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Abstract How to intervene in a group of agents such that their opinions reach consensus is an important issue in the social

sciences. In this paper, we investigate this problem where the opinions of agents evolve according to the weighted median

mechanism inspired by the cognitive dissonance theory in psychology. Some agents, referred to as prejudiced agents, are

informed of the prejudice, while the other agents, called unprejudiced agents, do not have such information. We provide

quantitative results on the minimum number of prejudiced agents needed to make opinions of all agents reach the expected

consensus over three classes of proximity-based graphs: k-nearest-neighbor cycle, grid graph, and random geometric graph. In

addition to this, we construct the methods to appropriately choose prejudiced agents such that the system reaches consensus

on the prejudice over these three graphs. Simulation results are given to verify the effectiveness of theoretical results.
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1 Introduction

Opinion dynamics mainly focuses on the interaction mechanisms and evolutionary patterns of individual
opinions within a group, and is becoming one of the significant research directions in social sciences. It has
attracted considerable research interests in diverse fields including politics, economy and psychology [1–3],
and enjoys wide applications in election forecasting [4], cultural dissemination [5], and public sentiment
monitoring [6]. Besides the experiments or the computer simulations, theoretical investigations are also
conducted to understand the phenomena observed in real society, e.g., opinion formation, diffusion, and
polarization.

Consensus, meaning that opinions of all agents reach agreement by interaction between agents, is an
important collective behavior in social networks. The DeGroot model [7, 8] is one of the earliest opinion
dynamics models and shows that consensus can be reached if the network is aperiodic and irreducible.
To better reflect the social phenomenon that people are more influenced by similar opinions, bounded-
confidence models were proposed in [9,10], showing that agents reach consensus only when the interaction
radius is large enough [11]. However, the two aforementioned models fail to explain the difference of
opinions in connected social networks [12,13]. To understand this, some new mechanisms are proposed in
opinion dynamics to characterize the evolution of opinions. For example, the Altafini model [14] allows
negative weights in the networks. They show that the bipartite consensus can be achieved if the network
is strongly connected and structurally balanced, and consensus at zero can be achieved over unbalanced
networks [15].

We note that the opinion dynamics can exhibit consensus behavior under some conditions, but the
consensus value depends on the system parameters and initial states, which may not be the desired
one [16, 17]. How to intervene in the collective behavior of a group of agents is an important issue in
social sciences and has wide applications in many practical scenarios such as public health [18], political
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elections [19], social movements [20], and crisis management [21]. Introducing a subset of agents with prior
information of the expected opinion is a feasible way. These agents are called leaders [22] or prejudiced
agents [23], which can affect the dynamical behavior of opinions within the whole group [22, 24]. For
example, in [22], leaders that can broadcast at certain moments are introduced, and the minimum number
of broadcasts required for consensus is investigated. In [24], a two-timescale opinion dynamics model with
prejudiced agents is analyzed, and sufficient conditions for reaching consensus in time-varying networks
are established.

As far as we know, most existing investigations on opinion dynamics focus on the weighted average
mechanism, which has the property that the greater the distance between agents’ opinions, the stronger
the attraction [25, 26]. To overcome this limitation, the opinion dynamics with the weighted median
mechanism [25] was proposed based on the cognitive dissonance theory in psychology [27]. Different
from the weighted average mechanism, agents update their opinions based on the weighted median of
their neighbors’ opinions, which can avoid the problem that the influence increases with the difference of
opinions. Theoretical results are obtained for the behavior of opinion dynamics with the weighted median
mechanism in [28]. Furthermore, the weighted median opinion dynamics with prejudiced agents was
investigated in [29]. Intuitively, if a group of unprejudiced agents form a cohesive set, their opinions can
only be disseminated in a closed environment, potentially resulting in an echo chamber [28]. Therefore,
avoiding such cohesive sets is essential for reaching consensus. But how many prejudiced agents are
needed for the expected behavior is unsolved. In fact, the experiments in social sciences [30, 31] show
that a small fraction of prejudiced agents can effectively guide a large group toward consensus. Related
problems have also attracted significant interest in the control community, such as pinning control,
and the minimal controllability problem. However, in the study of the pinning control problem, the
relationship between agents is typically explicitly coupled and is generally described by the Laplacian
matrix (cf., [32, 33]), and the minimum controllability problem mainly focused on the networked linear
systems (cf., [34]). These methods and results are not suitable for the study of the minimum number of
prejudiced agents needed in the weighted median opinion dynamics.

In this paper, we consider the weighted median opinion dynamics with prejudice, and quantitatively
investigate the minimum number of prejudiced agents needed to guarantee all agents reach the expected
consensus over three types of proximity-based graphs: k-nearest-neighbor cycle, grid graph, and random
geometric graph. The main contributions can be summarized as follows.

• For the k-nearest-neighbor cycle, the exact value for the minimum number of prejudiced agents is
obtained by identifying the cohesive sets of the k-nearest-neighbor cycle.

• For the grid graph, a necessary condition (lower bound) and a sufficient condition (upper bound) for
the minimum number of prejudiced agents are established by characterizing the circle structure in the
grid graph. The orders of magnitude of the upper and lower bounds are essentially the same.

• For the random geometric graph, a sufficient condition for the minimum number of prejudiced agents
is given by explicitly estimating the number of neighbors of agents.

• We construct methods to select prejudiced agents to ensure that the system reaches consensus on
the prejudice over these three types of graphs.

