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Abstract We study the policy iteration method for solving discounted infinite-horizon mean field games. At the continuous

level, a policy iteration algorithm can be used to establish the existence and uniqueness of solutions for mean field games

with a large discount factor λ. At a discrete level, it can be used to compute a solution of the problem. To implement

the method, we employ a semi-Lagrangian method, where the Hamilton-Jacobi-Bellman equation is first discretized in time

using the dynamic programming principle and then in space by projecting onto a grid. To support our theoretical findings,

we present numerical examples in both one and two dimensions.
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1 Introduction

Mean field games (MFG) theory was introduced in [1,2] as a framework to analyze dynamic games involv-
ing an infinite number of interacting agents. The theory provides a mathematical model to investigate
and understand the collective behavior of agents who make decisions based on both their individual
state and the statistical distribution of the states of other agents. The MFG framework couples a
Hamilton-Jacobi-Bellman (HJB) equation, describing the optimal control of a representative agent, with
a Fokker-Planck-Kolmogorov (FPK) equation, governing the evolution of the population distribution.
For a comprehensive introduction and detailed exposition of the theory and its applications, we refer
to [3, 4]. For a general survey on numerical methods for solving MFGs, we refer to [5].

In this paper, we consider the discounted stationary MFG system (see [6]),







(i) λu − ε∆u+H(x,Du) = f(x,m) + g[m](x), in Td,

(ii) − ε∆m− div(mDpH(x,Du)) = 0, in Td,
∫

mdx = 1.

(1)

Here λ, ε > 0, Td denotes the d-dimensional unit torus and P(Td) is the set of Borel probability measures
on Td. The function f : Td × R → R+ defines a local mean field interaction and g : Td ×P(Td) → R+ is
a nonlocal interaction term. Throughout this paper we use the shorthand notation

∫
=
∫

Td . This system
arises from an infinite-horizon stochastic optimal control problem:

u(x) = inf
q
E

{∫ ∞

0

e−λt (L(Xt, qt) + f(Xt,m) + g[m](Xt)) dt
∣
∣
∣X0 = x

}

, dXt = −qtdt+
√
2εdWt. (2)
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In this case, the Hamiltonian is H(x, p) = supq∈Rd {pq − L(x, q)} . In this setup, an agent optimally
controls his trajectory, taking a frozen probability distribution m as given. The associated value func-
tion u satisfies the HJB equation (1)(i). The invariant probability measure L(Xt) which describes
the distribution of the agents is the solution to the FPK equation (1)(ii) generated by the policy
q∗(Xt) = DpH(Xt, Du(Xt)). A fixed-point condition is imposed, ensuring that the perceived law of
motion matches the actual one, i.e., L(Xt) = m. With λ sufficiently large, we show the solution to
system (1) is unique by a contraction mapping argument. The existence and uniqueness of a classical
solution to this system, for sufficiently small λ and a smoothing coupling g, were established in Section
3A of [6]. Here we extend the result to the case with also a local coupling.

The system (1) can be interpreted as an approximation, for small λ, of the ergodic MFG system:







(i) − ε∆u+H(x,Du) + Λ = f(x,m) + g[m](x), in Td,

∫

udx = 0,

(ii) − ε∆m− div (mDpH(x,Du)) = 0, in Td,

∫

mdx = 1.

(3)

This allows us to approximate the solution to the ergodic system by solving the discounted system with
a vanishing discount factor λ and, to solve the latter system, we consider a policy iteration algorithm
combined with a suitable discretization scheme.

Policy iteration, also known as Howard’s algorithm, is a well-established method for solving optimal
control problems by alternating between policy evaluation and a greedy update step (see [7, 8]). For
MFG systems, this approach was first introduced in [9] and further developed in [10–13], where it was
implemented with a finite difference (FD) approximation of the system.

In this work, we explore an alternative approach based on a semi-Lagrangian (SL) discretization
of the MFG system. An SL scheme is a numerical method that exploit the dynamic programming
principle, computing the value function by tracing backward along the characteristics of the controlled
system. This method combines time-stepping with interpolation, providing stability and accuracy even
for high-dimensional, nonlinear systems. SL schemes are widely used for solving Hamilton-Jacobi-Bellman
equations in optimal control problems (see [14–17]). In particular, Policy iteration algorithms with SL
schemes were considered in [8, 18]. For evolutive MFGs, SL schemes have been studied in [19–21] and
more recently applied to solve an MFG price formation model in [22]. Lagrange-Galerkin schemes for
MFGs have been studied in [23, 24]. SL schemes are used not only to approximate value functions in
optimal control problems but also to construct approximate closed loop optimal controls. By contrast,
the controls obtained by numerical methods based on the Pontryagin maximum principle (e.g., [25]) are in
open loop form. A method of using approximate feedback control in SL schemes was proposed in [19,20]
for first and second order MFGs and in [21] for MFG with space-fractional diffusions.

