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Abstract Traditionally, the designs of control policies for the group formation control (GFC) problem of multi-agent

systems (MASs) rely on accurate system dynamics, which have been proven challenging to obtain in the complex real

world, leading to unknown MASs. In this respect, this paper investigates the distributed GFC problem of heterogeneous

nonlinear MASs with unknown dynamics. First, an effective and more flexible communication topology is designed to achieve

communication configuration among agents. Then, the GFC problem is formulated by defining the local group neighborhood

formation error and performance index for each agent under the designed communication topology. By developing an effective

policy iteration algorithm and establishing a corresponding actor-critic neural network framework, a novel model-free GFC

algorithm is proposed, overcoming the reliance on system dynamics for control design. The proposed model-free algorithm

can seek the optimal GFC control policy online using system operation data to achieve GFC and minimize control cost,

thus yielding better control performance and demonstrating superior practicality in practical applications compared with

traditional offline model-based methods. Finally, two simulation examples demonstrate the effectiveness and superiority of

the developed model-free algorithm for solving the GFC problem.
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1 Introduction

Formation control, which aims to drive a group of agents to achieve and maintain a certain formation, has
become a prominent topic in the field of multi-agent systems (MASs) because of its potential applications
in cooperative surveillance [1], resource seeking [2], and target enclosing [3]. Distributed formation control
approaches, which utilize local neighboring relative interactions, have been developed extensively for
homogeneous linear MASs, such as first-order [4], second-order [5] and high-order [6, 7] MASs.

In the real world, physical plants typically exhibit nonlinear characteristics. Furthermore, agents
within an entire system may display different dynamics—a typical example being the unmanned aerial
vehicle-unmanned ground vehicle system. Such systems are called heterogeneous systems, and significant
formation control results have been obtained for heterogeneous nonlinear MASs, such as discrete-time
MASs [8] and the heterogeneous MASs modeled using the Euler-Lagrange equation [9]. However, the
above formation control results rely heavily on complete system models, which have been proven challeng-
ing to obtain in the complex real world, leading to partially or completely unknown MASs. Until now,
many excellent results have been obtained for the formation control problem of heterogeneous nonlinear
MASs with unknown dynamics [10–17]. For example, Ref. [10] developed an efficient formation control
framework using the iterative learning approach. Meanwhile, using an identifier-actor-critic reinforcement
learning algorithm, Refs. [11, 12] addressed the optimal leader-follower formation control problem.
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The aforementioned formation control results for MASs, where all agents form a single formation, en-
counter limitations such as reduced work efficiency and restricted operational scope in scenarios that re-
quire the simultaneous execution of multiple tasks, such as search-and-rescue operations and multi-target
surveillance [18–20]. In these scenarios, the entire MAS must be partitioned into several subgroups to
accomplish distinct tasks. Consequently, the group formation control (GFC) problem emerges, wherein
agents within each subgroup achieve a predefined subformation, allowing for multiple distinct subforma-
tions within the MAS. Dong et al. [21] and Hu et al. [22] studied GFC problems of second-order linear
MASs. Dong et al. [23] further developed an effective control protocol for homogeneous general linear
MASs. For the same MASs, Ge et al. [24] considered the case where aperiodic sampling and communica-
tion delays coexist simultaneously; Hu et al. [25] proposed a fully distributed GFC method; Tian et al. [26]
designed a novel adaptive control protocol under switching topologies; Qi et al. [27] developed a GFC
algorithm based on distributed multi-sensor multi-target filtering with intermittent observations; and Li
et al. [28] considered the collision avoidance problem. For nonlinear MASs, Han et al. [29] investigated
the GFC problem of second-order systems. Wang et al. [30] and Wu et al. [31] solved GFC problems of
second-order heterogeneous systems using event-triggered and impulsive control methods, respectively.
Du et al. [32] designed a GFC protocol for heterogeneous MASs consisting of linear and Euler-Lagrange
dynamic agents.

Notably, the aforementioned GFC results rely heavily on accurate system dynamics. Recently, some
remarkable results have also been obtained for the GFC problem of MASs with unknown dynamics. For
instance, Wang et al. [33] proposed a model-free optimal GFC algorithm for linear heterogeneous MASs
based on the algebraic Riccati equation derived from linear systems. Meanwhile, Shi et al. [34] studied the
robust output GFC problem of linear heterogeneous MASs with uncertainties. Notably, these previous
studies [33,34] also involved the optimal coordination control problem—which is one of the most popular
topics for MASs and one of the concerns of this paper—to design effective control policies that not
only enabled MASs to achieve coordination control but also minimized predefined performance indices
associated with control performance, energy consumption, and time spending. Evidently, although some
results on the GFC problem of MASs with unknown dynamics have been obtained, these all focus on
linear MASs and require the strict acyclic partition condition for communication topology, which reduces
the applicability of the obtained results and the flexibility of agent interaction. In addition, Shi et al. [34]
required additional identification for system dynamics, thus adding an extra computational burden. To
the best of the authors’ knowledge, no model-free GFC results are currently available for heterogeneous
nonlinear MASs. Therefore, this paper aims to develop an effective model-free GFC algorithm for such
systems while addressing the aforementioned limitations.