The paper is organized as follows. In Section 2, we introduce the consensus problem of the weighted
median opinion dynamics with prejudice. In Sections 3–5, we separately provide the theoretical results
on the minimum number of the prejudice agents over k-nearest-neighbor cycle, grid graph, and random
geometric graph. In Section 6, we present some simulation results to verify the effectiveness of the
theoretical results. Concluding remarks are made in Section 7.

2 Problem formulation

In this paper, we consider the consensus problem of the weighted median opinion dynamics. The weighted
median opinion dynamics was proposed in [25], which is inspired by the cognitive dissonance theory
in psychology [27]. The weighted median mechanism can avoid the problem of the weighted average
mechanism that the greater the distance between agents’ opinions, the stronger the attraction [25, 26].
Moreover, this mechanism has the ability to demonstrate the diversity of opinion evolution, such as
consensus, polarization and divergence [25, 26].

We first introduce the concept of weighted median. Let ϑ = (ϑ1, . . . , ϑn)
⊤ be a weight vector satisfying

0 6 ϑi 6 1 for all i = 1, 2, . . . , n and
∑n

i=1 ϑi = 1. For a vector x = (x1, . . . , xn)
⊤ ∈ Rn, we say that
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x∗ ∈ ∪n
i=1{xi} is a weighted median of x associated with ϑ if

∑

i:xi<x∗

ϑi 6
1

2
and

∑

i:xi>x∗

ϑi 6
1

2
.

It is clear that the weighted median exists and may not be unique.
This paper considers a group of n agents. The evolution of each agent’s opinion is affected by its

neighbors. The influence between agents is represented by a graph G = (V , E ,W ), where W = (wij)
denotes the weighted adjacency matrix. For any two agents i, j ∈ V , the weights satisfy wij > 0,
and wij > 0 if and only if (i, j) ∈ E . Moreover, we assume that the matrix W is stochastic, i.e.,
∑

j∈V wij = 1 holds for all i ∈ V . Let Wi = (wi1, . . . , win)
⊤ denote the weight vector of the agent i. Let

Ni = {j ∈ V : (i, j) ∈ E} be the neighbor set of the vertex i, and the cardinality of Ni is denoted as Ni.
For convenience of analysis, we assume that for (i, j) ∈ E the weights are taken as wij = 1

Ni
. This is

a classical assumption for agent interactions and is widely adopted in multi-agent systems, such as the
well-known Vicsek model [35].

Now, we introduce the weighted median opinion dynamics. For each agent i ∈ V , its opinion xi(t) ∈ R
at the time instant t ∈ N obeys a discrete-time dynamical model. Let x(t) := (x1(t), . . . , xn(t))

⊤ be the
vector formed by the opinions of all agents. Then the weighted median opinion dynamics are described
by

xi(t+ 1) = Med(x(t);Wi), (1)

where Med(x(t);Wi) denotes the weighted median of x(t) associated with the weight Wi. If the weighted
median is not unique, Med(x(t);Wi) is taken as the weighted median closest to xi(t).

In order to intervene in the weighted median opinion dynamics such that all agents reach the desired
opinion (referred to as prejudice u), a subset of agents is chosen to be informed about this prejudice.
These selected agents are called prejudiced agents. The opinions of prejudiced agents evolve as the
balance between the weighted median of x(t) associated with the corresponding weight vector and the
prejudice u. Thus, the dynamics of these agents are described by

xi(t+ 1) = λiu+ (1− λi)Med(x(t);Wi),

where λi ∈ (0, 1] is a constant.
Denote the set of prejudiced agents as V1, and unprejudiced agents as V2 = V \V1. Then, the weighted

median opinion dynamics with prejudice is described by

xi(t+ 1) =

{

λiu+ (1− λi)Med(x(t);Wi), i ∈ V1,

Med(x(t);Wi), i ∈ V2,
(2)

where λi ∈ (0, 1] for all i ∈ V1.
In this paper, we will investigate how many prejudiced agents are required such that the opinion

dynamics (2) reaches consensus on the common prejudice u, i.e.,

lim
t→∞

xi(t) = u, i ∈ V

holds for any initial opinion x(0) ∈ R.
By analyzing the dynamics (2), we see that if all agents are prejudiced, then the system can reach

consensus on u. However, experimental results (cf., [30,31]) show that only a small minority of prejudiced
agents are needed to guide a large group to reach consensus. We are interested in how many prejudiced
agents are needed and how we select these prejudiced agents such that the whole group reaches the
consensus on the prejudiced opinion. In order to investigate this problem, we introduce the following
definition of the cohesive set [28].

Definition 1 (Cohesive set). If a non-empty subset M ⊂ V satisfies
∑

j∈M wij > 1
2 for any i ∈ M,

then we say that M is a cohesive set of the graph G.
If a cohesive set M consists of unprejudiced agents only, i.e., M ⊂ V2, we call it an unprejudiced

cohesive set. It is clear that if there exists an unprejudiced cohesive set M, then all agents in M do
not adopt the opinion beyond the set M during the evolution of the opinion dynamics. In this sense,
an unprejudiced cohesive set can be seen as an echo chamber, in which opinions are disseminated and
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reinforced inside a closed system (cf., [28]). So, to reach consensus, the system should not contain
unprejudiced cohesive sets to avoid the generation of echo chambers. In our previous paper [29], we
provided a necessary and sufficient condition for consensus on the prejudiced opinion of the system (2).

Lemma 1 ([29]). The system (2) reaches consensus on the common prejudice u if and only if the graph
G does not contain unprejudiced cohesive sets.