In [9], policy iteration is formulated at the continuous level as a sequence of linear PDE systems, which
are then solved using FD schemes. In contrast, the SL approach begins by discretizing the MFG system
in time, and the resulting discrete nonlinear system, which remains an optimal control problem, is then
solved via policy iteration. Hence, while the FD scheme follows a linearize-then-discretize strategy, the
SL approach follows a discretize-then-linearize strategy. Indeed, while both methods benefit from policy
iteration’s ability to linearize the HJB equation, one key advantage of SL schemes over FD schemes is
their ability to preserve the original optimal control structure of the problem.

2 Preliminaries

We first fix some notations. For k ∈ N and α ∈ (0, 1], Ck denotes the space of k-times continuously
differentiable functions on Td. We write Ck,α(Td) for the Hölder space on Td with the norm defined by

‖u‖Ck,α =
∑

|j|6k ‖∂ju‖L∞ +
∑

|j|=k[∂ju]α with [u]α = supx,y∈Td,x 6=y
|u(x)−u(y)|

|x−y|α . For brevity, we use Cα

for C0,α. Unless otherwise specified, r denotes a constant such that r > d. We write Lr for the standard
Lebesgue space and W 1,r, W 2,r for the usual Sobolev spaces on Td. We recall the classical Sobolev
embedding in Hölder spaces:

W 1,r(Td) ⊂ Cα∗

(Td), W 2,r(Td) ⊂ C1,α∗

(Td), where α∗ = 1− d

r
. (4)
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We will also recall the Poincaré’s inequality on the torus: given φ ∈ W 1,r such that
∫
φ(x)dx = 0, then

there exists a constant CP depending only on d such that

‖φ‖Lr 6 CP‖Dφ‖Lr . (5)

The space P(Td) of probability measures is endowed with the Wasserstein distance: for m,m′ ∈ P(Td),
d1(m,m′) = supφ

∫

Td φ(x)d(m−m′)(x) where the supremum is taken over all 1-Lipschitz maps φ : Td →
R. Given a map G : P(Td) → R, δG

δm : Td × P(Td) → R denotes the flat derivative of G if, with the

normalization
∫

Td

δG[m]
δm (x)dm(x) = 0,

G[m′]− G[m] =

∫ 1

0

∫

Td

δG
δm

[(1 − s)m+ sm′](x)d(m′ −m)(x)ds.

We now state some assumptions in this paper. Throughout the paper, λ denotes a positive constant.
(A1) Let I denote the d×d identity matrix. For all x ∈ Td, p ∈ Rd and some CH > 0, the Hamiltonian

H(x, p) satisfies

H(·, ·) ∈ C2(Td × Rd) and
1

CH
I 6 DppH(x, p) 6 CHI,

|DpH(x, p)|+ |DpxH(x, p)| 6 CH(|p|+ 1), |DxxH(x, p)| 6 CH(|p|2 + 1).

(6)

(A2) f : Td × R+ → R is uniformly bounded and Lipschitz continuous in both variables.
(A3) f ′(x, ·) > 0 for all x ∈ Td.
(A4) g, ∂xi

g, ∂xixj
g and the measure derivative δg

δm : Td×P(Td)×Td → R are all Lipschitz continuous.
(A5) For any m,m′ ∈ P(Td),

∫

Td (g[m](x)− g[m′](x)) (m−m′)dx > 0.
Assumptions (A3) and (A5) are the Lasry-Lions monotonicity conditions for the local and nonlocal

couplings, respectively.

Remark 1. If g : Td × P(Td) → R derives from potentials, i.e., there exists G : P(Td) → R, δG
δm (x) =

g[m](x), then the system can be defined as a potential MFG: the optimal control q∗ and distribution m
from system (1) can be obtained from considering the mean field control problem inf J (m, q) such that

J :=

∫ +∞

0

e−λt

(∫

L(x, q)mdx+

∫ m

0

f(x, ρ)dρ+ G[m]

)

dt, s.t. − ε∆m− div(mq) = 0,

∫

mdx = 1.

Remark 2. An example of coupling term admitting a potential, which also satisfies the monotonicity

condition (A5), is g[m](x) = x
∫
xmdx,G[m] = 1

2

(∫
xmdx

)2
.

