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Abstract This paper is concerned with an optimal control problem for stochastic system with regime switching and mean-

field interactions in an infinite horizon. The discounted framework is adopted to ensure the stability of the state equation and

the well-posedness of the cost functional. By choosing an appropriate discount factor, we first, as a preliminary, establish

the global solvability for infinite horizon conditional mean-field (forward and backward) stochastic differential equations

with Markov chains and the asymptotic property of their solutions when time goes to infinity. Then, we prove a sufficient

stochastic maximum principle for the infinite horizon optimal control problem by means of a dual approach under some

convexity condition of the associated Hamiltonian function. Finally, the maximum principle is applied to solve a cash flow

management problem of an insurance firm, which turns out to be a linear quadratic optimal control problem. An explicit

optimal premium policy and the minimum cost are obtained based on two algebraic Riccati equations and an additional

linear equation. Numerical experiments are reported to illustrate the theoretical results.
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1 Introduction

It is well known that the maximum principle is one of the fundamental approaches in optimal control
theory, which originated from the pioneering work by Pontryagin et al. [1] on deterministic systems. The
maximum principle provides a set of necessary conditions in the sense that any optimal control together
with the corresponding optimal state trajectory must solve the so-called Hamiltonian system plus a
maximum condition of the Hamiltonian function. Bensoussan [2] and Peng [3] first studied maximum
principles for stochastic systems, where they utilized the convex variation and spike variation techniques
to establish the stochastic maximum principles in local and general forms, respectively. Then, various
versions of stochastic maximum principles for different problems, settings, or contexts were obtained;
see [4–6]. On the other hand, there has been an increasing interest in finding the sufficient conditions for
optimal control problems since the middle of 1990s, which can be used to identify or construct directly an
optimal control. Zhou [7] derived the first sufficient stochastic maximum principle with certain convexity
conditions on control domain and Hamiltonian function. Following this work, many extensions and
generalizations were motivated and conducted; see [8–10]. It is worth mentioning that most (no matter
necessary or sufficient) stochastic maximum principles focus on finite time horizon problems, while there
are very few works on infinite time horizon problems.

Historically, mean-field stochastic differential equations (SDEs) can be traced back to the so-called
McKean-Vlasov SDEs, which were first suggested and studied by Kac [11] and McKean [12]. In the
dynamics of a mean-field SDE, one replaces the interactions of all the particles by their average or mean
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to reduce the complexity involved. In the last decade, optimal control problems for mean-field SDEs have
attracted considerable attention from the control and systems community. Note that the adjoint equation
of a controlled mean-field SDE is a mean-field backward stochastic differential equation (BSDE), so it is
not until Buchdahn et al. [13,14] introduced the mean-field BSDEs that the stochastic maximum principle
for mean-field optimal control problems has become a popular topic; see, for example, [15–20]. Another
feature of this paper is the utilization of regime switching model, which exhibits a hybrid characteristic
in the sense that continuous and discrete dynamics coexist. Compared with traditional diffusion models,
regime switching model has two distinct advantages: one is the capacity to depict the discrete events
that have greater impact on long-term system behavior, the other one is the tractability that enables
advanced mathematical analysis and feasible numerical schemes to be developed. For these reasons,
regime switching model enjoys a wide range of applications; see, among others, [21–26].

It is somewhat unexpectedly that the study of mean-field optimal control problems with regime switch-
ing, which blends the above two research areas of recent interests together, is still in an early stage. The
main obstacle may be the lack of a proper formulation for such kind of problems. Recently, Nyugen et
al. [27] established the theory of mean-field SDEs with regime switching, where, quite differently, the
mean-field term is characterized as the conditional expectation of the state process given the history of
the underlying Markov chain; in this sense, the Markov chain serves as a common noise. This work paves
the way for treating complex dynamic systems with mean-field interactions and regime switching. Based
on this finding, Nyugen et al. [28, 29] developed stochastic maximum principles for mean-field optimal
control problems with regime switching in local and general forms, respectively. Gutiérrez et al. [30] in-
vestigated the well-posedness of mean-field forward-backward stochastic differential equations (FBSDEs)
with Markov chains. They also solved a linear quadratic (LQ) nonzero-sum stochastic differential games
and obtained an open-loop Nash equilibrium via the FBSDE theory; see also Lv et al. [31] for a closed-loop
Nash equilibrium via Riccati equations. Lv et al. [32] studied an LQ leader-follower stochastic differential
game and derived an open-loop Stackelberg equilibrium and its state feedback representation. Jian et
al. [33] considered the convergence rate of N -player linear quadratic Gaussian game with a Markov chain
common noise towards its asymptotic mean-field game. Note that all the above studies are, once again,
concerned with the problems on a finite time horizon.

As a further step along this research direction and motivated by many infinite horizon optimization
problems in finance, economics, and management (see [34–36]), in this paper we consider the mean-field
optimal control problem with regime switching on an infinite horizon and in a discounted framework.
An appropriate discounted factor is introduced to treat the issue of system stability, and our objective
is to establish a sufficient stochastic maximum principle for optimal controls. To this end, we first,
as a preliminary and also of particular interest in their own rights, establish the global solvability of
infinite horizon mean-field SDEs and BSDEs with Markov chains (as state equation and adjoint equation,
respectively) and asymptotic property of their solutions when time goes to infinity, which are crucial to
the well-posedness of the corresponding Hamiltonian system and the proof of our maximum principle.
Then, the sufficient stochastic maximum principle, is established based on a dual approach under some
certain convexity condition on the associated Hamiltonian function. As an application, we apply the
maximum principle to solve a cash flow management problem of an insurance firm. It is essentially an
LQ problem, and two algebraic Riccati equations (AREs) and an additional linear equation will arise in
this procedure, based on which we are able to construct an explicit feedback optimal control or optimal
premium policy. Numerical examples are also conducted to illustrate the theoretical results.

The rest of this paper is organized as follows. Section 2 formulates the optimal control problem.
Subsection 3.1 establishes the solvability of infinite horizon mean-field SDEs and BSDEs with Markov
chains. Subsection 3.2 proves the sufficient stochastic maximum principle. Section 4 applies the maximum
principle to solve a cash flow management problem and provides some numerical tests. Finally, Section
5 concludes the paper with some further remarks.