Motivated by the above discussion, this paper is dedicated to studying the GFC problem of het-
erogeneous nonlinear MASs with unknown dynamics. To achieve the communication configuration for
MASs, an effective and more flexible communication topology is first designed. Then, a novel model-free
GFC algorithm is proposed by developing an effective policy iteration (PI) algorithm and establishing a
corresponding actor-critic neural network (NN) framework. The detailed and specific contributions are
presented below.

(1) Different from existing model-free GFC studies for linear MASs [33, 34], a novel model-free GFC
algorithm is developed for heterogeneous nonlinear MASs. The algorithm does not require additional
identification for system dynamics and applies to both linear and nonlinear MASs, thereby demonstrating
a broader application scope.

(2) The proposed model-free GFC algorithm not only achieves GFC but also determines the optimal
control policy in real-time to minimize control cost. Compared with previous offline model-based methods
[25–32], the developed online model-free algorithm demonstrates superior practicality in real applications.

(3) A more flexible communication topology is proposed for the GFC problem. This communication
topology eliminates the requirement for the strict acyclic partition condition [21, 23–25, 33, 34], thereby
increasing the flexibility of communication configuration and expanding the range of topology selection.

The novelties of this work compared with existing studies are listed in Table 1 [21–34].
The rest of this paper is structured as follows. Section 2 establishes the GFC problem for heterogeneous

nonlinear MASs. Section 3 develops a novel online model-free algorithm to solve the GFC problem. Two
simulation examples are presented in Section 4. Some summaries and prospects for this work are given
in Section 5.

Notations. R
n and R

n×m denote the n-dimensional vector and n × m-dimensional real matrix,
respectively. In and 1n represent the n-dimensional identity matrix and column vector with all elements
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Table 1 Comparison with existing studies.

Existing studies Nonlinear Heterogeneous Model-free Online Optimality

[21–28] ✗ ✗ ✗ ✗ ✗

[29] ✓ ✗ ✗ ✗ ✗

[30–32] ✓ ✓ ✗ ✗ ✗

[33, 34] ✗ ✓ ✓ ✓ ✓

This work ✓ ✓ ✓ ✓ ✓

equal to one, respectively. ⊗ is the Kronecker product of the matrices. For a matrix or vector P , PT

and ‖P‖ represent its transpose and Euclidean norm, respectively. For a symmetric matrix H , H > 0
(or H > 0) means that H is positive definite (or semi-positive definite).

2 Preliminaries

2.1 Description of communication topology

The communication topology for MASs can be described using the weighted directed graph G = (V , E ,A)
with node set V = {1, . . . , i, . . . , N}, edge set E ⊆ V × V , and weighted adjacency matrix A = [aij ] ∈
R
N×N , where i stands for the ith agent, and aij 6= 0 or aij = 0 indicates whether or not there is direct

information flow from j to i. Moreover, assume aii = 0 for ∀i. Denote the neighbor set of i as Ni with
aij 6= 0 for j ∈ Ni. The Laplacian matrix of G is expressed by L = D − A, where D = diag(di) with
di =

∑

j∈Ni
aij . The edge sequence (i−1, i), (i, i+1), . . . is called a directed path. G containing a directed

spanning tree indicates that there exists at least one node (also called the root node) that has a directed
path to all other nodes.

For the GFC problem, suppose that the graph G can be divided into M subgraphs {G1, . . . ,GM}
(corresponding to M subgroups {Ω1, . . . ,ΩM}) with node sets {V1, . . . ,VM} satisfying Vi ∩ Vj = ∅ and
∪Mi=1Vi = V . Let ī denote the subgroup index to which agent i belongs (also the corresponding leader
index below). Then, on the basis of the above subgroup division, L can be described as the following
block form

L =















L11 L12 · · · L1M

L21 L22 · · · L2M

...
...

. . .
...

LM1 LM2 · · · LMM















.

Assumption 1. Each subgraph Gī, ī = 1, . . . ,M , contains a spanning tree. Moreover, for all k 6= l ∈
{1, 2, . . . ,M}, Lkl has entries in each row that sum to zero.

Remark 1. Notably, the GFC problem involves coupling between multiple subgroups as communication
interactions exist both within and between them. This maintains the integrity of the MAS. Lkl, k 6= l,
indeed, can be regarded as the interaction matrix block between subgroups k and l. The above properties
serve as a basis for grouping and provide valuable insights on how to efficiently utilize inter-subgroup
communication to achieve GFC. Moreover, the communication topology designed in this paper does
not require the acyclic partition condition imposed previously [21, 23–25, 33, 34], thereby enhancing the
flexibility of interactions among agents. The detailed analysis is presented in the following Lemma 1,
where Assumption 1 plays a crucial role.

2.2 Problem formulation

The dynamics of agent i is expressed as follows:

xi(k + 1) = fi(xi(k)) + gi(xi(k))ψi(k), i = 1, . . . , N, (1)

where xi(k) ∈ R
n and ψi(k) ∈ R

mi represent the state and control policy, respectively. fi(·) ∈ R
n and

gi(·) ∈ R
n×mi are unknown system dynamics satisfying the following general assumption [12].