Next, we discuss the well posedness of system (1). We start considering a stability property of the
stationary FPK equation.

Lemma 1 ([10, Lemma 4.2]). Given q ∈ L∞(Td) and B ∈ Lr(Td), let µ be the solution to

−ε∆µ− div(µq) = div(B),

∫

µdx = 0.

Then, there exists a constant C depending only on ‖q‖L∞ and d, such that ‖µ‖W 1,r 6 C‖B‖Lr .

Remark 3. The case ‖µ‖W 1,2 6 C‖B‖L2 has been obtained in [6, Corollary 1.3]. We need the stronger
result from [10, Lemma 4.2] in order to address models with local coupling f(x,m).

We can then obtain the following.

Lemma 2. Let ι = {1, 2}, qι ∈ L∞, mι be the solution to

− ε∆mι − div(mιqι) = 0,

∫

mιdx = 1. (7)

Then, there exists a positive constant C = C(‖qι‖L∞ , d) such that ‖mι‖W 1,r + ‖mι‖L∞ 6 C. Moreover,
there exists a constant C depending only on ‖qι‖L∞ and d, such that

‖m1 −m2‖W 1,r 6 C‖m1(q1 − q2)‖Lr .
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We proceed to give a priori estimate of a classical solution to system (1).

Proposition 1. Assume (A1), (A2) and (A4); then for every classical solution (u,m) to system (1) it
holds that

‖u‖L∞ 6
‖f‖L∞ + ‖g‖L∞

λ
. (8)

Moreover, there exists a positive constant K = K(‖f‖L∞, ‖g‖L∞, d) and C(K) > 0 depending only on K

such that
‖Du‖L∞ 6 K, (9)

‖u−
∫

udx‖Cα + ‖∆u‖L∞ + ‖m‖W 1,r 6 C(K). (10)

Proof. We only show the estimate for ‖u−
∫
udx‖Cα , as the others can be shown as in [26, Proposition

2.4]. In particular, Eq. (9) can be obtained by using [27, Theorem 1.1]. Let ũ = u −
∫
udx. It is clear

that Dũ = Du and
∫
ũdx = 0. Using Poincaré’s inequality, we obtain ‖ũ‖Lr 6 C‖Du‖Lr 6 C‖Du‖L∞.

Hence ‖ũ‖W 1,r 6 C. By Sobolev embedding we obtain (10).
Now we consider the existence of solution to system (1).

Proposition 2. Under assumptions (A1), (A2) and (A4), the system (1) has a classical solution.

Proof. Let ̺ ⊂ Cα,
∫
̺(x)dx = 1 and ̺ > 0. We consider the map Φ : Cα → W 1,r, m = Φ(̺) defined as







(i) λu− ε∆u+H(x,Du) = f(x, ̺) + g[̺](x), in Td,

(ii) − ε∆m− div(mDpH(x,Du)) = 0, in Td,

∫

mdx = 1.
(11)

From Proposition 1, we can obtain a bound on ‖Du‖L∞ with (9) and a bound on ‖m‖W 1,r with (10).
With r > d we have W 1,r continuously embedded in Cα′

with α′ > α. Hence the map Φ is a compact map
from Cα to W 1,r. From (A2) and (A4), f(̺k) and g[̺k](·) are uniformly convergent for any uniformly
convergent sequence ̺k. From viscosity solution theory, uk converges uniformly to u. Using a classical
semiconcavity argument, Duk converges a.e. to Du. Since Duk is uniformly bounded, by Egorov theorem
it follows that Duk converges strongly to Du in Lr. With Lemma 2, mk converges to m in W 1,r. Hence
the map Φ is continuous from Cα to W 1,r. From Schauder fixed point theorem, there exists m∗ ∈ Cα such
that m∗ = Φ(m∗). Replacing ̺ by m∗ in 11(i), we obtain a classical solution u∗. From the regularity of
Du∗, m∗ is in fact a classical solution and (u∗,m∗) is a classical solution to the system (1).

We now turn to the uniqueness of solutions to (1). In particular, we show that the map generated by
a policy iteration algorithm satisfies a contraction property for sufficiently large λ. The policy iteration
algorithm we consider was originally proposed in [9]. Given q̄(0), iterate for each n > 0.

(i) Generate the distribution from the policy. Solve

− ε∆m(n) − div(m(n)q̄(n)) = 0 in Td,

∫

m(n)dx = 1. (12)

(ii) Policy evaluation. Solve

λu(n) − ε∆u(n) + q̄(n)Du(n) − L(x, q̄(n)) = f(x,m(n)) + g[m(n)](x) in Td. (13)

(iii) Policy update.

q(n+1)(x) = argmax
|q|6K

{

qDu(n)(x) − L(x, q)
}

. (14)

(iv) Policy smoothing.
q̄(n+1) = γnq

(n+1) + (1− γn)q̄
(n). (15)

The Policy smoothing step was introduced in [13], where γn ∈ (0, 1] can be a general relaxation parameter
or learning rate.