2 Problem formulation

Let Rn be the n-dimensional Euclidean space with Euclidean norm | · | and Euclidean inner product 〈·, ·〉.
Let Rn×k be the space of all (n × k) matrices. fx and fxx denote the first and second order derivatives
of a function f with respect to x, respectively.

Let (Ω,F , P ) be a fixed probability space on which a 1-dimensional standard Brownian motion Wt,
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t > 0, and a Markov chain αt, t > 0, are defined. The Markov chain α takes values in a finite state space
M = {1, . . . ,m}. Let Q = (λij)i,j∈M be the generator of α(·) with λij > 0 for i 6= j and

∑
j∈M λij = 0

for each i ∈ M. Assume thatW and α are independent. For t > 0, we define FW
t = σ{W (s) : 0 6 s 6 t},

Fα
t = σ{α(s) : 0 6 s 6 t}, and Ft = σ{W (s), α(s) : 0 6 s 6 t}.
For the Markov chain α(·), associated with each pair (i, j) ∈ M×M with i 6= j, define

[Mij ](t) =
∑

06s6t

1{α(s−)=i}1{α(s)=j}, 〈Mij〉(t) =

∫ t

0

λij1{α(s−)=i}ds.

It follows that the process
Mij(t)

.
= [Mij ](t)− 〈Mij〉(t)

is null at origin and is a purely discontinuous and square-integrable martingale with respect to Fα
t

(see [28, 29]). In fact, the processes [Mij ](t) and 〈Mij〉(t) are the optional and predictable quadratic
variations of Mij(t), respectively. For convenience, we define Mii(t) = [Mii](t) = 〈Mii〉(t) = 0 for each
i ∈ M. From the definition of optional quadratic covariations (see Lipster and Shiryayev [37]), we have
the following orthogonality relations:

[Mij ,W ] = 0, [Mij ,Mpq] = 0

for (i, j) 6= (p, q), where [Mij ,W ] and [Mij ,Mpq] are the optional quadratic covariations of the pairs
(Mij ,W ) and (Mij ,Mpq), respectively.

Let r > 0 be the discounted factor, which will be determined later. Let L2,r
F (0,∞;Rn) be the set of all

Rn-valued Ft-adapted processes X on [0,∞) such that

E

[ ∫ ∞

0

e−rt|Xt|
2dt

]
<∞.

Let K2,r
F (0,∞;Rn) be the set of all collections of Rn-valued Ft-adapted processes (Kij(·))i,j∈M on [0,∞)

such that Kii(t) = 0 for each i ∈ M and

∑

i,j∈M

E

[ ∫ ∞

0

e−rt|Kij(t)|
2d[Mij ](t)

]
<∞.

For convenience, we also define K(·) = (Kij(·))i,j∈M and

∫ t

0

K(s) • dM(s)
.
=
∑

i,j∈M

∫ t

0

Kij(s)dMij(s), K(s) • dM(s)
.
=
∑

i,j∈M

Kij(s)dMij(s).

Moreover, we define H2,r
F (0,∞;Rn) = (L2,r

F (0,∞;Rn))2 ×K2,r
F (0,∞;Rn).

In this paper, we consider the following controlled system, which is an infinite horizon conditional
mean-field SDE with regime switching:

{
dXt = b(Xt, E[Xt|F

α
t ], αt, ut)dt+ σ(Xt, E[Xt|F

α
t ], αt, ut)dWt, t > 0,

X0 = x ∈ Rn, α0 = i ∈ M,
(1)

where X is the state process with values in Rn, u is the control process with values in a convex subset
U ⊂ Rk, and b, σ : Rn ×Rn ×M× U 7→ Rn are two given functions. The cost functional is defined as

J(x, i;u) = E

∫ ∞

0

e−rtf(Xt, E[Xt|F
α
t ], αt, ut)dt, (2)

where f : Rn × Rn × M× U 7→ R is a given function. We aim to find an optimal control u∗ ∈ Uad to
minimize (2):

J(x, i;u∗) = inf
u∈Uad

J(x, i;u),

subject to (1), where the admissible control set Uad is defined to be L2,r
F (0,∞;U).
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Remark 1. In fact, SDE (1) is obtained as the mean-square limit as N → ∞ of a system of interacting
particles in the following form:





dX l,N
t = b

(
X l,N
t ,

1

N

N∑

l=1

X l,N
t , αt, u

l
t

)
dt+ σ

(
X l,N
t ,

1

N

N∑

l=1

X l,N
t , αt, u

l
t

)
dW l

t , t > 0,

X l,N
0 = x ∈ Rn, 1 6 l 6 N, α0 = i ∈ M,

where {W l}Nl=1 is a collection of independent standard Brownian motions and the Markov chain α serves
as a common noise for all particles, which leads to the conditional expectation rather than expectation
in (1).

Intuitively, since all the particles depend on the history of α, their average and thereby its limit as
N → ∞ should also depend on this process. This intuition has been justified by the law of large numbers
established by Nguyen et al. [27, Theorem 2.1], which shows that the joint process ( 1

N

∑N
l=1X

l,N (·), α(·))
converges weakly to (µα(·), α(·)), where (µα(t), α(t))

.
= (E[X(t)|Fα

t ], α(t)) andX(·) is exactly the solution
to SDE (1).

On the other hand, there is also another framework to treat mean-field games with many particles
and regime switching, which requires to have an idiosyncratic Markov chain for each particle (see Wang
and Zhang [38]). Thus, there are as many Markov chains as that of particles and all of these Markov
chains are independent. Within this framework, Zhang et al. [39] studied a mean-field control problem
including regime switching and Poisson jump. In both [38, 39], it is the expectation E[Xt], rather than
the conditional expectation E[Xt|F

α
t ], to represent the mean-field limit of finite population of weakly

interacting particles.

In this paper, we impose the following assumptions on the coefficients b, σ, f .

(A1) The functions b(x, y, i, u) and σ(x, y, i, u) are continuously differentiable and have linear growth
w.r.t. (x, y, u), and the partial derivatives of b and σ w.r.t. x, y are bounded. More precisely, for ϕ = b, σ,
there exists a constant κϕ > 0 such that

|ϕx(x, y, i, u)| 6 κϕ, |ϕy(x, y, i, u)| 6 κϕ,

|ϕ(x, y, i, u)| 6 κϕ(1 + |x|+ |y|+ |u|).