Assumption 2. fi(·) and gi(·) are Lipschitz continuous on a compact set Ω containing the origin with
fi(0) = 0, and system (1) is stabilizable on Ω.
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For the GFC problem studied in this paper, the leader (also called the subformation reference signal)
dynamics for each subgroup is given as

xī0(k + 1) = f ī0(x
ī
0(k)), ī = 1, . . . ,M, (2)

where xī0(k) ∈ R
n is the state of leader ī.

Remark 2. The leader ī, which can be either a physical agent or a virtual signal, provides the formation
reference signal for subgroup ī to achieve subformation and guides its macroscopic movement. The
function f ī0(·) can be selected on the basis of specific task requirements and may therefore differ from
fi(·).

In the leader-following case, denote bi > 0 as the pinning gain of agent i, where bi > 0 or bi = 0
indicates whether or not agent i receives the reference signal of leader ī directly. Then, the following
general assumption is required.

Assumption 3. For each subgroup, bi > 0 for at least one root node i.

Define the group formation tracking error for agent i as

zi(k) = xi(k)− xī0(k)− ηi, i = 1, . . . , N, (3)

where ηi ∈ R
n is the relative position between agent i and leader ī, which depicts the predefined subfor-

mation pattern.

Definition 1 (GFC). For MAS (1) and (2) with any bounded initial states, the GFC is said to be
achieved if

lim
k→∞

‖zi(k)‖ = 0, i = 1, . . . , N. (4)

According to the interactions of MAS (1) and (2) under graph G, the local group neighborhood for-
mation error for agent i is defined as

δi(k) =
∑

j∈Ni

aij(xi(k)− xī0(k)− ηi − (xj(k)− xj̄0(k)− ηj))

+ bi(xi(k)− xī0(k)− ηi), i = 1, . . . , N, (5)

where δi(k) ∈ R
n.

According to (3), δi(k) can be rewritten as

δi(k) =
∑

j∈Ni

aij(zi(k)− zj(k)) + bizi(k), i = 1, . . . , N. (6)

Further, we establish the relationship between group neighborhood formation error and group formation
tracking error as follows:

δ(k) = ((L + B)⊗ In)Z(k), (7)

where δ(k) = [δT1 (k), . . . , δ
T
N (k)]T, Z(k) = [zT1 (k), . . . , z

T
N(k)]

T, and B = diag{bi} ∈ R
N×N , i = 1, . . . , N .

Lemma 1. Suppose that Assumptions 1 and 3 hold. Then, MAS (1) and (2) achieves GFC if

lim
k→∞

‖δ(k)‖ = 0.

Proof. Denote the corresponding graph and Laplacian matrix of MAS (1) and (2) containing M leaders
and N agents as Ḡ and L̄, respectively. Then, under Assumptions 1 and 3, L̄ can be described as the
following block form:

L̄ =

[

0M×M 0M×N

B̃ L+ B

]

,

where B̃ is composed of the elements of −B, ordered according to the definition of the Laplacian matrix
in the topology description.

Letting L̃ = [B̃,L+B], from [19], we can obtain that under Assumptions 1 and 3, rank(L̄) = N , which
implies that rank(L̃) = N because all of the entries in the first M rows of L̄ are zero. Given that L̃ has
N +M columns and each row sum is zero, it follows that the first M columns of L̃ depend on its last N
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columns, where [b1, . . . , bN ]T = (L + B)1N . Consequently, it follows that rank(L + B) = rank(L̃) = N ,
which indicates that (L+ B) is nonsingular. According to (7), we have

‖Z(k)‖ 6 ‖δ(k)‖/σ(L+ B), (8)

where σ(L+ B) > 0 is the minimum singular value of (L+ B).
From the above analysis, it is known that limk→∞ ‖δ(k)‖ = 0 entails limk→∞ ‖Z(k)‖ = 0. Then, from

Definition 1, we know that MAS (1) and (2) achieves GFC. The proof is completed.

Remark 3. Lemma 1 tells us that the proposed communication topology satisfying Assumption 1 is
valid for the GFC problem by deriving the relationship between group neighborhood formation error and
group formation tracking error based on the nonsingularity of (L+B). Notice that Assumption 1 does not
require the acyclic partition condition imposed previously [21,23–25,33,34], thus increasing the flexibility
of communication configuration and expanding the range of topology selection for the GFC problem.

Given MAS (1) and (2) and the local group neighborhood formation error (5), let xi(k) be denoted as
xik. Then, we have

δi(k+1) = (di + bi)(fi(xik) + gi(xik)ψik)−
∑

j∈Ni

aij(fj(xjk) + gj(xjk)ψjk)− bif
ī
0(x

ī
0k). (9)

On the basis of Lemma 1, it can be readily inferred that when limk→∞ ‖δik‖ = 0 for each agent i,
the GFC is achieved. Therefore, the control objective of this work is achieving ‖δik‖ → 0 by designing
effective control policies ψi, i = 1, . . . , N .

Considering the control performance, define the local performance index for agent i as

Ji(δik, ψik, ψ(j)k) =

∞
∑

t=k

αt−kri(δit, ψit, ψ(j)t)

=ri(δik, ψik, ψ(j)k) + αJi(δi(k+1), ψi(k+1), ψ(j)(k+1)), (10)

where ψ(j) = {ψj |j ∈ Ni}, ri(δik, ψik, ψ(j)k) = δTikQiiδik + ψT
ikRiiψik +

∑

j∈Ni
ψT
jkRijψjk is the utility

function, and Qii > 0 ∈ R
n×n, Rii > 0 ∈ R

mi×mi , Rij > 0 ∈ R
mj×mj are all symmetric constant matrices.

