.
By adding and subtracting the term βxps + xvs, the consensus term (11) can be reformulated as

Esk(t) =
∑

i∈Λk

aki
(

sk(t)− si(t)
)

+ bksk(t), k = 1, 2, . . . , n. (12)

Taking derivative of Esk(t) and combining (10) can obtain

Ėsk(t) =λk (F
∗
k (xpk, xvs)− F ∗

s (xps, xvs) + uzk − us)−
∑

i∈Λk

akiṡi(t), (13)

where λk =
∑

i∈Λk
aki + bk.

3.2 Zero-sum differential game-based optimal controller design

Define the performance index as

J(0) =

∫ ∞

0

c
(

s, uz, us
)

dν, (14)

where c(s, uz, us) = sT(t)
(

L̃TL̃ ⊗ I3
)

s(t) ∈ R is the cost function, s(t) = [sT1 , . . . , s
T
n ]

T ∈ R
3n, uz =

[uTz1, . . . , u
T
zn]

T ∈ R
3n, and L̃ = L+B.
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Definition 2 (Admissible control [19]). A control input pair {uz, us} is called as admissible with respect
to (14) on the set Ω, if uz and us are continuous to stabilizes (13) on Ω with uz(0) = 0 and us(0) = 0,
and make (14) finite.

By considering that Es(t) =
(

L̃⊗ I3
)

s(t), and Es(t) = [EsT1 (t), . . . , EsTn (t)]T ∈ R
3n, the cost function

c(s, uz, us) can be re-described as

c(s, uz, us) = sT(t)
(

L̃TL̃⊗ I3
)

s(t) + uTz (P1 ⊗ In)uz − uTs P2us

= ET
s (t)Es(t) + uTz (P1 ⊗ In)uz − uTs P2us, (15)

where P1, P2 ∈ R
3×3. Then, the distributed performance function is formulated as

J(0) =

∫ ∞

0

c(Es, uz, us)dν. (16)

Utilizing (16), the definition of the distributed performance function is

J(Es) =

∫ ∞

t

c(Es, uz, us)dν. (17)

Letting u∗z ∈ R
3n and u∗s ∈ R

3 denote the optimal pursuer and evader controls and considering the
zero-sum game theory, the optimal distributed performance index J∗(Es) ∈ R is expressed as

J∗(Es) =

∫ ∞

t

c(Es, u
∗
z, u

∗
s)dν = min

uz∈ψ(Ω)
max

us∈ψ(Ω)

{
∫ ∞

t

c(Es, uz, us)dν

}

, (18)

where Ω ∈ R
n is a given compact set.

Definition 3 ([9]). The control policy denoted by (u∗z, u
∗
s) is the saddle point equilibrium solution in a

zero-sum game, if

J(Es, u
∗
z, us) 6 J(Es, u

∗
z, u

∗
s) 6 J(Es, uz, u

∗
s). (19)

Taking the time derivative of (18) along (13), the distributed HJI equation is

H̃J (Es, u
∗
z, u

∗
s, J

∗) =c(Es, u
∗
z, u

∗
s) +

dJ∗(Es)

dt

=‖Es(t)‖
2 +

n
∑

k=1

uTzkP1uzk − uTs P2us +
n
∑

k=1

dJ∗
k (E

s
k)

dEsTk

(

λk
(

F ∗
k (xpk, xvk) + uzk − us

− F ∗
s (xps, xvs)

)

−
∑

i∈Λk

aki
(

F ∗
i (xpi, xvi)− F ∗

s (xps, xvs) + uzi − us
)

)

= 0,

k =1, 2, . . . , n, (20)

where J∗
k (E

s
k) is k-th optimal distributed performance index.

As previously indicated, the optimal game pursuer-evader controls u∗z and u∗s must exclusively fulfill
the optimal performance function given in (18). Consequently, the optimal solution to the distributed
HJI equation presented in (20). Subsequently, the determination of u∗s can be achieved as

∂H̃J(E
s
s , u

∗
z, u

∗
s, J

∗)

∂u∗s
= 0 =⇒ u∗s = −

1

2
P−1
2 ηs

n
∑

k=1

dJ∗
k (E

s
k)

dEsk
, (21)

where ηs =
∑n

k=1 bk, and
∑n

k=1
dJ∗

k(E
s
k)

dEs
k

=
dJ∗(Es

s)
dEs

s
.

Due to the dynamic coupling game relationship in the game, to avoid ambiguity in the local derivation
of the global index, the local optimization problem of a single pursuer is extracted from (20), uzm can be
calculated from the partial differential equation as

H̃J
m(Esm, u

∗
zm, u

∗
s, J

∗
m) =cm(Esm, u

∗
zm, u

∗
s) +

dJ∗
m(Esm)

dt
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=‖Esm(t)‖2 + uTzmP1uzm − uTs P2us +
dJ∗

m(Esm)

dEsTm
λm(F ∗

m(xpm, xvm)

− F ∗
s (xps, xvs) + uzm − us)−

dJ∗
m(Esm)

dEsTm

∑

i∈Λm

amiṡi(t), m = 1, 2, . . . , n, (22)

where m is the index of a single pursuer, which is equivalent to the global index k and can traverse all
pursuers.