(A2) The function f(x, y, i, u) is continuously differentiable w.r.t. (x, y, u), and the partial derivatives
of f w.r.t. (x, y) have linear growth in (x, y, u). More precisely, there exists a constant κf > 0 such that

|fx(x, y, i, u)| 6 κf (1 + |x|+ |y|+ |u|), |fy(x, y, i, u)| 6 κf (1 + |x|+ |y|+ |u|).

Remark 2. Other than the mean-field formulation adopted in this paper, where the mean-field term is
represented by the conditional expectation E[Xt|F

α
t ] of the state process, there is another more general

mean-field formulation in the literature, i.e., the mean-field term is represented by the conditional law PαXt

of Xt given Fα
t ; in this connection, we refer to [15, 28, 29, 39] for the former formulation, and to [40–43]

for the latter one.

Moreover, if one adopts the former formulation, then E[Xt|F
α
t ] takes values in R

n and the Hamiltonian
function H(x, y, i, u, p, q), where the position y stands for the mean-field term, maps (x, y, i, u, p, q) ∈
Rn ×Rn ×M× U ×Rn ×Rn to R. In this case, the derivative of H with respect to y, denoted by Hy,
is defined in the usual sense as a function from Rn to R.

On the other hand, if one adopts the latter formulation, then PαXt
belongs to P2(R

n), i.e., the space
of all probability measures µ on (Rn,B(Rn)) with finite second moment

∫
Rn |x|2µ(dx) < ∞. In this

case, the differentiability of H with respect to y will be defined in the sense of the so-called L-derivative
based on the technique of lifting of functions and the notion of Fréchet differentiability; see Carmona and
Delarue [41, Chapter 5.2] for details.

The key aim of this paper is to develop the conditional mean-field framework (in the presence of
a Markov chain as common noise) recently established by Nguyen et al. [27–29] to the infinite horizon
context. In order to display our main idea more clearly, we adopt the former (relatively concise, compared
to the latter one) mean-field formulation in this paper.
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3 Stochastic maximum principle

3.1 Conditional mean-field SDEs and BSDEs

In this subsection, we prove the global solvability of infinite horizon mean-field SDEs and BSDEs with
Markov chains, and the asymptotic behavior of their solutions in the infinity. Note that the mean-field
terms in these two equations become conditional expectations due to the inclusion of the Markov chain
(as a common noise), and the infinite horizon feature needs to be carefully treated within a discounted

framework. For convenience, we define X̂t = E[Xt|F
α
t ] for a stochastic process X in this paper. In the

sequel, we shall define by C a generic constant, which may vary from line to line.

Theorem 1. Let (A1) hold and r > 4κb + 4κ2σ. For any u ∈ Uad, SDE (1) admits a unique strong
solution X ∈ L2,r

F (0,∞;Rn). Moreover, for any ε ∈ (0, (r − 4κ2σ − 4κb)/3), we have

(r − 4κ2σ − 4κb − 3ε)E

[∫ ∞

0

e−rs|Xs|
2ds

]
6 |x|2 +

C

ε
E

[ ∫ ∞

0

e−rs(1 + |us|
2)ds

]
, (3)

and
lim
T→∞

E[e−rT |XT |
2] = 0. (4)

Proof. By classical SDE theory, under (A1), SDE (1) admits a unique solution X on [0,∞); see Wei
and Yu [44]. In what follows, let us show that such a solution X belongs to the space L2,r

F (0,∞;Rn) (i.e.,
the estimate (3)) and its asymptotic behavior at infinity (i.e., the limit (4)).

For any T > 0, applying Itô’s formula to e−rs|Xs|
2 over [t, T ], we have

e−rT |XT |
2 =e−rt|Xt|

2 +

∫ T

t

e−rs[−r|Xs|
2 + 2〈Xs, b(Xs, X̂s, αs, us)〉+ |σ(Xs, X̂s, αs, us)|

2]ds

+ 2

∫ T

t

e−rs〈Xs, σ(Xs, X̂s, αs, us)〉dWs.

(5)

Taking expectation on both sides of (5) and using Jensen’s inequality E[|X̂s|
2] = E[|E[Xs|F

α
s ]|

2] 6

E[E[|Xs|
2|Fα

s ]] = E[|Xs|
2], together with the elementary inequality 2ab 6 εa2 + 1

ε
b2 for any ε > 0, it

follows that

E[e−rT |XT |
2]

=E

[
e−rt|Xt|

2 +

∫ T

t

e−rs[−r|Xs|
2 + |σ(Xs, X̂s, αs, us)− σ(0, 0, αs, us) + σ(0, 0, αs, us)|

2]ds

]

+ E

[∫ T

t

e−rs[2〈Xs, b(Xs, X̂s, αs, us)− b(0, 0, αs, us)〉+ 2〈Xs, b(0, 0, αs, us)〉]ds

]

6E

[
e−rt|Xt|

2 +

∫ T

t

e−rs
(
− r|Xs|

2 + (2κ2σ + ε)(|Xs|
2 + |X̂s|

2) +

(
1 +

2κ2σ
ε

)
|σ(0, 0, αs, us)|

2

)
ds

]

+ E

[∫ T

t

e−rs
(
2κb|Xs|

2 + 2κb|Xs||X̂s|+ ε|Xs|
2 +

1

ε
|b(0, 0, αs, us)|

2

)
ds

]

6E

[
e−rt|Xt|

2 + (4κ2σ + 4κb + 3ε− r)

∫ T

t

e−rs|Xs|
2ds

]
+
C

ε
E

[∫ T

t

e−rs(1 + |us|
2)ds

]
.

Therefore,

E[e−rT |XT |
2] + (r − 4κb − 4κ2σ − 3ε)E

[∫ T

t

e−rs|Xs|
2ds

]

6 E[e−rt|Xt|
2] +

C

ε
E

[∫ T

t

e−rs(1 + |us|
2)ds

]
.