Remark 1. By Lemma 1, we see that the parameters λi will not influence the convergence property of
the weighted median opinion dynamics (2). But according to Lemmas 4.3 and 4.6 in [29], the system (2)
converges with a certain exponential convergence rate which is affected by the parameters λi.

According to Lemma 1, the issues of how many prejudiced agents are required and how to select them
to achieve consensus have not been solved yet. In this paper, we study the minimum number v∗ of
prejudiced agents required for the system (2) to reach consensus. The meaning of the minimal number
v∗ is twofold. One is that there exists at least a set of prejudiced agents whose cardinality is exactly v∗

such that the system (2) reaches consensus on u. The other is that if the number of prejudiced agents is
less than v∗, then the system (2) cannot reach consensus no matter how we choose prejudiced agents.

We note that when all cohesive sets M1, . . . ,Mk are identified, finding the minimum number v∗ can
be reformulated as solving the following binary linear programming problem.

min
ξ

n
∑

j=1

ξj , ξ = (ξ1, . . . , ξn)
⊤, ξj ∈ {0, 1} , (3a)

s.t.
n
∑

j=1

pijξj > 1, ∀i = 1, 2, . . . , k, (3b)

pij =

{

1, j ∈ Mi,

0, j /∈ Mi.
(3c)

For general graphs, it is difficult to identify the cohesive sets and solve the above binary linear pro-
gramming problem. Thus, finding the accurate minimum number v∗ of prejudiced agents for general
graphs is very hard. In this paper we will focus on quantitatively analyzing the minimum number v∗ over
three types of classical graphs: k-nearest-neighbor cycle Gn,k, grid graph Gm×n and random geometric
graphs G(n, rn).

3 Minimum number of prejudiced agents over k-nearest-neighbor cycle

The k-nearest-neighbor cycle is a fundamental concept in graph theory, and in social sciences, it can be
used to model the closest social connections of each agent in a social network, helping to understand the
structure and spread of information within a social group.

We first introduce some concepts on k-nearest-neighbor cycle. Let n, k ∈ N satisfying n > 2k + 1, a
k-nearest-neighbor cycle Gn,k = (V , E ,W ) (see Figure 1) is a graph with vertex set V = {1, . . . , n} and
edge set E = {(i, j) : |i − j| 6 k or n − |i − j| 6 k}. Then Ni = 2k + 1 for all i ∈ V . In this section,
we consider the system (2) with n agents interacting over a k-nearest-neighbor cycle Gn,k (n > 2k + 1).
Since Ni = 2k + 1 for all i ∈ V , the elements of the weight matrix W of Gn,k satisfy

wij =







1

2k + 1
, if (i, j) ∈ E ,

0, otherwise.
(4)

In order to analyze the weighted median opinion dynamics with prejudice, we first introduce the
following two lemmas concerning the cohesive sets.

Lemma 2. For a subset M ∈ V of the graph Gn,k, if each agent i (i ∈ M) has at least k + 1 neighbors
belonging to M, then M is a cohesive set.

Proof. For any i ∈ M, since i has at least k+1 neighbors belonging to M, by (4) we have
∑

j∈M wij >

(k + 1) · 1
2k+1 > 1

2 . By Definition 1, M is a cohesive set.

Lemma 3. If the agent i(i ∈ V) has at least k + 1 prejudiced neighbors, then i does not belong to any
unprejudiced cohesive set.
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Figure 1 A 2-nearest-neighbor cycle with 8 vertices.

Proof. If the agent i has at least k + 1 prejudiced neighbors, then for any unprejudiced cohesive set
M, by (4) we have

∑

j∈M
wij = 1−

∑

j /∈M
wij 6 1− (k + 1) · 1

2k + 1
<

1

2
,

which means that i /∈ M.

Let a | b denote that a divides b exactly. In the following, we establish a theorem which gives the exact
value of the minimum number v∗ for consensus of weighted median opinion dynamics with prejudice over
k-nearest-neighbor cycle Gn,k.

Theorem 1. For the system (2) over k-nearest-neighbor cycle Gn,k, we have

v∗ = k +

⌊

n− k

k + 1

⌋

,

where ⌊·⌋ denotes the largest integer not greater than the given real number.

Proof. We first prove that v∗ > k + ⌊n−k
k+1 ⌋.

Let V1 be the set of agents with prejudice that enables the system (2) to reach consensus. If the agent
i(i ∈ V2) has at least k + 1 neighbors belonging to V2, by Lemma 2 we see that V2 is a cohesive set.
Then, by Lemma 1, the system described by (2) cannot reach consensus. This contradicts the assertion
that the system (2) achieves consensus when the agents in the set V1 have the prejudiced opinion. So
there exists i∗ ∈ V2 such that i∗ has at most k neighbors belonging to V2. Since each agent has 2k + 1
neighbors, i∗ has at least k + 1 neighbors belonging to V1. Without loss of generality, we assume i∗ = 1,
then at least k + 1 agents in N1 = {1, . . . , k + 1} ∪ {n− k + 1, . . . , n} are prejudiced.