By transforming (22), the optimal strategy u∗zm of any agent among the multiple pursuers is

∂H̃J
m(E

s
m, u

∗
zm, u

∗
s, J

∗
m)

∂u∗zm
= 0 =⇒ u∗zm = −

1

2
P−1
1 λm

dJ∗
m(Esm)

dEsm
, m = 1, 2, . . . , n. (23)

Substituting (23) into (22), the HJI equation is derived as

H̃J
m(Esm, u

∗
zm, u

∗
s, J

∗
m) =‖Esm(t)‖2−

1

4
λ2m

n
∑

m=1

dJ∗
m(Esm)

dEsTm
P−1
1

dJ∗
m(Esm)

dEsm
+
1

4
η2s

n
∑

m=1

dJ∗
m(Esm)

dEsTm
P−1
2

dJ∗
m(Esm)

dEsm

+
n
∑

m=1

dJ∗
m(Esm)

dEsTm

(

λm
(

F ∗
m(xpm, xvm)− F ∗

s (xps, xvs)
)

−
∑

i∈Λm

ami

×

(

F ∗
i (xpi, xvi)− F ∗

s (xps, xvs)−
1

2
λiP

−1
1

dJ∗
i (E

s
i )

dEsi

))

,m = 1, 2, . . . , n. (24)

3.3 Reinforcement learning (RL) design

To derive the game optimized consensus control for multi-QUAV attitude system (1), an RL is designed

and the term
dJ∗

m(Es
m)

dEsT
m

of (24) is decomposed as

dJ∗
m(Esm)

dEsTm
=

2P1

λm
µmE

s
m(t) +

2P1

λm
F s∗m +

P1

λm
J0
m(Esm, x̄m), m = 1, 2, . . . , n, (25)

where J0
m(Esm, x̄m) = −2µmP

−1
1 Esm(t) − 2F s∗m + λmP

−1
1

dJ∗

m(Es
m)

dEsT
m

, F s∗m = F ∗
m(xpm, xvm) − F ∗

s (xps, xvs),

x̄m = [xTpm, x
T
vm]T, and µm > 0 is the design constant.

Substituting (25) into (23) yields

u∗zm = −µmE
s
m(t)− F s∗m −

1

2
J0
m(Esm, x̄m), m = 1, 2, . . . , n, (26)

which is infeasible due to the uncertainty J0
m(Esm, x̄m) and F s∗m . Therefore, NNs are harnessed to approx-

imate the terms within the confines of the compact set Ω, which is

F s∗m = Φ∗T
fmξfm(x̄m) + εfm(x̄m), (27)

J0
m(Esm, x̄m) = Φ∗T

m ξm(Esm, x̄m) + εm(Esm, x̄m), m = 1, 2, . . . , n, (28)

where Φ∗
fm ∈ R

q1×3 and Φ∗
m ∈ R

q2×3 are the ideal NN weight vectors, ξfm(x̄m) ∈ R
q1 and ξm(Esm, x̄m) ∈

R
q2 are the basis function vectors. The bounded errors associated with the NN approximations are

represented by εfm ∈ R
3 and εm ∈ R

3, i.e., ‖εfm‖ 6 ̺fm and ‖εm‖ 6 ̺m.

dJ∗
m(Esm)

dEsTm
=

2P1

λm
µmE

s
m(t)+

2P1

λm

(

Φ∗T
fmξfm(x̄m)+εfm(x̄m)

)

+
P1

λm

(

Φ∗T
m ξm(Esm, x̄m)+εm(E

s
m, x̄m)

)

, (29)

u∗zm =− µmE
s
m(t)− Φ∗T

fmξfm(x̄m)− εfm(x̄m)−
1

2
Φ∗T
m ξm(Esm, x̄m)−

1

2
εm(E

s
m, x̄m),

m =1, 2, . . . , n. (30)

Since Φ∗
fm and Φ∗

m constitute two unknown constant vectors, the feasibility of the optimal control in
(29) remains compromised. To find a feasible and optimized control strategy, RL is implemented through
the adaptive identifier, actor, and critic NNs.
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Figure 1 (Color online) Identifier-critic-actor RL framework for evader u∗

zm.

For the purpose of approximating the uncertain dynamic function, the identifier NN is constructed as

F̂ sm(x̄m) = Φ̂T
fm(t)ξfm(x̄m), m = 1, 2, . . . , n, (31)

where Φ̂fm(t) ∈ R
q1×3 represents the estimation of the ideal weight for the identifier NN, F̂ sm(x̄m) denotes

the output produced by the adaptive identifier. The weight Φ̂fm(t) of the adaptive identifier NN is trained
according to the following update law as

˙̂
Φfm(t) = φfm

(

ξfm(x̄m)EsTm (t)− σfmΦ̂fm(t)
)

, m = 1, 2, . . . , n, (32)

where φfm, σfm ∈ R are the positive constants.