(6)

Choosing r > 4κb + 4κ2σ and 0 < ε < (r − 4κb − 4κ2σ)/3, taking t = 0 and sending T → ∞, and then
applying the monotonic convergence theorem, it follows that the estimate (3) holds and the solution X
to (1) belongs to the space L2,r

F (0,∞;Rn).
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Next, substituting T with T2 and t with T1 in (6), we obtain

|E[e−rT1 |XT1
|2]− E[e−rT2 |XT2

|2]|

6
C

ε
E

[∫ T2

T1

e−rs(1 + |us|
2)ds

]
+ (r − 4κb − 4κ2σ − 3ε)E

[∫ T2

T1

e−rs|Xs|
2ds

]
.

In view of X ∈ L2,r
F (0,∞;Rn) and u ∈ L2,r

F (0,∞;Rk), it follows that the map T 7→ E[e−rT |XT |
2] is

uniformly continuous, and then E[
∫∞

0
e−rs|Xs|

2ds] <∞ implies that limT→∞ E[e−rT |XT |
2] = 0.

The Hamiltonian of the discounted optimal control problem is given by

H(x, y, i, u, p, q) = 〈b(x, y, i, u), p〉+ 〈σ(x, y, i, u), q〉+ f(x, y, i, u)− r〈x, p〉, (7)

and the adjoint equation reads

dPt = −(Hx(t) + E[Hy(t)|F
α
t ])dt+QtdWt +Kt • dMt, t > 0,

i.e.,
dPt =− [bx(t)Pt + σx(t)Qt + fx(t)− rPt]dt− E[by(t)Pt + σy(t)Qt + fy(t)|F

α
t ]dt

+QtdWt +Kt • dMt, t > 0,
(8)

where we define
ζz(t) = ζz(Xt, E[Xt|F

α
t ], αt, ut)

for ζ = b, σ, f and z = x, y, and

Hx(t) =Hx(Xt, E[Xt|F
α
t ], αt, ut, Pt, Qt)

≡bx(Xt, E[Xt|F
α
t ], αt, ut)Pt + σx(Xt, E[Xt|F

α
t ], αt, ut)Qt

+ fx(Xt, E[Xt|F
α
t ], αt, ut)− rPt,

and
Hy(t) =Hy(Xt, E[Xt|F

α
t ], αt, ut, Pt, Qt)

≡by(Xt, E[Xt|F
α
t ], αt, ut)Pt + σy(Xt, E[Xt|F

α
t ], αt, ut)Qt

+ fy(Xt, E[Xt|F
α
t ], αt, ut),

where the triple (Pt, Qt,Kt) ∈ H2,r
F (0,∞;Rn) denotes the solution to the adjoint equation (8). Recall

that the martingale term Kt •dMt is defined as
∑

i,j∈MKij(t)dMij(t), which appears due to the Markov
chain involved. Also note that there is no terminal condition given in advance in (8).

To proceed, for notational simplicity, we also define

F (t, P,Q, αt) = bx(t)P + σx(t)Q + E[by(t)P + σy(t)Q|Fα
t ],

ϕ(t, αt) = fx(t) + E[fy(t)|F
α
t ].

Then, the adjoint equation (8) can be rewritten as the following form:

− dPt = [F (t, Pt, Qt, αt)− rPt + ϕ(t, αt)]dt−QtdWt −Kt • dMt, t > 0. (9)

Noting that the partial derivatives of b and σ in (x, y) are bounded (see Assumption (A1)), we have

|F (t, P1, Q1, αt)− F (t, P2, Q2, αt)|

6 κb|P1 − P2|+ κσ|Q1 −Q2|+ κbE[|P1 − P2||F
α
t ] + κσE[|Q1 −Q2||F

α
t ].

(10)

Moreover, it is easy to verify that ϕ ∈ L2,r
F (0,∞;Rn) for r > 4κb + 4κ2σ; in fact, from the Assumption

(A2) and the well-posedness of X in Theorem 1, one has

E

[ ∫ ∞

0

e−rs|ϕ(s, αs)|
2ds

]
6 16κ2f

(
1 + E

[ ∫ ∞

0

e−rs(|Xs|
2 + |us|

2)ds

])
<∞.

The following lemma provides a priori estimate for the solution (P,Q,K) to (9) in H2,r
F (0,∞;Rn).
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Lemma 1. Let (A1) and (A2) hold and r > 4κb + 4κ2σ. Let (P,Q,K) ∈ H2,r
F (0,∞;Rn) be a solution

to BSDE (9), then

lim
T→∞

E[e−rT |PT |
2] = 0. (11)

In addition, for any ε ∈ (0, (r − 4κb − 4κ2σ)/3), we have

E

[
|P0|

2 +

∫ ∞

0

e−rs
[
(r − 4κb − 4κ2σ − 3ε)|Ps|

2 +
ε

2κ2σ + ε
|Qs|

2

]
ds+

∫ T

0

e−rs|Ks|
2 • d[M ]s

]

6
1

ε
E

[ ∫ ∞

0

e−rs|ϕ(s, αs)|
2ds

]
.

(12)

Proof. In the form of forward SDE, the BSDE (9) becomes

Pt = P0 −

∫ t

0

[F (s, Ps, Qs, αs)− rPs + ϕ(s, αs)]ds+

∫ t

0

QsdWs +

∫ t

0

Ks • dMs, t > 0.

Similar as the proof of Theorem 1, for any T2 > T1, there exists some constant C > 0 such that

|E[e−rT2 |PT2
|2]− E[e−rT1 |PT1

|2]|

6 C

[∫ T2

T1

e−rs(|Ps|
2 + |Qs|

2 + |ϕ(s, αs)|
2)ds+

∫ T2

T1

e−rs|Ks|
2 • d[M ]s

]
.

It follows from P,Q, ϕ ∈ L2,r
F (0,∞;Rn) and K ∈ M2,r

F (0,∞;Rn) as well as the uniform continuity of the
map T 7→ E[e−rT |PT |

2] that Eq. (11) holds.

Next, we establish the priori estimate (12). Applying Itô’s formula to e−rt|Pt|
2 yields

e−rT |PT |
2

=|P0|
2 +

∫ T

0

e−rs[−r|Ps|
2 − 2〈Ps, F (s, Ps, Qs, αs)− rPs + ϕ(s, αs)〉+ |Qs|

2]ds

+

∫ T

0

e−rs|Ks|
2 • d[M ]s + 2

∫ T

0

e−rs〈Ps, Qs〉dWs + 2

∫ T

0

e−rs〈Ps,Ks • dMs〉.