In the graph Gn,k, the k + 1 consecutive agents are neighbors of each other. By Lemma 2, the k + 1
consecutive agents in {k + 2, . . . , n − k} form a cohesive set. By Lemma 1, in order to ensure that the
system (2) achieves consensus, at least one of the k + 1 consecutive agents in {k + 2, . . . , n− k} belongs

to V1. With each cluster consisting of k + 1 agents, the n agents are grouped into ⌊ (n−k)−(k+2)+1
k+1 ⌋

clusters. Thus, in order to ensure that the system reaches consensus, at least ⌊ (n−k)−(k+2)+1
k+1 ⌋ agents in

{k + 2, . . . , n− k} are prejudiced. By the structure of Gn,k, we see that the cardinality of V1 satisfies

|V1| > k + 1 +

⌊

(n− k)− (k + 2) + 1

k + 1

⌋

= k +

⌊

n− k

k + 1

⌋

. (5)

Thus, we have

v∗ > k +

⌊

n− k

k + 1

⌋

.
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Next, we construct a set V1 whose cardinality is exactly k+ ⌊n−k
k+1 ⌋ such that the system (2) can reach

consensus. Let agents 1, 2, . . . , k be prejudiced. Then for any agent i ∈ {k + 1, . . . , n}, it is prejudiced if
and only if (k + 1) | (i − k). Let V1 be composed of these agents, i.e.,

V1 = {1, . . . , k} ∪ {i ∈ V : k + 1 6 i 6 n, (k + 1) | (i − k)}.

Then |V1| = k + ⌊n−k
k+1 ⌋.

We use proof by contradiction to show that there does not exist a non-empty cohesive set M ⊂ V2 =
V \ V1. Assume there exists a non-empty cohesive set M ⊂ V2. We will prove that {1, . . . , n} ∩M = ∅
by induction. Since agents 1, . . . , k are prejudiced, then {1, . . . , k} ∩M = ∅. Assume that {1, . . . , i∗ −
1} ∩ M = ∅ where k 6 i∗ − 1 6 n − 1. By the structure of Gn,k and V1, the agent i∗ has k + 1
neighbors belonging to V1 ∪ {1, . . . , i∗ − 1}, they are agents i∗ − k, . . . , i∗ − 1, i∗ + d, where 0 6 d 6 k and
(k+1)|(i∗+d−k). In addition, since M∩V1 = ∅,M∩{1, . . . , i∗−1} = ∅ and M∪V1∪{1, . . . , i∗−1} ⊂ V ,
we have

∑

j∈M
wi∗j = 1−

∑

j /∈M
wi∗j

6 1−
∑

j∈V1∪{1,...,i∗−1}
wi∗j

6 1− k + 1

2k + 1
<

1

2
.

It is clear that the i∗ /∈ M. The induction is complete. Thus, the set M is empty, it means that there is
no cohesive set that contains only unprejudiced agents. By Lemma 1, we can deduce that the prejudiced
set V1 can ensure that the system (2) achieves consensus. By the above analysis, we can conclude that

v∗ = k +

⌊

n− k

k + 1

⌋

.

This completes the proof of the theorem.
Theorem 1 not only establishes the minimum number of prejudiced agents needed to intervene in the

weighted median opinion dynamics, but also provides a method for selecting prejudiced agents with a
minimal number to ensure the consensus of the system.

Remark 2. The small-world networks can be generated from k-nearest-neighbor cycles by randomly
adding or rewiring edges, but the presence of random long-range connections disrupts the symmetry of
the network. This asymmetry and randomness make it difficult to identify the cohesive sets, thus making
the problem of characterizing the minimum number of prejudiced agents challenging.

4 Minimum number of prejudiced agents over grid graph

We first present some notations on the grid graph. Let m,n ∈ N, m > 3, n > 3. A grid graph
Gm×n = (V , E ,W ) (see Figure 2) is a graph with vertex set V = {1, . . . ,mn}. The mn vertices are
distributed in the grid (N × N) ∩ ([1, n] × [1,m]) from left to right and from bottom to top. It is clear
that grid graphs have a natural and intuitive spatial structure, and can be related to the physical or
geographical layout of a community. Let zi = (zi1, zi2) ∈ (N×N)∩ ([1, n]× [1,m]) be the position of the
vertex i. The edge set E = {(i, j) : ‖zi − zj‖ = 1} ∪ {(i, i) : i ∈ V}. The elements of the weight matrix
W of Gn,k are taken as

wij =







1

Ni
, if (i, j) ∈ E ,

0, if (i, j) /∈ E ,
(6)

where Ni ∈ {3, 4, 5} is the number of neighbors of the agent i and its value is determined by the position
of i.

For the given prejudiced and unprejudiced set V1 and V2 in the grid graph, let G2 = (V2, E2) denote a
graph with V2 = V \ V1 and E2 = {(i, j) ∈ E : i, j ∈ V2}. In order to proceed with our analysis, we first
give a lemma on the graph G2.

Lemma 4. For the graph G2 in the grid graph with |V2| > 3, if |E2| > 2|V2|, then G2 has a cycle.
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Figure 2 A 5 × 5 grid.

Proof. We first consider the case where G2 is connected. According to the structure of the grid graph,
we have Ni > 2 for any i ∈ V2. We use induction to prove that G2 has a cycle. If |V2| = 3, the graph G2

is a complete graph with three loops. Thus, the graph G2 must contain a cycle. Assume that the lemma
holds for |V2| = l, l > 3. When |V2| = l + 1, if the number of neighbors satisfies Ni > 3 for any i ∈ V2,
i.e., each agent i has at least two neighbors except for itself, then by the Subsection 1.7 of [36], G2 has
a cycle. If there exists an agent i ∈ V such that Ni = 2, then we remove the vertex i from the graph
G2 then the remaining part of the graph has a cycle according to the condition of this lemma and our
induction assumption. Thus, the induction argument is completed.