The formulation for the critic NN, tasked with approximating the unknown term
dĴ∗

m(Es
m)

dEsT
m

is

dĴ∗
m(Esm)

dEsTm
=
2P1

λm
µmE

s
m(t) +

2P1

λm
Φ̂T
fm(t)ξfm(x̄m) +

P1

λm
Φ̂T
cm(t)ξm(Esm, x̄m), m = 1, 2, . . . , n, (33)

where Φ̂cm(t) ∈ R
q2×3 refers to the adaptive weight of the critic NN. The description of the updating

rule for Φ̂cm(t) is outlined as

˙̂
Φcm(t) =− κcm

(

ξm(Esm, x̄m)ξTm(Esm, x̄m) + σmIq

)

Φ̂cm(t), m = 1, 2, . . . , n, (34)

where κcm > 0 represents the critic gain constant, Iq denotes the q2 × q2 identity matrix and σm > 0 is
the design constant.

The actor NN of the optimized consensus control û∗zm is

û∗zm = −µmE
s
m(t)− Φ̂T

fm(t)ξfm(x̄m)−
1

2
Φ̂T
am(t)ξm(Esm, x̄m), m = 1, 2, . . . , n, (35)

where Φ̂am(t) ∈ R
q2×3 is the actor adaptive NN weight. The updating rule for Φ̂am(t) is

˙̂
Φam(t) =− κam

(

ξm(Esm, x̄m)ξTm(Esm, x̄m)+σmIq

)(

Φ̂am(t)−Φ̂cm(t)
)

−
1

2
ξm(Esm, x̄m)ξTm(Esm, x̄m)Φ̂am(t),

m =1, 2, . . . , n, (36)

where κam > 0 denotes the actor gain constant. Figure 1 depicts the identifier-critic-actor RL algorithm
framework of the pursuer u∗zm.

Design the NN about evader u∗s as

dJ∗
s (E

s
s )

dEsTs
=
P2

ηs
Φ∗T
s ξs(E

s
s , x̄s) +

P2

ηs
εs(E

s
s , x̄s), (37)
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u∗s = −
1

2

(

Φ∗T
s ξs(E

s
s , x̄s) + εs(E

s
s , x̄s)

)

, (38)

where Φ∗
s ∈ R

q3×3 is the ideal NN weight vectors, ξs(E
s
s , x̄s) ∈ R

q3 is the basis function vectors,
εs(E

s
s , x̄s) 6 ̺s represents the bounded errors associated with the NN approximations, and x̄s =

[xTps, x
T
vs]

T.

The critic NN of dĴ∗
s (E

s
s )/dE

s
s is

dĴ∗
s (E

s
s)

dEsTs
=
P2

ηs
Φ̂∗T
cs ξs(E

s
s , x̄s), (39)

where Φ̂∗
cs ∈ R

q3×3 denotes the adaptive weight of the critic NN, the updating rule for Φ̂cs(t) is

˙̂
Φcs(t) =− κcs

(

ξs(E
s
s , x̄s)ξ

T
s (E

s
s , x̄s) + σsIn

)

Φ̂cs(t), (40)

where κcs, σs ∈ R represent two positive design constants that comprise the gain matrix.
The actor NN of u∗s is

û∗s =−
1

2
Φ̂T
as(t)ξs(E

s
s , x̄s), (41)

where û∗s denotes the escape optimal strategy, the actor adaptive NN weight Φ̂as(t) ∈ R
q3×3 is

˙̂
Φas(t) =− κas

(

ξs(E
s
s , x̄s)ξ

T
s (E

s
s , x̄s) + σsIn

)(

Φ̂as(t)− Φ̂cs(t)
)

, (42)

where κas > 0 is the actor gain constant.

3.4 Main theorem and proof

Lemma 3 ([31]). If the positive continuous function P (t) ∈ R satisfies Ṗ (t) 6 −̟P (t) + Ξ, where
̟ > 0 and Ξ > 0 are constants, then, the following inequality holds true

P (t) 6 e−̟tP (0) +
Ξ

̟

(

1− e−̟t
)

. (43)

Theorem 1. For the multi-QUAV attitude system described in (1) with the bounded initial values, if
the design parameters fulfill the subsequent conditions

µm >
3

4
, κam > −

1

2
, κcm > κam, κcs > κas > 0, σm > 0, σs > 0, (44)

where λL̃min represents the minimum eigenvalue of L̃ = L+B, the designed I-DAC RL algorithm (34)–(39)
for optimized consensus control in the zero-sum game can achieve

(i) All control signals are SGUUB;
(ii) The tracking errors ζmj(t), m = 1, 2, . . . , n, j = 1, 2, . . . , i, can converge to a small neighborhood

of zero.

Proof. The Lyapunov function is constructed as

V (t) =
1

2
sT(t)(L̃ ⊗ I3)s(t) +

1

2

n
∑

m=1

φ−1
fmTr

{

Φ̃T
fm(t)Φ̃fm(t)

}

+
1

2

n
∑

m=1

Tr
{

Φ̃T
cm(t)Φ̃cm(t)

}

+
1

2

n
∑

m=1

Tr
{

Φ̃T
am(t)Φ̃am(t)

}

+
1

2

n
∑

m=1

Tr
{

Φ̃T
cs(t)Φ̃cs(t)

}

+
1

2

n
∑

m=1

{

Φ̃T
as(t)Φ̃as(t)

}

, (45)

where s(t) = [sT1 , s
T
2 , . . . , s

T
n ]

T, Φ̃fm(t) = Φ̂fm(t)− Φ∗
fm, Φ̃cm(t) = Φ̂cm(t)− Φ∗

k, Φ̃am(t) = Φ̂am(t)− Φ∗
k,

Φ̃cs(t) = Φ̂cs(t)−Φ∗
k, Φ̃as(t) = Φ̂as(t)−Φ∗

k, I3 is the 3×3 identity matrix and ⊗ is the Kronecker product.