0 < α < 1 is the discount factor.

Remark 4. Unlike the performance index involving only the control policy of agent i itself [11, 12, 14,
15,33,34], the performance index (10) proposed in this paper incorporates the policies of its neighboring
agents. This aligns with (9) and reflects the characteristics of distributed control systems.

Then, synthesizing the aforementioned analyses, the GFC problem of MAS (1) and (2) to be solved in
this paper can be formulated as follows.
Problem 1. Design an effective distributed control policy for each agent i to stabilize error system (9)
and minimize performance index (10) simultaneously.

Definition 2 (Admissible control policy [12]). The policy ψ̄i = {ψik}∞k=0 is admissible if it (1) stabilizes
(9) and (2) guarantees that (10) is finite.

When the policy ψik satisfies Definition 2, we have

Ji(δik) = ri(δik, ψik, ψ(j)k) + αJi(δi(k+1)). (11)

Then the optimal local performance index J∗i (δik) satisfies the following coupled Hamilton-Jacobi-
Bellman (HJB) equation

J∗i (δik) = min
ψik

(ri(δik, ψik, ψ(j)k) + αJ∗i (δi(k+1))). (12)

By solving the necessary condition ∂J∗i (δik)/∂ψik = 0, the desired optimal control policy ψ∗ik is derived
as

ψ∗ik =argmin
ψik

(ri(δik, ψik, ψ(j)k) + αJ∗i (δi(k+1)))

=− α

2
(di + bi)R

−1
ii g

T
i (xik)

∂J∗i (δi(k+1))

∂δi(k+1)
. (13)
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Remark 5. Note that the desired optimal control policy ψ∗ik can be derived by solving the coupled
HJB equation. However, the equation exhibits highly nonlinear coupling and heavily relies on system
dynamics, rendering it challenging to solve analytically. This paper thus aims to develop a model-free
approach to overcome this challenge.

Note that Eq. (9) is jointly driven by ψi and ψ(j). Accordingly, the GFC problem considered in this
paper can be regarded as a graphical game problem, focusing on finding the global Nash equilibrium
solution.

Definition 3 (Global Nash equilibrium [35]). The optimal control policy set {ψ∗1 , . . . , ψ∗N} is a global
Nash equilibrium solution for the N -player graphical game if

J∗i , Ji(ψ
∗
i , ψ

∗
G−i) 6 Ji(ψi, ψ

∗
G−i), ∀i ∈ V ,

where ψG−i = {ψj |j ∈ V , j 6= i}. The optimal performance index set {J∗1 , . . . , J∗N} represents a Nash
equilibrium.

According to Definition 3, Eq. (12) can be rewritten as

J∗i (δik) = ri(δik, ψ
∗
ik, ψ

∗
(j)k) + αJ∗i (δi(k+1)). (14)

3 Model-free distributed GFC design

In this section, an effective PI algorithm is proposed to determine the optimal GFC policy, together with
a rigorous convergence analysis. On this basis, the stability of the group neighborhood formation error
system and the global Nash equilibrium of MASs are guaranteed. Then, the implementation process of
the PI algorithm using an actor-critic NN framework in an online model-free manner is presented.

3.1 PI algorithm and its convergence analysis

The proposed PI algorithm incorporates policy evaluation and policy improvement to evaluate the current
policy and iteratively update it until the optimal one is obtained. The detailed procedure of this algorithm
is outlined in Algorithm 1.

Algorithm 1 PI algorithm for GFC of heterogeneous nonlinear MASs.

1. Initialization. Start with arbitrary initial admissible policies ψ0
ik for ∀i and let l = 0.

2. Policy evaluation. Solve for Jli(δik) using

Jli(δik) = ri(δik, ψ
l
ik, ψ

l
(j)k) + αJli(δi(k+1)). (15)

3. Policy improvement. Update ψl+1
ik

using

ψl+1
ik = argmin

ψik

(ri(δik, ψik, ψ(j)k) + αJli(δi(k+1))). (16)

4. Stop when |Jl+1
i

(δik) − J
l
i(δik)| 6 ε with a prescribed constant ε.

Theorem 1. Let all agents in MAS (1) implement Algorithm 1 synchronously. Then, it can be obtained
that (i) J li(δik) is monotonically nonincreasing, i.e., J l+1

i (δik) 6 J li (δik); (ii) as l → ∞, J li(δik) and ψlik
converge to J∗i (δik) and ψ

∗
ik, respectively, i.e., liml→∞ J li(δik) = J∗i (δik) and liml→∞ ψlik = ψ∗ik.