Next, we consider the case where G2 is not connected. By the assumption that |E2| > 2|V2| and the
structure of the graph, we see that there exists at least one connected component G∗ = (V∗, E∗) of G
satisfying |E∗| > 2|V∗|. By the above analysis, we see that G∗ has a cycle.

This completes the proof of the lemma.
By Definition 1, we have the following lemma on the cohesive set of Gm×n.

Lemma 5. For any cycle C = (Vc, Ec) of Gm×n, Vc is a cohesive set.

Proof. For any i ∈ Vc, we have |Ni ∩ Vc| = 3. Thus, for i ∈ Vc, we have
∑

j∈Vc
wij = 3

Ni
> 3

5 > 1
2 .

Then by Definition 1, we see that Vc is a cohesive set.
By Lemmas 1 and 5, in order for the system (2) to reach consensus, the grid graph Gm×n cannot

contain a cycle consisting of unprejudiced agents only.
Based on the above analysis, we provide a lower bound for the minimum number v∗ such that the

system (2) achieves consensus over the grid graph Gm×n.

Theorem 2. For the system (2) over the grid graph Gm×n, if the number of the prejudiced set V1

satisfies

|V1| 6
mn−m− n

3
, (7)

then the system (2) cannot achieve consensus.

Proof. According to the structure of the grid graph, we see that each agent has at most 5 neighbors.
Thus, we have

|V2| = |V| − |V1| = mn− |V1|, (8)

|E2| > |E| − 5|V1| = 3mn−m− n− 5|V1|. (9)

By (7)–(9), we have |E2| > 2|V2|. Then by Lemma 4, we see that the graph G2 has a cycle. Thus, the
graph Gm×n has a cycle consisting of unprejudiced agents only. By Lemmas 1 and 5, the system (2) can
not achieve consensus. This completes the proof of the theorem.
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Figure 3 Illustration of choosing the prejudiced agents over G8×8, where the prejudiced agents are marked by red points.

In the following, we consider the sufficient condition for the minimum number of prejudiced agents
needed for consensus of the system (2).

Theorem 3. For the system (2) over grid graph Gm×n, the minimal number of prejudiced agent satisfies

v∗ 6
mn

3
+ 2m+ 2n− 4. (10)

Proof. In order to prove the theorem, we first provide a method to choose the set of prejudiced agents
V1 over the grid graph Gm×n such that the system (2) can reach consensus on the prejudice.

For the agent i ∈ V , if i is on the boundary of Gm×n then it is selected to be prejudiced agent; otherwise
if the position zi = (zi1, zi2) of the agent i satisfies 3 | (zi1 − zi2) then it is prejudiced. This method is
illustrated in Figure 3.

In the above method, the boundary of the grid graph Gm×n has 2m+2n− 4 prejudiced agents. Apart
from the boundaries, the grid graph Gm×n has m−2 rows and each row has at most n

3 prejudiced agents.
Thus, cardinality of the prejudiced set V1 satisfies

|V1| 6
n

3
· (m− 2) + 2m+ 2n− 4 <

mn

3
+ 2m+ 2n− 4.

In the following, we will prove that the system (2) reaches consensus on the prejudice u over the
grid graph if the set of prejudiced agents V1 is chosen according to the method given above. For this
purpose, we use induction to prove that for any 1 6 l 6 m, all agents in the lth row do not belong to any
unprejudiced cohesive set. As a result, the graph contains no unprejudiced cohesive sets. According to
Lemma 1, this implies that the system (2) reaches consensus.

First, for l = 1 and l = m, the agents in the 1st and mth rows do not belong to any unprejudiced
cohesive set since all of them are prejudiced. We assume that for 2 6 l < l∗(6 m− 1), all agents in the
lth row do not belong to any unprejudiced cohesive set. Denote the agents in the l∗th row as i1, . . . , in
from left to right, with positions zi1 = (1, l∗), . . . , zin = (n, l∗).

The agent i1 is prejudiced since it lies at the boundary of Gm×n. Assume that for any k with 2 6
k < k∗(6 n − 1), the agent ik does not belong to any unprejudiced cohesive set. If the agent ik∗ is
prejudiced, then it does not belong to any unprejudiced cohesive set. Otherwise, by the method to
choose the prejudiced agents, we have 3 ∤ (l∗ − k∗). Thus, we have 3 | (l∗ − k∗ − 1) or 3 | (l∗ − k∗ + 1).
By these two equations, we can deduce that one of the neighbors on the right or top of the agent ik∗ is
prejudiced. Moreover, by the induction assumption, the neighbors on the left and bottom of the agent
ik∗ do not belong to any unprejudiced cohesive set. Note that for any unprejudiced cohesive set M ⊂ V2,
we have

∑

j∈M
wik∗ j = 1−

∑

j /∈M
wik∗ j 6 1− 3

Nik∗

<
1

2
.
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Thus, the agent ik∗ does not belong to any unprejudiced cohesive set. By the above analysis, we conclude
that all agents in the l∗th row do not belong to any unprejudiced cohesive set. The induction is complete.

By Lemma 1, the set V1 of prejudiced agents chosen according to the above method can ensure that
the system (2) reaches consensus on the prejudice, that is, the minimum number v∗ satisfies (10). This
completes the proof of the theorem.

Remark 3. Theorem 3 provides a specific selection strategy of prejudiced agents that ensures the
system (2) reaches consensus. By Theorems 2 and 3, we see that the minimum number v∗ satisfies

mn−m− n

3
6 v∗ 6

mn

3
+ 2m+ 2n− 4.

When bothm and n tend to infinity, the orders of magnitude of the upper and lower bounds are essentially
the same, which means that the ratio of the upper and lower bounds tends to 1.