(13)

Taking expectation on both sides of (13) leads to

E

[
|P0|

2 +

∫ T

0

e−rs[r|Ps|
2 + |Qs|

2]ds+

∫ T

0

e−rs|Ks|
2 • d[M ]s

]

=E

[
e−rT |PT |

2 + 2

∫ T

0

e−rs[〈Ps, F (s, Ps, Qs, αs)− F (s, 0, Qs, αs)〉]ds

]

+ 2E

[∫ T

0

e−rs〈Ps, F (s, 0, Qs, αs)− F (s, 0, 0, αs)〉ds

]
+ 2E

[∫ T

0

e−rs〈Ps, ϕ(s, αs)〉ds

]
.

(14)

From the Lipschitz condition (10) on F , for any ε > 0, one has





2〈Ps, F (s, Ps, Qs, αs)− F (s, 0, Qs, αs)〉 6 2κb(|Ps|
2 + |Ps|E[|Ps||F

α
s ]),

2〈Ps, F (s, 0, Qs, αs)− F (s, 0, 0, αs)〉 6 2(2κ2σ + ε)|Ps|
2 +

κ2σ
2κ2σ + ε

(|Qs|
2 + |E[|Qs||F

α
s ]|

2),

2〈Ps, ϕ(s, αs)〉 6 ε|Ps|
2 + 1

ε
|ϕ(s, αs)|

2.

(15)

Substituting (15) into (14) and using the fact that

E[|Ps|E[|Ps||F
α
s ]] 6 E[|Ps|

2], |E[|Qs||F
α
s ]|

2
6 E[|Qs|

2],
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it follows that

E

[
|P0|

2 +

∫ T

0

e−rs
[
(r − 4κb − 4κ2σ − 3ε)|Ps|

2 +
ε

2κ2σ + ε
|Qs|

2

]
ds+

∫ T

0

e−rs|Ks|
2 • d[M ]s

]

6 E

[
e−rT |PT |

2 +
1

ε

∫ T

0

e−rs|ϕ(s, αs)|
2ds

]
.

By letting T → ∞ and noting that limT→∞ E[e−rT |PT |
2] = 0, we obtain the desired result (12).

Based on Lemma 1 and similar to Peng and Shi [45] (see also Yu [46] and Wei and Yu [44]), we have
the following existence and uniqueness results for BSDE (9).

Theorem 2. Let (A1) and (A2) hold and r > 4κb + 4κ2σ. Then, the adjoint equation (9) admits a
unique solution (P,Q,K) ∈ H2,r

F (0,∞;Rn).

Proof. The uniqueness can be obtained immediately from the priori estimate (12). We now prove the
existence of a solution to (9) via three steps.

Step 1: truncation and finite horizon solution. For each natural number N , let the truncated version
of ϕ be defined as ϕN (t, αt) = ϕ(t, αt)1[0,N ](t). Consider the following finite horizon mean-field BSDE
with regime switching:
{
dP

(N)
t = −[F (t, P

(N)
t , Q

(N)
t , αt)− rPt + ϕN (t, αt)]dt+ P

(N)
t dWt +K

(N)
t • dMt, t ∈ [0, N ],

P
(N)
N = 0.

(16)

From Nguyen et al. [29, Theorem 2.6], the BSDE (16) admits a unique solution (P (N), Q(N),K(N)) for
each N .

Step 2: extension to infinite horizon solution. For Φ = P,Q,K, we extend the finite horizon solution
to an infinite horizon solution in the following way:

Φ̃
(N)
t = Φ

(N)
t 1[0,N ](t),

and it is straightforward to verify that the triple (P̃ (N), Q̃(N), K̃(N)) satisfies the following infinite horizon
mean-field BSDE with regime switching:

dPt = −[F (t, Pt, Qt, αt)− rPt + ϕN (t, αt)]dt+QtdWt +Kt • dMt.

In the next, we establish the convergence in norm of the sequence {(P̃ (N), Q̃(N), K̃(N))}∞N=1.
Step 3: convergence. From Lemma 1, there exists a constant C > 0 such that, for any positive integers

N and L large enough,

E

[∫ ∞

0

e−rt
[∣∣∣P̃ (N)

t − P̃
(L)
t

∣∣∣
2

+
∣∣∣Q̃(N)

t − Q̃
(L)
t

∣∣∣
2]
dt+

∫ ∞

0

e−rt
∣∣∣K̃(N)

t − K̃
(L)
t

∣∣∣
2

• d[M ]t

]

6 CE

[∫ ∞

0

e−rt|ϕN (t, αt)− ϕL(t, αt)|
2dt

]

= CE

[∫ N∨L

N∧L

e−rt|ϕ(t, αt)|
2dt

]
,

which yields that {(P̃ (N), Q̃(N), K̃(N))}∞N=1 is a Cauchy sequence and hence admits a limit (P,Q,K) in

H2,r
F (0,∞;Rn), in other words,

lim
N→∞

E

{∫ ∞

0

e−rs
[∣∣∣P̃ (N)

t − Pt

∣∣∣
2

+
∣∣∣Q̃(N)

t −Qt

∣∣∣
2
]
dt+

∫ ∞

0

e−rt
∣∣∣K̃(N)

t −Kt

∣∣∣
2

• d[M ]t

}
= 0.

Finally, for any T > 0 and N > T , by letting N → ∞ in the following equation:

P̃
(N)
t =P̃

(N)
T +

∫ T

t

[
F
(
s, P̃ (N)

s , Q̃(N)
s , αs

)
− rP̃ (N)

s + ϕN (s, αs)
]
ds

−

∫ T

t

Q̃(N)
s dWs −

∫ T

t

K̃(N)
s • dMs, t ∈ [0, T ],

it follows that the limiting triple (P,Q,K) solves the adjoint equation (9).
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3.2 Sufficient stochastic maximum principle

In this subsection, we establish the sufficient stochastic maximum principle (SMP) for our infinite horizon
discounted optimal control problem. The proof is based on a duality method together with the asymptotic
property of solutions to the state equation and adjoint equation.