Proof. (i) Define a new performance index Φl+1
i (δik) as

Φl+1
i (δik) , ri(δik, ψ

l+1
ik , ψl+1

(j)k) + αJ li (δi(k+1))

= min
ψik

(ri(δik, ψik, ψ(j)k) + αJ li (δi(k+1))). (17)

Based on (15)–(17), we have

Φl+1
i (δik) 6 J li(δik). (18)
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Note that the policy ψlik is always admissible during the iteration process [35]. Thus, ‖δik‖ → 0 as
k → ∞. Let k = q, q → ∞. Then, we obtain

J l+1
i (δiq) = Φl+1

i (δiq) = J li(δiq). (19)

Let k = q − 1. The combination of (15), (16), and (19) yields

J l+1
i (δi(q−1)) = ri(δi(q−1), ψ

l+1
i(q−1), ψ

l+1
(j)(q−1)) + αJ l+1

i (δiq)

= ri(δi(q−1), ψ
l+1
i(q−1), ψ

l+1
(j)(q−1)) + αJ li (δiq)

= min
ψi(q−1)

(ri(δi(q−1), ψi(q−1), ψ(j)(q−1)) + αJ li (δiq))

6 ri(δi(q−1), ψ
l
i(q−1), ψ

l
(j)(q−1)) + αJ li (δiq)

= J li(δi(q−1)). (20)

From (20), we conclude that J l+1
i (δik) 6 J li(δik) holds for k = q − 1. Suppose the conclusion holds for

k = T + 1, T = 0, 1, 2, . . ., i.e., J l+1
i (δi(T+1)) 6 J li (δi(T+1)). Letting k = T , we then obtain

J l+1
i (δiT ) =ri(δiT , ψ

l+1
iT , ψl+1

(j)T ) + αJ l+1
i (δi(T+1))

6ri(δiT , ψ
l+1
iT , ψl+1

(j)T ) + αJ li(δi(T+1))

=Φl+1
i (δiT )

6J li (δiT ). (21)

Thus, by mathematical induction, Eqs. (19)–(21) together entail the conclusion that for ∀i and ∀l,
J l+1
i (δik) 6 J li (δik) holds for ∀k.
(ii) Define J∞i (δik) , liml→∞ J li (δik) for simplicity. From (1), we have

J∞i (δik) 6 Φl+1
i (δik)

= min
ψik

(ri(δik, ψik, ψ(j)k) + αJ li (δi(k+1))). (22)

When l → ∞, we can get

J∞i (δik) 6 min
ψik

(ri(δik, ψik, ψ(j)k) + αJ∞i (δi(k+1))). (23)

According to the monotonically nonincreasing property of J li(δik) in (1), there exists an index H such
that

JHi (δik)− γ 6 J∞i (δik) 6 JHi (δik), (24)

where γ is an arbitrary positive constant. From (24) we further obtain

J∞i (δik) > JHi (δik)− γ

= ri(δik, ψ
H
ik , ψ

H
(j)k) + αJHi (δi(k+1))− γ

> ri(δik, ψ
H
ik , ψ

H
(j)k) + αJ∞i (δi(k+1))− γ

> min
ψik

(ri(δik, ψik, ψ(j)k) + αJ∞i (δi(k+1)))− γ. (25)

Because γ is an arbitrary positive constant, we have

J∞i (δik) > min
ψik

(ri(δik, ψik, ψ(j)k) + αJ∞i (δi(k+1))). (26)

Combining (23) and (26) yields

J∞i (δik) = min
ψik

(ri(δik, ψik, ψ(j)k) + αJ∞i (δi(k+1))). (27)
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Given policies µik and µ(j)k that satisfy Definition 2, once again, define a new performance index
Θi(δik) as

Θi(δik) = ri(δik, µik, µ(j)k) + αΘi(δi(k+1)). (28)

Let k = p, p→ ∞. Then, we have ‖δip‖ → 0, which entails J∞i (δip) = Θi(δip) = 0. Letting k = p− 1,
we get

Θi(δi(p−1)) = ri(δi(p−1), µi(p−1), µ(j)(p−1)) + αΘi(δip)

> min
ψi(p−1)

(ri(δi(p−1), ψi(p−1), ψ(j)(p−1)) + αΘi(δip))

= min
ψi(p−1)

(ri(δi(p−1), ψi(p−1), ψ(j)(p−1)) + αJ∞i (δip))

= J∞i (δi(p−1)). (29)

Suppose (29) holds for k = s+ 1, s = 0, 1, 2, . . ., i.e., Θi(δi(s+1)) > J∞i (δi(s+1)). Next, when k = s, we
have

Θi(δis) = ri(δis, µis, µ(j)s) + αΘi(δi(s+1))

> ri(δis, µis, µ(j)s) + αJ∞i (δi(s+1))

> min
ψis

(ri(δis, ψis, ψ(j)s) + αJ∞i (δi(s+1)))

= J∞i (δis). (30)

Thus, by mathematical induction, we deduce that Θi(δis) > J∞i (δis) holds for ∀s = 0, 1, 2, . . ., from
above. Letting µik = ψ∗ik for ∀i, we get

J∞i (δik) 6 Θi(δik) = J∗i (δik). (31)

Note that J∗i (δik) represents the optimal performance index. Then, we can also attain

J∞i (δik) > J∗i (δik). (32)

The combination of (31) and (32) yields

J∞i (δik) , lim
l→∞

J li (δik) = J∗i (δik). (33)

According to (33) and (13), we can obtain liml→∞ ψ
l
ik = ψ∗ik directly. The proof is completed.