5 Minimum number of prejudiced agents over random geometric graph

Compared with grid graphs or other regular lattices, random geometric graphs allow agents to be placed
randomly within a spatial domain (e.g., a plane or a cube) and provide a more practical framework in
opinion dynamics, as they are isotropic, allow flexible average degrees, and more accurately capture local
interactions based on spatial proximity among agents [37, 38].

We first give some notations on a random geometric graph. Let n ∈ N and rn > 0 be the interaction
radius. Assume that there are n vertices with positions uniformly and independently distributed in the
unit square [0, 1]2. Let zi = (zi1, zi2) ∈ [0, 1]2 be the position of the vertex i. A random geometric graphs
G(n, rn) is a graph with the vertex set V = {1, . . . , n}, and the edge set E = {(i, j) : ‖zi−zj‖ 6 rn}. The
neighbors of the agent i are those agents lying within a circle centered at i’s position with the radius rn,
i.e., Ni = {j : ‖zi − zj‖ 6 rn}.

In this section, we investigate consensus of the system (2) with a large population size n, and provide
sufficient conditions for consensus on the prejudice. For this purpose, we will construct a prejudiced
set such that the system (2) can reach consensus. First, we will give some preliminary results on the
distribution of prejudiced and unprejudiced agents.

Divide the unit square [0, 1]2 into Mn = ⌊√n+ 1⌋2 equally small squares with the length of each side
equal to an = 1

⌊√n+1⌋ , labeled from left to right and from bottom to top as Si,j , i, j = 1, . . . , 1
an

. Let zi,j

be the position of the center of small square Si,j . Let B(z, r) denote the circle centered at z with radius
r. For any agent k ∈ Si,j ,

‖zi,j − zk‖ 6

√
2

2
an.

Then for any z ∈ B
(

zi,j , rn − an
)

and any agent k ∈ Si,j , we have

‖z − zk‖ 6 ‖z − zi,j‖+ ‖zi,j − zk‖ 6 rn − an +

√
2

2
an < rn.

Thus, for any agent k in Si,j , all agents in B
(

zi,j , rn − an
)

are its neighbors. Denote the line determined

by the bottom two vertices of the square Si,j as li,j , and the regions of the circle B
(

zi,j , rn − an
)

below
and above the line li,j as B1

i,j and B2
i,j (see Figure 4).

Let Z = {z1, . . . , zn} be the set of positions of all agents in G(n, rn). Let N1
i,j = |Z ∩ B1

i,j |, where
Z ∩ B1

i,j represents the set of positions of the agents in B1
i,j. Let {gn}n∈N be any positive sequence

satisfying

1 ≪ gn ≪
√
nrn

logn
. (11)

Let bn = ⌊ rn
an

⌋. We have

bn 6
rn
an

6 bn + 1, (12)
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Figure 4 B
(

zi,j , rn − an

)

(red line) and li,j (blue line).

1 ≪ gn ≪ bn
logn

. (13)

Then, we have the following estimates for N1
i,j .

Lemma 6. Suppose that the radius rn satisfies logn√
n

= o(rn)
1). Then the probability of the event

A1 = {ω ∈ Ω : N1
i,j > n(π2 (rn − an)

2 − rnan)(1 + o(1)), bn + 2 6 i, j 6 1
an

− bn − 1} satisfies

P
{

A1

}

> 1−O(n−gn). (14)

Proof. For any bn + 2 6 i, j 6 1
an

− bn − 1, by the definition of the set B1
i,j and line li,j , we have for

sufficiently large n

S
(

B1
i,j

)

>
S
(

B
(

zi,j , rn − an
)

)

2
− 1

2
· 2rn · an

=
π

2
(rn − an)

2 − rnan,

(15)

where S(·) denotes the area of the corresponding region.
Let ξlij , 1 6 l 6 n be the indicator function defined as follows:

ξlij =

{

1, if z1 ∈ B1
i,j ,

0, if zl /∈ B1
i,j .

Then ξlij are i.i.d. Bernoulli random variables with P (ξlij = 1) = S(B1
i,j) , p. It is clear that N1

i,j =
∑n

l=1 ξ
l
ij . By the Chernoff bound (cf., [39]), we have the following inequality for any ǫ ∈ (0, 1):

P
{

|N1
i,j − np| > ǫnp

}

6 2 exp

(

− ǫ2np

3

)

.

Since {N1
i,j} are identically distributed random variables, then we have

P

{

max
bn+26i,j6 1

an
−bn−1

|N1
i,j − np| 6 ǫnp

}

> 1−
∑

bn+26i,j6 1
an

−bn−1

P
{

|N1
i,j − np| > ǫnp

}

1) For two positive sequences {an}∞
n=1 and {bn}∞

n=1, an = O(bn) means that there exists a constant C > 0 independent of n,

such that an 6 Cbn for any n ∈ N; an = o(bn) or an ≪ bn means that limn→∞
an
bn

= 0.
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> 1− 2Mn exp

(

− ǫ2np

3

)

> 1− 3n exp

(

− ǫ2np

3

)

.

Take

ǫ = ǫn =

√

3(gn logn+ logn)

np
= o(1),

where gn satisfies 1 ≪ gn ≪ rn√
n logn

. Then for sufficiently large n, we have

P

{

max
bn+26i,j6 1

an
−bn−1

|N1
i,j − np| 6 ǫnnp

}

> 1− 3 exp

(

logn− 1

3
· 3(gn logn+ logn)

np
· np

)

> 1−O

(

1

ngn

)

.