Drawing upon Lemma 2, it can infer that matrix L̃ = L+B ∈ Rn×n is positive definite. Furthermore,
according to Es(t) = (L̃ ⊗ I3)s(t), the subsequent equation can be derived

sT(t)(L̃ ⊗ I3)s(t) = ET
s (t)(L̃⊗ I3)

−1Es(t) = sT(t)(L̃ ⊗ I3)(L̃⊗ I3)
−1(L̃⊗ I3)s(t). (46)
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Utilizing (46) can obtain

1

λL̃max
‖Es(t)‖

2
6 sT(t)(L̃ ⊗ I3)s(t) 6

1

λL̃min
‖Es(t)‖

2, (47)

where λL̃max and λL̃min are the maximum and minimum values of the matrix L̃.
Taking the time derivative of V (t) along (10), (32), (34), (36), (40) and (42) and the substitution of

(30), (38) and (41) results in

V̇ (t) =

n
∑

m=1

EsTm (t)
(

Φ∗T
fmξfm(x̄m) + εfm(x̄m)− µmE

s
m(t)− Φ̂T

fm(t)ξfm(x̄m)

−
1

2
Φ̂T
amξm(Esm, x̄m)

)

+
n
∑

m=1

Tr

{

Φ̃T
fm(t)

(

ξm(x̄m)EsTm (t)− σfmΦ̂fm(t)
)

}

−

n
∑

m=1

κcmTr

{

Φ̃T
cm(t)

(

ξm(Esm, x̄m)ξTm(Esm, x̄m) + σmIq

)

Φ̂cm(t)

}

−
1

2
ET
s Φ̂

T
as(t)ξs(E

s
s , x̄s)

−

n
∑

m=1

Tr

{

Φ̃T
am(t)

(

κam
(

ξm(Esm, x̄m)ξTm(Esm, x̄m) + σmIq
)(

Φ̂am(t)− Φ̂cm(t)
)

)

+
1

2
ξm(Esm, x̄m)ξTm(Esm, x̄m)Φ̂am(t)

}

− κcsTr

{

Φ̃T
cs(t)

(

ξs(E
s
s , x̄s)ξ

T
s (E

s
s , x̄s) + σsIn

)

Φ̂cs(t)

}

− κasTr

{

Φ̃T
as(t)

(

ξs(E
s
s , x̄s)ξ

T
s (E

s
s , x̄s) + σsIn

)(

Φ̂as(t)− Φ̂cs(t)
)

}

. (48)

By applying Young’s inequality, the subsequent inequalities can be inferred as

−
1

2
EsTm (t)Φ̂T

am(t)ξm(Esm, x̄m) 6
1

4
‖Esm(t)‖2 +

1

4
Tr
{

Φ̂T
am(t)ξm(Esm, x̄m)ξTm(Esm, x̄m)Φ̂am(t)

}

,

−
1

2
ET
s Φ̂

T
as(t)ξs(E

s
s , x̄s) 6

1

4
‖Es(t)‖

2 +
1

4
Tr
{

Φ̂T
as(t)ξs(E

s
s , x̄s)ξ

T
s (E

s
s , x̄s)Φ̂as(t)

}

. (49)

Inserting inequality (49) into (48) has

V̇ (t) 6
m
∑

m=1

(

3

4
− µm

)

‖Esm(t)‖2 +
1

4
‖Es(t)‖

2 −
n
∑

m=1

σfmTr

{

Φ̃T
fm(t)Φ̂fm(t)

}

+
1

2

n
∑

m=1

‖εfm(xm)‖2

−

n
∑

m=1

κcmTr

{

Φ̃T
cm(t)

(

ξm(Esm, x̄m)ξTm(Esm, x̄m) + σmIq

)

Φ̂cm(t)

}

−
n
∑

m=1

Tr

{

Φ̃T
am(t)

(

κam
(

ξm(Esm, x̄m)ξTm(Esm, x̄m) + σmIq
)(

Φ̂am(t)− Φ̂cm(t)
)

)

}

−
1

2

n
∑

m=1

Tr

{

ξm(Esm, x̄m)ξTm(Esm, x̄m)Φ̂am(t)

}

− κcsTr

{

Φ̃T
cs(t)

(

ξs(E
s
s , x̄s)ξ

T
s (E

s
s , x̄s) + σsIn

)

× Φ̂cs(t)

}

− κasTr

{

Φ̃T
as(t)

(

ξs(E
s
s , x̄s)ξ

T
s (E

s
s , x̄s) + σsIn

)(

Φ̂as(t)− Φ̂cs(t)
)

}

. (50)

Moreover, the following equations hold

κamTr

{

Φ̃T
am(t)

(

ξm(Esm, x̄m)ξTm(Esm, x̄m) + σmIq

)

Φ̃cm(t)

}

6
κam
2

Tr

{

Φ̃T
am(t)

(

ξm(Esm, x̄m)ξTm(Esm, x̄m)

+ σmIq

)

Φ̃am(t)