Theorem 3. Let u∗ ∈ Uad and (X∗, P,Q,K) be the corresponding solution to the state equation (1)
and adjoint equation (8). Suppose that

(i) H(X∗
t , E[X∗

t |F
α
t ], αt, u

∗
t , Pt, Qt) = minu∈U H(X∗

t , E[X∗
t |F

α
t ], αt, u, Pt, Qt), a.e. t ∈ [0,∞), P -a.s.;

(ii) (x, y, u) 7→ H(x, y, αt, u, Pt, Qt) is a convex function, a.e. t ∈ [0,∞), P -a.s.
Then we have u∗ is an optimal control.

Proof. Let u be an arbitrary element in Uad and X be the corresponding solution to (1). On the one
hand, in view of the forms of the cost functional (2) and the Hamiltonian (7), we have

J(x, i;u)− J(x, i;u∗)

=E

∫ ∞

0

e−rt
[
f(Xt, E[Xt|F

α
t ], αt, ut)− f(X∗

t , E[X∗
t |F

α
t ], αt, u

∗
t )
]
dt

=E

∫ ∞

0

e−rt
[
H(Xt, E[Xt|F

α
t ], αt, ut, Pt, Qt)−H(X∗

t , E[X∗
t |F

α
t ], αt, u

∗
t , Pt, Qt)

−
〈
b(Xt, E[Xt|F

α
t ], αt, ut)− b(X∗

t , E[X∗
t |F

α
t ], αt, u

∗
t ), Pt

〉

−
〈
σ(Xt, E[Xt|F

α
t ], αt, ut)− σ(X∗

t , E[X∗
t |F

α
t ], αt, u

∗
t ), Qt

〉
+ r
〈
Xt −X∗

t , Pt
〉]
dt.

(17)

On the other hand, for any T > 0, applying Itô’s formula to e−rt〈Xt −X∗
t , Pt〉 on [0, T ], we obtain

E
[
e−rT

〈
XT −X∗

T , PT
〉]

=E

[∫ T

0

e−rt
[
− r
〈
Xt −X∗

t , Pt
〉

+
〈
b(Xt, E[Xt|F

α
t ], αt, ut)− b(X∗

t , E[X∗
t |F

α
t ], αt, u

∗
t ), Pt

〉

+
〈
Xt −X∗

t ,−Hx(t)− E[Hy(t)|F
α
t ]
〉

+
〈
σ(Xt, E[Xt|F

α
t ], αt, ut)− σ(X∗

t , E[X∗
t |F

α
t ], αt, u

∗
t ), Qt

〉]
dt

]
.

(18)

From (4) and (11), it follows that

∣∣E
[
e−rT

〈
XT −X∗

T , PT
〉]∣∣ 6 1

2
E[e−rT |XT −X∗

T |
2] +

1

2
E[e−rT |PT |

2] → 0, T → ∞.

Letting T → ∞ in (18), we get

0 = lim
T→∞

E
[
e−rT

〈
XT −X∗

T , PT
〉]

=E

[∫ ∞

0

e−rt
[
− r
〈
Xt −X∗

t , Pt
〉

+
〈
b(Xt, E[Xt|F

α
t ], αt, ut)− b(X∗

t , E[X∗
t |F

α
t ], αt, u

∗
t ), Pt

〉

+
〈
Xt −X∗

t ,−Hx(t)− E[Hy(t)|F
α
t ]
〉

+
〈
σ(Xt, E[Xt|F

α
t ], αt, ut)− σ(X∗

t , E[X∗
t |F

α
t ], αt, u

∗
t ), Qt

〉]
dt

]
.

(19)

Combining (17) and (19), we have

J(x, i;u)− J(x, i;u∗)

=E

∫ ∞

0

e−rt
[
H(Xt, E[Xt|F

α
t ], αt, ut, Pt, Qt)−H(X∗

t , E[X∗
t |F

α
t ], αt, u

∗
t , Pt, Qt)

+
〈
Xt −X∗

t ,−Hx(t)− E[Hy(t)|F
α
t ]
〉]
dt.

(20)
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The convexity condition (ii) implies that

H(Xt, E[Xt|F
α
t ], αt, ut, Pt, Qt)−H(X∗

t , E[X∗
t |F

α
t ], αt, u

∗
t , Pt, Qt)

>
〈
Xt −X∗

t , Hx(t)
〉
+
〈
E[Xt −X∗

t |F
α
t ], Hy(t)

〉
+
〈
ut − u∗t , Hu(t)

〉
,

(21)

and the minimization condition (i) yields

〈
ut − u∗t , Hu(t)

〉

= lim
θ→0

1

θ

[
H(X∗

t , E[X∗
t |F

α
t ], αt, u

θ
t , Pt, Qt)−H(X∗

t , E[X∗
t |F

α
t ], αt, u

∗
t , Pt, Qt)

]

>0,

(22)

where uθt
.
= θut + (1 − θ)u∗t ≡ u∗t + θ(ut − u∗t ) ∈ Uad for any θ ∈ [0, 1].

Moreover, we note that

E
[〈
E[Xt −X∗

t |F
α
t ], Hy(t)

〉]
= E

[〈
Xt −X∗

t , E[Hy(t)|F
α
t ]
〉]
. (23)

From (20)–(23), we have
J(x, i;u)− J(x, i;u∗) > 0, ∀u ∈ Uad,

which means that u∗ is an optimal control.

Remark 3. Indeed, we can still obtain the expression (22) and the conclusion of Theorem 3 without
the differentiability assumption of the coefficients with respect to u. The alternative theoretical tool is
the so-called Clarke’s generalized gradient (see Lemma 2.3 of Section 3 in Yong and Zhou [47] for its
precise definition) when the functions are non-smooth in u. Then, we can prove Theorem 3 by following
exactly the proof of Theorem 5.2 of Section 3 in Yong and Zhou [47]. Here, we adopt the differentiability
assumption of the coefficients with respect to u just for simplicity of presentation.

4 Application to an optimal premium problem

4.1 Model and solution

In this subsection, we will formulate and solve an optimal premium problem of an insurance firm in a
regime switching market (it is an LQ problem in nature), by means of the sufficient SMP established in
the previous section. An optimal premium policy in a feedback form is obtained with the help of two
algebraic Riccati equations and an additional linear equation.