Thus,

P

{

N1
i,j = np(1 + o(1)), bn + 2 6 i, j 6

1

an
− bn − 1

}

> 1−O(n−gn).

Substituting (15) and p = S(B1
i,j) into the above inequality, we can deduce the inequality (14). This

completes the proof of the lemma.
In the proof of the above lemma, we see that the condition log n√

n
= o(rn) is important for the estimate

of the N1
i,j , which guarantees that each agent has a sufficiently large number of neighbors. It is also used

in the following two lemmas and the main theorems to obtain the asymptotic results.
Following the proof of the above lemma, we can estimate the number of neighbors of each agent, see

the following lemma.

Lemma 7. Suppose that the radius rn satisfies logn√
n

= o(rn). Then the probability of the event

A2 = {ω ∈ Ω : Nk < nπ(rn + an)
2(1 + o(1)), k = 1, . . . , n} satisfies

P
{

A2

}

> 1−O(n−gn). (16)

Let S̃i,j denote the set of all small squares Si,j whose indexes i and j satisfy

min
k∈Z

{

∣

∣i− j + k · bn
∣

∣

}

6 2. (17)

In the following proof of the main theorem, we will choose the agents located in these small squares S̃i,j

as prejudice agent. Let B̃2
i,j denote the overlapping area of B2

i,j and S̃i,j , and N2
i,j = |Z ∩ B̃2

i,j |. We have

the following result on the estimate of N2
i,j .

Lemma 8. Suppose that the radius rn satisfies logn√
n

= o(rn). Then the probability of the event

A3 = {ω ∈ Ω : N2
i,j > (2π+ 1)nrnan(1 + o(1)), bn + 2 6 i, j 6 1

an
− bn − 1} satisfies

P
{

A3

}

> 1−O(n−gn). (18)

Proof. For bn + 2 6 i, j 6 1
an

− bn − 1, by (17) we have for sufficiently large n,

S
(

B̃2
i,j

)

=
5

bn
(1 + o(1))S

(

B2
i,j

)

>
5S

(

B
(

zi,j , rn − an
)

)

2bn

=
5π

2bn
(rn − an)

2 > (2π+ 1)rnan.

The rest of the proof is similar to that of Lemma 6. Here we omit the proof details. This completes the
proof of the lemma.
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Figure 5 Illustration of choosing the prejudiced agents over G(n, rn) with n = 10000 and rn = 0.1. The blue and red points

represent prejudiced and unprejudiced agents, respectively.

Now, we present the main theorem concerning sufficient conditions for the consensus of the weighted
median opinion dynamics with prejudice. We prove this theorem by providing a specific strategy for
selecting prejudiced agents.

Theorem 4. For the system (2) over random geometric graphs G(n, rn). Suppose that the radius rn
satisfies logn√

n
= o(rn). Then there exists a set of prejudiced agents whose cardinality satisfies

|V1| <
(

4rnn+
6
√
n

rn

)

(

1 + o(1)
)

, (19)

such that the system (2) reaches consensus with a probability not less than 1−O(n−gn).

Proof. First, we provide a method to choose the set of prejudiced agents over the random geometric
graphs G(n, rn) such that the system (2) can reach consensus on the prejudice. For small square Si,j , if
Si,j satisfies

max

{∣

∣

∣

∣

i · an − 1

2

∣

∣

∣

∣

,

∣

∣

∣

∣

j · an − 1

2

∣

∣

∣

∣

}

>
1

2
− (bn + 1)an, (20)

i.e., i /∈ [bn + 2, 1
a1

− bn − 1] or j /∈ [bn + 2, 1
a1

− bn − 1], or satisfies (17), then all the agents located in
these small squares are chosen to be prejudiced. This method on how to choose the prejudiced agents is
illustrated in Figure 5.

According to the above method, we see that there are at most
(

5
bn

1
an

+5
)

1
an

small square Si,j satisfying

(17) and 4(bn + 1)
(

1
an

− bn − 1
)

small squares Si,j satisfying (20). Let B2 denote the area consisting of
all small squares which satisfy (17) and (20). Then for sufficiently large n, we have

S(B2) 6

(

4(bn + 1)

(

1

an
− bn − 1

)

+

(

5

bn

1

an
+ 5

)

1

an

)

S(Si,j)

=

(

4(bn + 1)

(

1

an
− bn − 1

)

+

(

5

bn

1

an
+ 5

)

1

an

)

a2n

< 4anbn +
5

bn
+ 9an

< 4rn +
6

2rn
√
n
.

Similar to the proof of Lemma 6, the probability of the event A4 =
{

ω ∈ Ω : N(n, rn) <
(

4rnn+
6
√
n

rn

)(

1+

o(1)
)}

satisfies

P
{

A4

}

> 1−O(n−gn). (21)

By Lemmas 6–8, the probability that the event A1∩A2∩A3∩A4 happens is no less than 1−O(n−gn).
The following analysis is on the event A1 ∩ A2 ∩ A3 ∩ A4. We will prove that if the prejudiced agents



Zhang R C, et al. Sci China Inf Sci November 2025, Vol. 68, Iss. 11, 210207:13

Table 1 Minimum number of prejudiced agents under different network structures.