3.2 System stability analysis and global Nash equilibrium seeking

The following theorem illustrates the results for achieving GFC and global Nash equilibrium.

Theorem 2. Suppose that Assumptions 1 and 3 hold. For each agent i, if J∗i (δik) and ψ
∗
ik satisfy (14)

and (13), respectively, then (i) the error system (9) is asymptotically stable and hence MAS (1) and (2)
achieves GFC; (ii) all agents achieve the global Nash equilibrium.

Proof. (i) From (14), we have

J∗i (δik)− αJ∗i (δi(k+1)) = ri(δik, ψ
∗
ik, ψ

∗
(j)k). (34)

By multiplying both sides of (34) by αk, we obtain

αkJ∗i (δik)− αk+1J∗i (δi(k+1)) = αkri(δik, ψ
∗
ik, ψ

∗
(j)k). (35)

Define the difference of the Lyapunov function candidate as

∆(αkJ∗i (δik)) = αk+1J∗i (δi(k+1))− αkJ∗i (δik). (36)

According to (35), Eq. (36) can be rewritten as

∆(αkJ∗i (δik)) = −αkri(δik, ψ∗ik, ψ∗(j)k) < 0. (37)
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Synthesizing the aforementioned analyses, it can be obtained that the local group neighborhood for-
mation error system (9) is asymptotically stable for each agent i, i.e., ‖δik‖ → 0 as k → ∞. According
to Definition 1 and Lemma 1, it follows that MAS (1) and (2) achieves GFC.

(ii) Because J∗i (δik, ψ
∗
ik, ψ

∗
(j)k) is the optimal value,

J∗i (δik, ψ
∗
ik, ψ

∗
(j)k) 6 Ji(δik, ψik, ψ

∗
(j)k). (38)

According to the definition of the local performance index (10), we obtain

J∗i (δik, ψ
∗
ik, ψ

∗
(j)k) = Ji(δik, ψ

∗
ik, ψ

∗
(j)k, ψmk), (39)

where m /∈ {i} ∪Ni.
Combining the above two equations, we obtain

Ji(δik, ψ
∗
ik, ψ

∗
(G−i)k) 6 Ji(δik, ψik, ψ

∗
(G−i)k). (40)

From Definition 3, we can conclude that all agents achieve the global Nash equilibrium. The proof is
completed.

3.3 Algorithm implementation using actor-critic NN framework

Leveraging the universal approximation property of NN [12], the actor-critic NN framework, which re-
quires that each agent be equipped with two three-layer NNs, is established to implement Algorithm 1
in an online model-free manner.

For each agent i, the local performance index (10) is approximated by the critic NN, expressed by

Ĵik = ŴT
ciφci(Y

T
ci zcik), (41)

where Ŵci is the critic NN weight between the hidden layer and output layer, Yci is the weight between
the input layer and hidden layer, φci(·) denotes the activation function, and zcik, a vector consisting of
δik, ψik and ψ(j)k, is the critic NN input.

Using the critic NN approximation (41), the critic NN error can be obtained from (11) as

ecik = ri(k−1) + αĴik − Ĵi(k−1). (42)

For the critic NN, the goal is to minimize the following objective function:

Ecik =
1

2
eTcikecik.

To achieve this goal, the update law of the critic NN weight based on the gradient descent method is
given by

Ŵ l+1
ci = Ŵ l

ci − βci
∂Ecik
∂ecik

∂ecik

∂Ĵik

∂Ĵik

∂Ŵ l
ci

= Ŵ l
ci − αβciφci(Zcik)[ri(k−1) + αŴ lT

ci φci(Zcik)− Ŵ lT
ci φci(Zci(k−1))], (43)

where βci is the learning rate of critic NN and Zcik = Y T
ci zcik.

The control policy is approximated by the actor NN, expressed by

ψ̂ik = ŴT
aiφai(Y

T
aizaik), (44)

where Ŵai, Yai, φai(·), and zaik are similar to those in the critic NN, with zaik representing a vector of
information from δik.

The role of the actor is to minimize the local performance index. Thus, define the actor NN error as

eaik = Ĵik − Uik, (45)

where Uik = 0 is the desired ultimate cost-to-go objective.
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Figure 1 Structure diagram of the developed model-free GFC algorithm based on the actor-critic NN framework.

Then, the objective function for the actor NN is defined as

Eaik =
1

2
eTaikeaik.

Similar to (43), the following gives the update law of the actor NN weight:

Ŵ l+1
ai = Ŵ l

ai −
∂Eaik
∂eaik

∂eaik

∂Ĵik

∂Ĵik
∂φci(Zcik)

∂φci(Zcik)

∂Zcik

∂Zcik
∂zcik

∂zcik

∂ψ̂ik

∂ψ̂ik

∂Ŵ l
ai

= Ŵ l
ai − βaiφai(Zaik)Ŵ

lT
ci φ

′
ci(Zcik)Y

T
ciCiŴ

lT
ci φci(Zcik), (46)

where βai is the learning rate of actor NN, Zaik = Y T
aizaik, φ

′
ci(Zcik) = ∂φci(Zcik)/∂Zcik, and Ci =

∂zcik/∂ψ̂ik.
Given the preceding analyses, the developed model-free GFC algorithm using the actor-critic NN

framework is presented in Algorithm 2, and the corresponding algorithm structure diagram is shown in
Figure 1.