Let X ∈ R be the cash flow process of an insurance firm and u ∈ U = R be the premium policy of the
firm. The cash flow process X is described by

{
dXt = [A(αt)Xt + Â(αt)E[Xt|F

α
t ] +B(αt)ut]dt+ σ(αt)dWt, t > 0,

X0 = x ∈ R, α0 = i ∈ M,
(24)

where A(i), Â(i), B(i), σ(i), i ∈ M, are given constants. The insurance firm aims to minimize the
following cost functional:

J(x, i;u) =
1

2
E

∫ ∞

0

e−rt[R(αt)(Xt − c(αt))
2 +N(αt)u

2
t ]dt, (25)

where the positive constants c(i), i ∈ M, are some preset cash levels (as a benchmark), and R(i) > 0
and N(i) > 0, i ∈ M, are given weighting coefficients. Note that in this problem the insurance firm
has two objectives: one is to minimize the deviation between the cash flow process X and the dynamic
benchmark, and the other one is to minimize the cost of premium policy u over the infinite time horizon.

It is also mentioned that the above formulation of cash flow model and optimal premium problem is
motivated by Huang et al. [48] and Wang and Wu [19]. It is modified in this paper by incorporating
the conditional mean into consideration. In the formulation, the Markov chain α, as a common noise,
is usually used to represent the market trend (for example, bull market and bear market), and the
conditional mean provides a more realistic model to allow the cash flow process to depend on its average;
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such a model has been commonly adopted in finance and economics to describe the so-called systematic
risk of inter-bank borrowing and lending (see Carmona et al. [49]).

In the following, we will utilize our sufficient SMP to get a closed-form solution for this problem. At
first, note that in this example,

κb = max
i=1,2

{|A(i)|, |Â(i)|}, κσ = 0.

From Theorems 1 and 2, the discount factor is set to be

r > 4κb = 4max
i=1,2

{|A(i)|, |Â(i)|}

to guarantee that the state equation (24) and adjoint equation (26) admit unique solutions, respectively.
The associated Hamiltonian is given by

H(x, y, i, u, p, q) = [A(i)x+ Â(i)y +B(i)u]p+ σ(i)q +
1

2
[R(i)(x− c(i))2 +N(i)u2]− rxp.

It follows that

Hx = A(i)p+R(i)(x− c(i))− rp, Hy = Â(i)p, Hu = B(i)p+N(i)u.

Then, the corresponding adjoint equation reads

dPt =− [A(αt)Pt +R(αt)(Xt − c(αt))− rPt]dt− Â(αt)E[Pt|F
α
t ]dt

+QtdWt +Kt • dMt, t > 0,
(26)

and the (open-loop) optimal control turns out to be

u∗t = −N−1(αt)B(αt)Pt. (27)

By the four-step scheme developed by Ma et al. [50] to decouple an FBSDE, it is natural to guess the
adjoint process P and the state process X has the following linear relationship:

Pt = ϕ(αt)Xt + φ(αt)E[Xt|F
α
t ] + ψ(αt) (28)

for some deterministic functions ϕ(i), φ(i), ψ(i), i ∈ M, which will be determined later.
On the one hand, taking conditional expectation on both sides of (24), we have (recall that we define

X̂t = E[Xt|F
α
t ])

dX̂t =[(A(αt) + Â(αt))X̂t +B(αt)ût]dt.

Then, applying Itô’s formula to Pt defined by (28), we obtain (in what follows, the subscript t, the argu-
ment αt, and the martingale terms of dW and dM are sometimes dropped for simplicity of presentation)

dP =

[(
ϕ(AX + ÂX̂ +Bu) +

∑

j∈M

λαt,jϕ(j)X

)

+

(
φ[(A + Â)X̂ +Bû] +

∑

j∈M

λαt,jφ(j)X̂

)
+
∑

j∈M

λαt,jψ(j)

]
dt.

(29)

From (27) and (28), the optimal control has the following state feedback form:

u∗ = −N−1B(ϕX + φX̂ + ψ). (30)

Inserting (30) into (29), we get

dP =

[(
Aϕ−N−1B2ϕ2 +

∑

j∈M

λαt,jϕ(j)

)
X

+

(
(A+ Â)φ+ Âϕ−N−1B2(φ2 + 2ϕφ) +

∑

j∈M

λαt,jφ(j)

)
X̂

+

(
−N−1B2(ϕ+ φ)ψ +

∑

j∈M

λαt,jψ(j)

)]
dt.

(31)
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On the other hand, inserting (28) into (26), it follows that

dP =−
[
(−r +A)(ϕX + φX̂ + ψ) +R(X − c) + Â[(ϕ+ φ)X̂ + ψ]

]
dt

=−
[(
(−r +A)ϕ+R

)
X +

(
(−r +A)φ+ Â(ϕ+ φ)

)
X̂

+
(
(−r +A+ Â)ψ −Rc

)]
dt.

(32)

Comparing the coefficients of X and X̂ and the nonhomogeneous terms in (31) and (32), we obtain the
following two algebraic Riccati equations (AREs):

−rϕ+ 2Aϕ−N−1B2ϕ2 +
∑

j∈M

λijϕ(j) +R = 0, i ∈ M, (33)

and
−rφ+ 2(A+ Â)φ+ 2Âϕ−N−1B2(φ2 + 2ϕφ) +

∑

j∈M

λijφ(j) = 0, i ∈ M, (34)

and the following linear equation:

(−r +A+ Â)ψ −N−1B2(ϕ+ φ)ψ +
∑

j∈M

λijψ(j)−Rc = 0, i ∈ M. (35)

In particular, if we define Ã = A+ Â and ϕ̃ = ϕ+ φ, then ϕ̃ satisfies

−rϕ̃+ 2Ãϕ̃−N−1B2ϕ̃2 +
∑

j∈M

λij ϕ̃(j) +R = 0, i ∈ M, (36)

which takes a similar form as (33) with the only difference that the coefficient A becoming Ã; so we can
treat (33) and (36) instead of (33) and (34). Then, it follows from the so-called elimination method intro-
duced in Ding et al. [51, Appendix B] that the ARE (33) (respectively, (36)) admits a unique non-negative

solution ϕ (respectively, ϕ̃) under the condition r > 2A (respectively, r > 2Ã), which holds naturally in

view of that the discount factor in this example is assumed to be r > 4κb = 4maxi=1,2{|A(i)|, |Â(i)|}.
Finally, we compute the minimum cost of the optimal premium problem. Note that

d

(
1

2
e−rtϕ(αt)X

2
t

)
=

1

2
e−rt

[
− rϕX2 + 2ϕX(AX + ÂX̂ +Bu∗) +

∑

j∈M

λαt,jϕ(j)X
2 + ϕσ2

]
dt. (37)