}

+
κam
2

Tr

{

Φ̃T
cm(t)

(

ξm(Esm, x̄m)ξTm(Esm, x̄m) + σmIq

)

Φ̃cm(t)

}

,

κasTr

{

Φ̃T
as(t)

(

ξs(E
s
s , x̄s)ξ

T
s (E

s
s , x̄s) + σsIn

)

Φ̃cs(t)

}

6
κas
2

Tr

{

Φ̃T
as(t)

(

ξs(E
s
s , x̄s)ξ

T
s (E

s
s , x̄s)

+ σsIn

)

Φ̃as(t)

}

+
κcs
2

Tr

{

Φ̃T
cs(t)

(

ξs(E
s
s , x̄s)ξ

T
s (E

s
s , x̄s) + σsIn

)

Φ̃cs(t)

}

. (51)
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By the weight error relationships Φ̃fm,cm,am,as,cs(t) = Φ̂fm,cm,am,as,cs(t)−Φ∗
fm,m,m,s,s, combined with

(51), Eq. (50) can be redescribed as

V̇ (t) 6
m
∑

m=1

(

3

4
− µm

)

‖Esm(t)‖2 +
1

4
‖Es(t)‖

2 −
n
∑

m=1

σfm
2

Tr

{

Φ̃T
fm(t)Φ̃fm(t)

}

−

n
∑

m=1

κcm − κam
2

Tr

{

Φ̃T
cm(t)

(

ξm(Esm, x̄m)ξTm(Esm, x̄m) + σmIq

)

Φ̃cm(t)

}

−
n
∑

m=1

2κam + 1

4
Tr

{

Φ̃T
am(t)

(

ξm(Esm, x̄m)ξTm(Esm, x̄m) + σmIq

)

Φ̃am(t)

}

−
κcs − κas

2
Tr

{

Φ̃T
cs(t)

(

ξs(E
s
s , x̄s)ξ

T
s (E

s
s , x̄s) + σsIn

)

Φ̃cs(t)

}

−
κas
2

Tr

{

Φ̃T
as(t)

(

ξs(E
s
s , x̄s)ξ

T
s (E

s
s , x̄s) + σsIn

)

Φ̃T
as(t)

}

+ Ξ(t), (52)

where Ξ(t) =
∑n

m=1 Tr
{σfm

2 Φ∗T
fmΦ∗

fm+ κcm

2 Φ∗T
m

(

ξm(Esm, x̄m)ξTm(Esm, x̄m)+σmIq
)

Φ∗
m+ 1

4Φ
∗T
m ξm(Esm, x̄m)

× ξTm(Esm, x̄m)Φ∗
m

}

+ 1
4Tr
{

Φ∗T
s

(

ξm(Esm, x̄m)ξTm(Esm, x̄m) + σsIn
)

Φ∗
s

}

+ 1
2

∑n

m=1 ‖εfm(xm)‖2, which is
bounded by a constant Θ, i.e., ‖Ξ‖ 6 Θ, because all of its terms are bounded.

According to the condition (46), Eq. (52) is rewritten as

V̇ (t) 6

m
∑

m=1

(

3

4
− µm

)

‖Esm(t)‖
2 +

1

4
‖Es(t)‖

2 −

n
∑

m=1

σfm
2

Tr

{

Φ̃T
fm(t)Φ̃fm(t)

}

−
n
∑

m=1

(κcm − κam)σm
2

Tr

{

Φ̃T
cm(t)Φ̃cm(t)

}

−
n
∑

m=1

(2κam + 1)σm
4

Tr

{

Φ̃T
am(t)Φ̃am(t)

}

−
(κcs − κas)σs

2
Tr

{

Φ̃T
cs(t)Φ̃cs(t)

}

−
κasσs
2

Tr

{

Φ̃T
as(t)Φ̃

T
as(t)

}

+ Ξ(t). (53)

Letting µ = minm=1,...,n{2(µk − 3/4)}, σf = minm=1,...,n

{

σfmφfm}, σcm = minm=1,...,n{(κcm −
κam)σm}, σam = minm=1,...,n{(2κam + 1)σm/2}, σcs = (κcs − κas)σs, σas = κasσs, then Eq. (53) turns
into

V̇ (t) 6−
µ

2

n
∑

m=1

‖Esm(t)‖2 +
1

4
‖Es(t)‖

2 −
σf
2

n
∑

m=1

φ−1
m Tr

{

Φ̃T
fm(t)Φ̃fm(t)

}

−

n
∑

m=1

σcm
2

Tr

{

Φ̃T
cm(t)Φ̃cm(t)

}

−

n
∑

m=1

σam
2

Tr

{

Φ̃T
am(t)Φ̃am(t)

}

−
σcs
2

Tr

{

Φ̃T
cs(t)Φ̃cs(t)

}

−
σas
2

Tr

{

Φ̃T
as(t)Φ̃

T
as(t)

}

+ Ξ(t). (54)

By applying the inequality (47), Eq. (54) turns into

V̇ (t) 6−
µλL̃min

2
sT(t)(L̃ ⊗ In)s(t)−

σf
2

n
∑

m=1

φ−1
m Tr

{

Φ̃T
fm(t)Φ̃fm(t)

}

−
σcm
2

n
∑

m=1

Tr

{

Φ̃T
cm(t)Φ̃cm(t)