Algorithm 2 Model-free GFC algorithm using actor-critic NN framework.

Initialization: (For ∀i and ∀ī)

1: Initialize xi0 for agent i and xī00 for leader ī;

2: Compute the error δi0 ← (5);

3: Initialize Ŵ 0
ci and Ŵ 0

ai;

4: Set symmetric constant matrices Qii, Rii and Rij ;

5: Select learning rates βci and βai;

6: Prescribe computation precision ε;

Iteration:

Let l = 0, k = 0;

Repeat:

1: Compute the control policy ψ̂ik ← (44);

2: Compute the local performance index Ĵik ← (41);

3: Compute the error δi(k+1) ← (5);

4: Compute the control policy ψ̂i(k+1) ← (44);

5: Compute the local performance index Ĵi(k+1) ← (41);

6: Update the critic NN weight Ŵ l+1
ci
← (43);

7: Update the actor NN weight Ŵ l+1
ai
← (46);

8: Let l = l+ 1, k = k + 1;

Until
∑
N
i=1 ‖Ŵ

l+1
ci
− Ŵ l

ci‖/N 6 ε;

Return Ŵci and Ŵai for ∀i. End.

Remark 6. Notably, Algorithm 2 only requires local neighboring relative interaction data for each
agent i. Moreover, during its implementation, by setting l and k as the same step index, it can update
each iteration step l at each real-time step k. The above two aspects indicate that Algorithm 2 is an
online model-free GFC algorithm, making it applicable to real-time MASs with unknown dynamics and
thereby demonstrating its superiority over traditional offline model-based methods [25–32] in practical
applications.
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Figure 2 (Color online) Communication topology for the GFC problem.

4 Simulation examples

Two simulation results are provided to demonstrate the effectiveness and superiority of the proposed
model-free algorithm for the GFC problem.

4.1 GFC of numerical heterogeneous nonlinear MAS

Consider a MAS with agents 1–4 and 5–10 belonging to Ω1 and Ω2, respectively. Moreover, there exists
one leader for each subgroup, labeled as L1 and L2, respectively. Let the pinning gains b1 = b5 = 1, the
adjacency weighting elements a21 = a24 = a31 = a43 = a47 = a63 = a65 = a67 = a76 = a87 = a89 =
a9,10 = a10,5 = 1, a46 = a64 = −1, and other pinning gains and adjacency weighting elements all be 0.
Figure 2 shows the communication topology for this MAS, which satisfies Assumptions 1 and 3.

The dynamics of all agents are given as

xi(k + 1) = fi(xi(k)) + gi(xi(k))ψi(k), i = 1, . . . , 10,

where fi(xi(k)) = [eix
2
i1(k)/(1 + x2i1(k)) + 0.3xi2(k), xi1(k)/(1 + x2i1(k) + x2i2(k))]

T, gi(xi(k)) = [0, hi]
T,

e1 = 1.5, e2 = 0.4, e3 = 0.8, e4 = 0.5, e5 = 1, e6 = 0.6, e7 = 1.4, e8 = 1.2, e9 = 1.5, e10 = 0.7, h1 = 0.1, h2 =
0.2, h3 = −0.15, h4 = 0.35, h5 = 0.3, h6 = 0.05, h7 = 0.15, h8 = 0.1, h9 = 0.25, and h10 = −0.2. The
leader dynamics are x10(k + 1) = [0.2k + 0.2, 0.2k]T, x20(k + 1) = [0.3k, 0.15k + 0.15]T, and ηi=1,...,10 =
[−1.5; 1.5], [−1.5;−1.5], [1.5; 1.5], [1.5;−1.5], [−1;

√
3], [−2; 0], [−1;−

√
3], [1;−

√
3], [2; 0], [1;

√
3].

Choose Qii = I2, Rii = 1 for i = 1, . . . , 10, R21 = R24 = R31 = R43 = R46 = R47 = R63 = R64 =
R65 = R67 = R76 = R87 = R89 = R9,10 = R10,5 = 0.8, and all others are 0. Set the discount factor
α = 0.95 and select the initial states of all agents as random values in [−1, 3]. Given the analyses
in Section 3, we choose the critic NN activation function in the form of a quadratic vector consisting
of δik, ψik, and ψ(j)k and the actor NN activation function as δik for each agent i. Weights Ŵ 0

ci and

Ŵ 0
ai are initialized in [0, 1] appropriately, and Yci and Yai are set as identity matrices with appropriate

dimensions. The learning rates for NN weight updating are selected as βci = βai = 0.01, i = 1, . . . , 10,
and the computation precision is selected as ε = 1× 10−6.

By executing Algorithm 2 for all agents with the above parameter settings, we obtain Figures 3–5.
Figures 3(a) and (b) show the evolutions of critic NN weights for agents in Ω1 and Ω2, respectively.
Figure 4(a) presents the initial states of all agents, and Figure 4(b) illustrates the phase portrait of
state trajectories for all agents. Figure 4(b) shows that the GFC is achieved after some iterations.
Figures 5(a) and (b), respectively, present the evolutions of local group neighborhood formation errors
and approximate control policies for all agents, thereby further validating that the proposed model-free
algorithm can achieve GFC.