Network structure Number of agents Minimum number v∗

K-nearest-neighbor cycle Gn,k n v∗ = k + ⌊n−k
k+1

⌋
Grid graph Gm×n mn mn−m−n

3
6 v∗ 6 mn

3
+ 2m + 2n − 4

Random geometric graphs G(n, rn) n v∗ <
(

4rnn + 6
√

n

rn

)

(

1 + o(1)
)

are chosen according to the method given above, then the system (2) reaches consensus on prejudice.
For this purpose, we use the induction method to show that for all 1 6 i 6 1

an
, agents in the square

Si,j(1 6 j 6 1
an

) do not belong to any unprejudiced cohesive set.

If i satisfies i 6 bn or i > 1
an

− bn, then by (20) all agents in Si,j are prejudiced, and thus they do not

belong to any unprejudiced cohesive set. Assume that for i 6 i∗ − 1 with bn + 1 6 i∗ 6 1
an

− bn − 1,

all agents in Si,j(1 6 j 6 1
an

) do not belong to any unprejudiced cohesive set. Then for i = i∗, by the

induction assumption and the definition of B1
i,j and B̃2

i,j, we see that all the agents in B1
i∗,j(1 6 j 6 1

an
)

do not belong to any unprejudiced cohesive set and all the agents in B̃2
i∗,j(1 6 j 6 1

an
) are prejudiced.

Thus, any agent k in the set Si∗,j has at least N1
i∗,j +N2

i∗,j neighbors do not belong to any unprejudiced

cohesive set. By Lemmas 6–8, we haveN1
i∗,j+N2

i∗,j >
1
2Nk. Then for agent k ∈ Si∗,j and any unprejudiced

cohesive set M, we have

∑

j∈M
wkj = 1−

∑

j /∈M
wi∗j 6 1−

N1
i∗,j +N2

i∗,j
Nk

<
1

2
,

which means k /∈ M. The induction argument is complete. Then according to Lemma 1, the system (2)
reaches consensus under the chosen prejudiced set.

Remark 4. According to the definition of cohesive set, if the number of all prejudiced agents is less
than half of the minimum number of neighbors of all agents, then no matter how we choose prejudiced
agents, all unprejudiced agents form an unprejudiced cohesive set. For such a case, the system (2) over
the random geometric graphs G(n, rn) cannot reach consensus on the prejudice. Similar to the proof of
Lemma 6, the minimum number of neighbors of all agents equals π

4 r
2
nn

(

1 + o(1)
)

with a probability no

less than 1−O(n−gn) if the radius rn satisfies log n√
n

= o(rn). Therefore, the minimum number v∗ satisfies

v∗ > π

8 r
2
nn

(

1+o(1)
)

. Furthermore, by Theorem 4, we derive that the minimum number of the prejudiced
agent v∗ has the following upper and lower bounds:

π

8
r2nn

(

1 + o(1)
)

6 v∗ <

(

4rnn+
6
√
n

rn

)

(

1 + o(1)
)

.

It is clear that the lower bound is very restrictive, and how to relax the lower bound of v∗ needs further
investigation on the property of the cohesive sets in the random geometric graph.

In this paper, we have presented the minimum number of prejudiced agents required to achieve con-
sensus under three different network structures. The results can be summarized in Table 1.

6 Simulation results

In this section, we provide some simulation results. Consider the multi-agent systems where all the agents
interact over k-nearest-neighbor cycle and grid graph. The opinions of all agents obey the dynamics (2),
where the prejudice is set u = 0 and the parameter λi is chosen randomly and uniformly from (0, 1] for
each prejudiced agent i. The initial state xi(0) is chosen randomly and uniformly from [−1, 1] for each
agent i.

First, the interaction graph is taken as the k-nearest-neighbor cycle Gn,k, with n = 17, k = 2. For
such a case, v∗ = 7 agents are informed about the prejudice, and these agents are chosen according to
the method in Theorem 1. The evolution of opinions is shown in Figure 6(a). We see that the system
(2) can reach consensus on the prejudice. However, when the number of prejudiced agents is taken as 6,
which is less than v∗, the evolution of opinions is shown in Figure 6(b) and the system (2) cannot reach
consensus.
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Figure 6 Evolution of all agents’ opinions over the k-nearest-neighbor cycle G17,2 where (a) 7 and (b) 6 agents are prejudiced,

respectively.

Figure 7 Evolution of all agents’ opinions over the grid graph G8×8 where (a) 40 and (b) 16 agents are prejudiced, respectively.

Then, the agents interact over the grid graph G8×8. 40 agents are informed of the prejudice, and they
are chosen according to the method in Theorem 3 (see Figure 3). The evolution of opinions is shown in
Figure 7(a), and we see that the system (2) can reach consensus on the prejudice. However, according to
Theorem 2, when the number of the prejudiced agents is less than 16, all agents cannot reach consensus
as shown in Figure 7(b).

7 Concluding remarks

In this paper, we investigated the consensus problem of the weighted median opinion dynamics where
some agents are informed of the prejudice. By analyzing properties of the cohesive sets and the network
topology, we established quantitative results for the minimum number of prejudiced agents needed for
the expected consensus over three classes of proximity-based graphs. For the k-nearest-neighbor cycle,
we provide the exact value for the minimum number of prejudiced agents, and for the grid graph we give
the necessary and sufficient conditions for the minimum number of prejudiced agents. Moreover, we give
the sufficient condition for the minimum number of prejudiced agents when all agents interact over the
random geometric graph. Besides this, we separately construct methods for selecting prejudiced agents to
ensure consensus of the whole system. Some interesting problems deserve to be further investigated, e.g.,
the necessary condition for the minimum number of prejudiced agents to guarantee consensus when agents
interact over random geometric graph, and quantitative results for the minimum number of prejudiced
agents over small-world network.
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