}

−
σam
2

n
∑

m=1

Tr

{

Φ̃T
am(t)Φ̃am(t)

}

−
σcs
2

Tr

{

Φ̃T
cs(t)Φ̃cs(t)

}

−
σas
2

Tr

{

Φ̃T
as(t)Φ̃

T
as(t)

}

+ Ξ(t). (55)

Letting ̟ = min
{

µλL̃min, σf , σcm, σam, σcs, σas

}

, Eq. (55) can be rewritten as

V̇ (t) 6 −̟V (t) + Ξ. (56)

By utilizing the Lemma 3 and (56), the following inequality is obtained

V (t) 6 e−̟tV (0) +
Ξ

̟

(

1− e−̟t
)

. (57)
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Figure 2 (Color online) Three attitude angle states tracking

performance of the pursuer-evader.

Figure 3 (Color online) The convergence of tracking errors

ζpk.

The aforementioned inequality demonstrates that all error signals, encompassing sk(t), Φ̃fm(t), Φ̃cm(t),

Φ̃am(t), Φ̃as(t), Φ̃cs(t), are SGUUB, Theorem 1(i) is proved. And then through appropriate tuning of the
parameter ̟, the sliding variable sk can be driven to converge within a vicinity around zero. According
to Lemma 4 in [23], it can be known that condition sk(ζ̄k) = 0 can ensure all tracking error states, ζmj(t),
m = 1, 2, . . . , n, j = 1, 2 . . . , i, to converge to zero as t→ ∞, this directly proves Theorem 1(ii).

4 Numerical examples

This part conducts numerical simulations of the multi-QUAV attitude system comprising four QUAVs
in the Matlab environment. The parameters within its dynamic model are Izk = 8.81 × 10−3, Iyk =
4.85× 10−3, Ixk = 4.35× 10−3, l = 0.325, Gφk = Gψk = Gθk = 0.6, k = 1, . . . , 4. The initial states are

xpk=1,...,4(0) =
[

φk(0), ψi(0), θk(0)
]T

= [π/3,π/3,π/3]T, [π/4,π/4,π/4]T, [π/5,π/5,π/5]T,−[π/3,π/3,

π/3]T and xvk=1,...,4(0) =
[

φ̇i(0), ψ̇i(0), θ̇k(0)
]T

= [3, 3, 3], [2, 2, 2], [1, 1, 1], [−1,−1,−1]. The communi-
cation relationship between evader and pursuer can be represented by B = diag{0, 1, 0, 0}.

The adjacency matrix described the intercommunication of multi-QUAV attitude system is

A = [0, 1, 0, 1; 1, 0, 1, 0; 0, 1, 0, 1; 1, 0, 1, 0].

Additionally, the sliding mode variable in (9) is formulated with the parameter β = 8. Subsequently,
the consensus error, which is associated with the adjacency matrix A and the communication weight
matrix B, can be derived by consulting (11).

The NN serving as an identifier, corresponding to (31), is configured with nine nodes. The initial values
of the NN weights are Φ̂f1,...,f4(0) = [0.4, . . . , 0.4]T ∈ R

9. The adaptive training law, which corresponds
to (32), is formulated using gain values φ1,...,4 = 0.6 and σf1,...,f4 = 0.3. Subsequently, the basis function
vector ξfk(x̄k), k = 1, 2, 3, 4 are constructed by a Gaussian kernel function of width 2.

The actor and critic NNs are configured with 6 nodes that are uniformly distributed within the interval
extending from −[10, 10, 10, 40, 40, 40, 40, 40, 40]T to [10, 10, 10, 40, 40, 40, 40, 40, 40]T. Subsequently, the
basis function vector ξk(e

s
k, x̄k), k = 1, 2, 3, 4 is obtained using a Gaussian function with a width of 2. The

updating laws are formulated with the parameters σ1,...,4 = 0.5, κa1,...,a4 = 0.3, and κc1,...,c4 = 0.35. The

initial values are Φ̂a1,...,a4(0) = [0.4, . . . , 0.4]T ∈ R
6 and Φ̂c1,...,c4(0) = [0.3, . . . , 0.3]T ∈ R

6. Ultimately,
by assigning µk=1,2,3,4 = 36, the optimal pursuer controller corresponding to (35) can be derived.

In addition, the NN parameters of us are designed. The actor NN in (39) and the critic NN in (41),
they both include a total of 6 nodes, respectively. Assign the initial values of the critic and the actor NN
weights as Φ̂as(0) = 0.4 and Φ̂as(0) = 0.5, respectively. Set the value of the updating laws parameters
associated with (39) and (41) to κas = 0.32, κcs = 0.35 and σs = 0.2. Additionally, the basis function
vector ξs(e

s
s, x̄s) are constructed by a Gaussian kernel function of width 2.

Figures 2–7 exhibit the three attitude angle states of the pursuer-evader have better tracking perfor-
mance. Figure 2 represents the pursuer composed of four QUAV systems and the evader composed of
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Figure 4 (Color online) The norm ‖Φ̂fm‖, m = 1, 2, 3, 4 of

the NN weights for the identifier.

Figure 5 (Color online) The norm ‖Φ̂am‖, m = 1, 2, 3, 4 of

the NN weights for the actor.