To demonstrate the superior optimization of control performance achieved by the developed algorithm,
a comparison with the offline model-based control method presented in [29] is conducted. The simulation
results are shown in Figure 6. Specifically, Figures 6(a) and (b) depict the evolutions of the sum of
utility functions ri for all agents under the two control methods, respectively. The developed control
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Figure 3 (Color online) Evolution of the critic NN weights for agents in (a) Ω1 and (b) Ω2.

Figure 4 (Color online) (a) Initial states of all agents. (b) Phase portrait of state trajectories for all agents, l = 1, . . . , 50.

Figure 5 (Color online) Evolution of (a) local group neighborhood formation errors δi and (b) approximate control policies ψi
for all agents.

algorithm evidently achieves GFC at a lower control cost. In fact, the controller gain selection in [29] is
not unique, potentially affecting GFC performance. In contrast, this study employs an online learning
approach to determine the optimal control policy by utilizing system operation data, which simplifies the
determination process and enhances control performance.

4.2 GFC of multiple single-link robot arms (SRAs)

Consider the system consisting of multiple SRAs with dynamics [36]

xi(k + 1) = fi(xi(k)) + gi(xi(k))ψi(k), i = 1, . . . , 34,
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Figure 6 (Color online) Evolution of the sum of utility functions ri for all agents under (a) the developed algorithm and (b) the

method in [29].

Table 2 Parameters of SRAs.

Parameter i = 1–10 i = 11–20 i = 21–28 i = 29–34

Ji 10.5 15.6 18.27 8.6

Bi 7.6 9.65 13.2 3.5

Migli 9.8 12.94 16.66 4.1

where fi(xi(k)) = [xi2(k), J
−1
i (−Bixi2(k) −Miglisin(xi1(k)))]

T, gi(xi(k)) = [0, J−1i ]T, the states xi1(k)
and xi2(k) are angle and angular velocity of the link, respectively, Ji is the total rotational inertia of
the link and the motor, Bi is the overall damping coefficient, Mi is the total mass of the link, li is the
distance from the joint axis to the link center of mass for SRA i, and g is the gravitational acceleration.
The parameters of the SRAs are presented in Table 2.

In this case, SRAs 1–10, 11–20, 21–28, and 29–34 belong to Ω1, Ω2, Ω3, and Ω4, respectively. The
communication interactions among SRAs are described by the following graph parameters: the pinning
gains are b1 = b20 = b26 = b29 = 1, the adjacency matrix elements are a12 = a21 = a32 = a43 = a54 =
a67 = a78 = a89 = a8,12 = a9,10 = a10,5 = a11,16 = a12,11 = a13,10 = a13,12 = a14,13 = a15,14 = a16,17 =
a17,18 = a18,19 = a19,20 = a21,25 = a22,21 = a23,18 = a23,22 = a24,28 = a25,26 = a27,26 = a28,27 = a29,26 =
a30,29 = a31,30 = a32,30 = a33,29 = a34,33 = 1, a8,13 = a13,6 = a23,19 = a29,25 = −1, and others are all 0.
The leader dynamics are x10(k+1) = [−3, 0]T, x20(k+1) = [−1,−1]T, x30(k+1) = [1, 0]T, x40(k+1) = [3, 0]T,
and ηi=1,...,34 are chosen appropriately to ensure that the SRAs in the four subgroups form “H”, “U”,
“S”, and “T” formations, respectively.

For the simulation, choose Qii = I2, Rii = 1 for i = 1, . . . , 34, and set Rij = 0 or 0.8 for i 6=
j, i, j = 1, . . . , 34, based on whether the corresponding aij are 0. Select the initial states of all SRAs as
random values in [0, 1], with the other parameter settings being similar to those in Subsection 4.1. Then,
executing Algorithm 2 for all SRAs, we obtain Figures 7 and 8. Figure 7 shows the states of all SRAs at
different iteration steps. After some iterations, the SRAs in the four subgroups form “H”, “U”, “S”, and
“T” formations, respectively, thereby successfully achieving the GFC. Figures 8(a) and (b) illustrate the
evolutions of local group neighborhood formation errors and approximate control policies for all SRAs,
respectively, further validating that the proposed algorithm can achieve GFC.

5 Conclusion

This paper explored the distributed GFC problem of heterogeneous nonlinear MASs with unknown dy-
namics, representing a further extension of the global formation control problem. A more flexible commu-
nication topology was designed to achieve communication configuration among agents. By developing an
effective PI algorithm and establishing a corresponding actor-critic NN framework, an innovative model-
free GFC algorithm was proposed to determine the optimal control policy online using only system
operation data. This algorithm was verified through two simulations—a numerical MAS and a multiple
SRAs system. The findings of this study are also applicable to linear MASs, thereby demonstrating
a broader application scope. Future work will concentrate on developing simplified model-free GFC
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Figure 7 (Color online) States of all SRAs at different iteration steps. (a) l = 1; (b) l = 10; (c) l = 30; (d) l = 150.

Figure 8 (Color online) Evolution of (a) the local group neighborhood formation errors δi and (b) the approximate optimal

control policies ψi for all SRAs.

algorithms to alleviate computational burden and performing experiments under real-world scenarios.
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