Similarly,

d

(
1

2
e−rtφ(αt)X̂

2
t

)
=

1

2
e−rt

[
− rφX̂2 + 2φX̂[(A+ Â)X̂ +Bû∗] +

∑

j∈M

λαt,jφ(j)X̂
2

]
dt. (38)

Moreover,

d(e−rtψ(αt)X̂t) = e−rt
[
− rψX̂ + ψ[(A+ Â)X̂ +Bû∗] +

∑

j∈M

λαt,jψ(j)X̂

]
dt. (39)

Combing (37)–(39) and recalling the definition of the cost functional (25), we have

J(x, i;u∗)−
1

2
ϕx2 −

1

2
φx2 − ψx

=J(x, i;u∗) + E

∫ ∞

0

d

(
1

2
e−rtϕ(αt)X

2
t +

1

2
e−rtφ(αt)X̂

2
t + e−rtψ(αt)X̂t

)

=
1

2
E

∫ ∞

0

e−rt[ϕσ2 +Rc2 −N−1B2ψ2]dt,

i.e., the minimum cost is given by

J(x, i;u∗) =
1

2
ϕ̃x2 + ψx+

1

2
E

∫ ∞

0

e−rt[ϕσ2 +Rc2 −N−1B2ψ2]dt.
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Table 1 Values of model parameters.

Parameter i = 1 i = 2

A(i) 0.1 0.4

Â(i) −0.4 −0.1

B(i) 1 2

σ(i) 0.6 0.4

R(i) 0.5 0.5

c(i) 3 5

N(i) 0.4 0.4

Table 2 Solutions to Riccati equations and linear equation.

ϕ(1) ϕ(2) |∆ϕ| φ(1) φ(2) |∆φ| ψ(1) ψ(2) |∆ψ|

ε = 1 0.205 0.177 0.028 −0.039 −0.013 0.026 −0.596 −0.712 0.116

ε = 0.1 0.191 0.185 0.006 −0.026 −0.020 0.006 −0.646 −0.671 0.025

ε = 0.01 0.188 0.187 0.001 −0.023 −0.022 0.001 −0.658 −0.661 0.003

4.2 Numerical experiment

In this subsection, we provide a numerical example to illustrate the optimal premium policy as well as
the optimal (conditional) cash flow process. In this example, we consider a two-state Markov chain α,
which means that the market trend switches between two regimes 1 (“bad” or “bear”) and 2 (“good” or
“bull”). Let the generator of the Markov chain be given by

Q =
1

ε

[
−1 1

1 −1

]
,

where the small parameter ε > 0 is introduced specially to display the fast and slow time scales; the
smaller the ε, the faster the transition of α (or the transition of the market trend). In this example, we
will consider and compare three cases: ε = 1, 0.1, 0.01, and explore not only the effect of the switching
of the market trend but also the influence of different time scales on the solution (i.e., optimal premium
policy) of the problem.

In this example, the discount factor is taken to be r = 2, and the values of the other model parameters
for i = 1, 2 are listed in Table 1. Note that the appreciation rate of the firm A(i) and the benchmark level
c(i) in a bull market (i = 2) are supposed naturally to be bigger than those in a bear market (i = 1).

First, we check that

κb = max
i=1,2

{|A(i)|, |Â(i)|} = 0.4, κσ = 0, r = 2 > 4κb + 4κ2σ = 1.6.

So the stability condition is satisfied. The solutions to Riccati equations (33) and (34) and the additional
linear equation (35), as well as their differences between i = 1 and i = 2 (denoted as ∆ϕ, ∆φ, ∆ψ) for

ε = 1, 0.1, 0.01 are computed and presented in Table 2. Then, the simulation results of X∗, X̂∗, u∗, α for
ε = 1, 0.1, 0.01 are plotted in Figure 1. It turns out as follows.

(i) The cash flow process X∗ will be brought to and eventually stabilized at the benchmark level under
the optimal policy u∗. Moreover, since the benchmark level in a bull market c(2) = 5 is bigger than that
in a bear market c(1) = 3, the optimal policy u∗ in a bull market should also be bigger than that in a
bear market in order to bring X∗ to c(i) more quickly; it can be seen from each sub-figure in Figure 1
that u∗ displays a sharp change immediately the Markov chain jumps from state 1 to state 2, and vice
versa. On the other hand, when X∗ approaches c(i), u∗ will then decrease towards 0 to save cost.

(ii) Table 2 shows that the differences |∆ϕ|, |∆φ|, |∆ψ| between ϕ(1) and ϕ(2), φ(1) and φ(2), ψ(1)
and ψ(2), respectively, converge to zero as ε tends to 0. This phenomenon reflects that as the two states
switch more and more rapidly, they are becoming more like a single state; actually, it is the so-called
two-time-scale approximation (see Yin and Zhang [23]).
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Figure 1 (Color online) Simulations of X∗, X̂∗, u∗, α for ε = 1, 0.1, 0.01.

5 Concluding remarks

There are several interesting questions that deserve further investigation. Firstly, it is natural to proceed
to establish the necessary SMP for the infinite horizon optimal control problem considered in this paper,
which needs delicate variational techniques, moment estimations, and duality analysis. Secondly, as an
application of our sufficient SMP, we provide a cash flow management problem in Section 4, which is a
special LQ problem in nature. In the next step, we can continue to study such an LQ problem in the
general setting. The key difficulty should be the solvability of the corresponding AREs. Thirdly, this
paper considers the limit problem of an original N -agent game problem in the sense of Remark 1. In the
future, we will study the convergence of N -agent game towards its asymptotic mean-field game (as well
as related numerical experiments) within the framework of, e.g., [52–54], which not only has important
mathematical significance, but also enjoys many potential applications in practice.
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