Figure 6 (Color online) The norm ‖Φ̂cm‖, m = 1, 2, 3, 4 of

the NN weights for the critic.

Figure 7 (Color online) The ‖Φ̂cs‖ and ‖Φ̂as‖ scores repre-

sent the critic and actor NN weights norm of u∗

s .

a single QUAV system, and their attitude game following trajectory performance. Figure 3 displays the
tracking errors for the three attitude angle states (roll, pitch, and yaw) of the 4 agents, demonstrating
their convergence to zero. Figures 4–6 illustrate the boundedness of the parameter matrices for the identi-
fier, critic, and actor NNs with control inputs u∗z1,...,z4, respectively. Figure 7 illustrates the boundedness
of the parameter matrices of the actor and critic NNs with respect to evader u∗s.

5 Conclusion

This paper proposes a novel attitude zero-sum game control approach for multi-QUAV systems and
single-QUAV system based on the sliding mode control and RL approach. In this game control, the SMC
principle is used to design a sliding mode hyperplane to manage multiple state variables with differential
relationships. To obtain the saddle point of the zero-sum game, we execute RL within the I-DAC
framework, which can derive the optimal control strategy for both parties. As opposed to traditional RL
methods, the proposed RL approach features a simpler algorithm and releases the sustained incentives and
known dynamics. The designed game control algorithm is applicable to a certain range of multi-QUAV
pursuit-evasion problems. The RL-based algorithm we designed provides a new solution for multi-UAV
system confrontation. Finally, the effectiveness of the control method is verified through the Lyapunov
stability theorem and numerical simulation. In future studies, we will consider the non-zero-sum game
control for multi-QUAV attitude systems via sliding mode and fixed-time convergent RL.

Acknowledgements This work was supported by National Natural Science Foundation of China (Grant Nos. 62573316, 62503360),



Li Z J, et al. Sci China Inf Sci November 2025, Vol. 68, Iss. 11, 210211:13

Natural Science Foundation of Tianjin (Grant No. 25JCQNJC00980), and Natural Science Foundation of Shandong Province (Grant

No. ZR2025MS996).

References

1 Li X, Lu X, Chen W, et al. Research on UAVs reconnaissance task allocation method based on communication preservation.
IEEE Trans Consumer Electron, 2024, 70: 684–695

2 Shahid S, Zhen Z, Javaid U. Cooperative task assignment of heterogeneous unmanned aerial vehicles for simultaneous multi-
directional attack on a moving target. Eng Appl Artif Intell, 2025, 139: 109595

3 Li J, Yang X, Yang Y, et al. Cooperative mapping task assignment of heterogeneous multi-UAV using an improved genetic
algorithm. Knowl-Based Syst, 2024, 296: 111830

4 Chen S, Liu G, Zhou Z, et al. Robust multi-agent reinforcement learning method based on adversarial domain randomization
for real-world dual-UAV cooperation. IEEE Trans Intell Veh, 2024, 9: 1615–1627

5 Chen Y, Liu G, Zhang Z, et al. Improving physical layer security for multi-UAV systems against hybrid wireless attacks.
IEEE Trans Veh Technol, 2024, 73: 7034–7048

6 Zhou C, Kadhim K M R, Zheng X. Multi-UAVs path planning for data harvesting in adversarial scenarios. Comput Commun,
2024, 221: 42–53

7 Gao Q Y, Wu H C, Zhang Y F, et al. Differential game-based analysis of multi-attacker multi-defender interaction. Sci China
Inf Sci, 2021, 64: 222302

8 Xia C, Ding S, Wang C, et al. Risk analysis and enhancement of cooperation yielded by the individual reputation in the
spatial public goods game. IEEE Syst J, 2016, 11: 1516–1525

9 Long J, Yu D, Wen G, et al. Game-based backstepping design for strict-feedback nonlinear multi-agent systems based on
reinforcement learning. IEEE Trans Neural Netw Learn Syst, 2022, 35: 817–830

10 Gong Z, Yang F. Secure tracking control via fixed-time convergent reinforcement learning for a UAV CPS. IEEE CAA J
Autom Sin, 2024, 11: 1699–1701

11 Ren H, Jiang B, Ma Y. Zero-sum differential game-based fault-tolerant control for a class of affine nonlinear systems. IEEE
Trans Cybern, 2022, 54: 1272–1282

12 Lv S Y, Wu Z, Xiong J. A zero-sum hybrid stochastic differential game with impulse controls. Sci China Inf Sci, 2024, 67:
212209

13 Yang X, Liu D, Ma H, et al. Online approximate solution of HJI equation for unknown constrained-input nonlinear continuous-
time systems. Inf Sci, 2016, 328: 435–454

14 Yan R, Duan X, Shi Z, et al. Matching-based capture strategies for 3D heterogeneous multiplayer reach-avoid differential
games. Automatica, 2022, 140: 110207

15 Fu H, Liu H H T. Justification of the geometric solution of a target defense game with faster defenders and a convex target
area using the HJI equation. Automatica, 2023, 149: 110811

16 Yang F, Gong Z, Wei Q, et al. Secure containment control for multi-UAV systems by fixed-time convergent reinforcement
learning. IEEE Trans Cybern, 2025, 55: 1981–1994

17 Cui J, Pan Y, Xue H, et al. Simplified optimized finite-time containment control for a class of multi-agent systems with
actuator faults. Nonlinear Dyn, 2022, 109: 2799–2816

18 Zhang Z P, Xia C Y, Qi G Y, et al. Multi-step state-based opacity for unambiguous weighted machines. Sci China Inf Sci,
2024, 67: 212204

19 Wen G, Chen C L P, Ge S S, et al. Optimized adaptive nonlinear tracking control using actor-critic reinforcement learning
strategy. IEEE Trans Ind Inf, 2019, 15: 4969–4977

20 Li Z, Song Y, Wen G. Reinforcement learning based optimized sliding-mode consensus control of high-order nonlinear canonical
dynamic multiagent system. IEEE Syst J, 2023, 17: 6302–6311

21 Song Y, Li Z, Li B, et al. Optimized leader-follower consensus control using combination of reinforcement learning and sliding
mode mechanism for multiple robot manipulator system. Intl J Robust Nonlinear, 2024, 34: 5212–5228

22 Wen G, Yu D, Zhao Y. Optimized fuzzy attitude control of quadrotor unmanned aerial vehicle using adaptive reinforcement
learning strategy. IEEE Trans Aerosp Electron Syst, 2024, 60: 6075–6083

23 Wen G, Dou H, Li B. Adaptive fuzzy leader-follower consensus control using sliding mode mechanism for a class of high-order
unknown nonlinear dynamic multi-agent systems. Intl J Robust Nonlinear, 2023, 33: 545–558

24 Yu W, Wang H, Cheng F, et al. Second-order consensus in multiagent systems via distributed sliding mode control. IEEE
Trans Cybern, 2016, 47: 1872–1881

25 Zhao B R, Peng Y J, Song Y N, et al. Sliding mode control for consensus tracking of second-order nonlinear multi-agent
systems driven by brownian motion. Sci China Inf Sci, 2018, 61: 070216

26 Qu Q, Zhang H, Yu R, et al. Neural network-based H∞ sliding mode control for nonlinear systems with actuator faults and
unmatched disturbances. Neurocomputing, 2018, 275: 2009–2018

27 Zhao H, Zong G, Zhao X, et al. Hierarchical sliding-mode surface-based adaptive critic tracking control for nonlinear multi-
player zero-sum games via generalized fuzzy hyperbolic models. IEEE Trans Fuzzy Syst, 2023, 31: 4010–4023

28 Cui G, Yang W, Yu J, et al. Fixed-time prescribed performance adaptive trajectory tracking control for a quav. IEEE Trans
Circ Syst II, 2022, 69: 494–498

29 Wen G, Li B. Optimized leader-follower consensus control using reinforcement learning for a class of second-order nonlinear
multiagent systems. IEEE Trans Syst Man Cybern Syst, 2021, 52: 5546–5555

30 Park J, Sandberg I W. Universal approximation using radial-basis-function networks. Neural Comput, 1991, 3: 246–257
31 Ge S S, Wang C. Adaptive neural control of uncertain MIMO nonlinear systems. IEEE Trans Neural Netw, 2004, 15: 674–692

https://doi.org/10.1109/TCE.2024.3368062
https://doi.org/10.1016/j.engappai.2024.109595
https://doi.org/10.1016/j.knosys.2024.111830
https://doi.org/10.1109/TIV.2023.3307134
https://doi.org/10.1109/TVT.2023.3337154
https://doi.org/10.1016/j.comcom.2024.04.004
https://doi.org/10.1007/s11432-020-3228-8
https://doi.org/10.1109/JSYST.2016.2539364
https://doi.org/10.1109/TNNLS.2022.3177461
https://doi.org/10.1109/JAS.2023.124149
https://doi.org/10.1109/TCYB.2022.3215716
https://doi.org/10.1007/s11432-023-4062-6
https://doi.org/10.1016/j.ins.2015.09.001
https://doi.org/10.1016/j.automatica.2022.110207
https://doi.org/10.1016/j.automatica.2022.110811
https://doi.org/10.1109/TCYB.2025.3534463
https://doi.org/10.1007/s11071-022-07586-1
https://doi.org/10.1007/s11432-023-4041-6
https://doi.org/10.1109/TII.2019.2894282
https://doi.org/10.1109/JSYST.2023.3280192
https://doi.org/10.1002/rnc.7259
https://doi.org/10.1109/TAES.2024.3401668
https://doi.org/10.1002/rnc.6460
https://doi.org/10.1109/TCYB.2016.2623901
https://doi.org/10.1007/s11432-017-9407-6
https://doi.org/10.1016/j.neucom.2017.10.041
https://doi.org/10.1109/TFUZZ.2023.3273566
https://doi.org/10.1109/TCSII.2021.3084240
https://doi.org/10.1109/TSMC.2021.3130070
https://doi.org/10.1162/neco.1991.3.2.246
https://doi.org/10.1109/TNN.2004.826130

	Introduction
	Preliminaries
	Attitude system description
	Algebraic graph theory
	Neural network (NN)

	Main results
	Zero-sum game formulation description
	Zero-sum differential game-based optimal controller design
	Reinforcement learning (RL) design
	Main theorem and proof

	Numerical examples
	Conclusion