For K > 0 as in (14), we define the truncated Hamiltonian

HK(x, p) = max
|q|6K

{qp− L(x, q)} . (16)

Note that HK(x, p) is Lipschitz in p with a constant depending only on K, i.e.,

|HK(x, p1)−HK(x, p2)| 6 CHK
|p1 − p2|, p1, p2 ∈ Rd. (17)
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Theorem 1. Let (A1), (A2) and (A4) hold, γn = 1 for all n. If λ is sufficiently large, then the sequence
(u(n),m(n), q(n)) converges in W 1,r ×W 1,r × L∞ to the solution of the discounted MFG.

Proof. Let K be a constant such that K > CH(K + 1). Here K is as in (1) and CH as in assumption
(A1), while C(K) denotes a generic constant which may increase from line to line, but always depends
only on K and d. Consider the system







(i) λu− ε∆u+HK(x,Du) = f(x,m) + g[m](x), in Td,

(ii) − ε∆m− div(mDpHK(x,Du)) = 0, in Td,

∫

mdx = 1.
(18)

By writing the iterative procedure (12)–(14) as u(n+1) = Φ(u(n)) when n > 1, a solution (u∗,m∗) to system
(18) is equivalent to a fixed point u∗ ∈ W 1,r of Φ map. By Sobolev embedding, ‖u(n+1) − u(n)‖W 1,r = 0
implies ‖Du(n+1) −Du(n)‖L∞ = 0; hence there exists q∗ ∈ L∞ such that

q∗(x) = argmax
|q|6K

{qDu∗(x) − L(x, q)} . (19)

Moreover, ‖u(n) − u∗‖W 1,r = 0 implies q(n+1) = q(n) = q∗ pointwise. From (12) and ‖q(n)‖L∞ 6 K, we
have ‖m(n)‖L∞ 6 C(K). Let v(n+1) = u(n+1) − u(n) and µ(n+1) = m(n+1) −m(n), then

λv(n) − ε∆v(n+1) − q(n+1)Dv(n+1) = F
(n+1),

−ε∆µ(n+1) − div(µ(n+1)q(n+1)) = div(m(n)(q(n+1) − q(n))),

where

F
(n+1) =− q(n+1)Du(n) + L(x, q(n+1)) + q(n)Du(n) − L(x, q(n)) + f(x,m(n+1))

− f(x,m(n)) + g[m(n+1)](x)− g[m(n)](x).

We give some Lr estimates on F
(n+1), independent of n. First we consider

− q(n+1)Du(n) + L(x, q(n+1)) + q(n)Du(n) − L(x, q(n))

= −q(n+1)Du(n) + L(x, q(n+1)) + q(n)Du(n−1) − L(x, q(n)) + q(n)(Du(n) −Du(n−1))

= HK(x,Du(n−1))−HK(x,Du(n)) + q(n)(Du(n) −Du(n−1)).

From (17) and ‖q(n)‖L∞ 6 K, we have

‖HK(·, Du(n−1))−HK(·, Du(n))‖Lr 6 CHK
‖Dv(n)‖Lr , ‖q(n)(Du(n) −Du(n−1))‖Lr 6 K‖Dv(n)‖Lr .

We can use (A2) and (A4) to obtain

‖f(·,m(n+1))− f(·,m(n))‖Lr + ‖g[m(n+1)](·)− g[m(n)](·)‖Lr 6 C‖m(n+1) −m(n)‖Lr 6 C(K)‖Dv(n)‖Lr .

We therefore obtain

‖F(n+1)‖Lr 6 ‖HK(·, Du(n−1))−HK(·, Du(n))‖Lr + ‖q(n)(Du(n) −Du(n−1))‖Lr

+ ‖f(·,m(n+1))− f(·,m(n))‖Lr + ‖g[m(n+1)](·) − g[m(n)](·)‖Lr

6 C(K)‖Dv(n)‖Lr .

Using the standard estimate of solution for linear elliptic equations (see [28, Chapter 8 Theorem 1 p.
158]),

λ‖v(n+1)‖Lr +
√
λ‖Dv(n+1)‖Lr + ‖D2v(n+1)‖Lr 6 C(K)‖F(n+1)‖Lr

6 C(K)‖Dv(n)‖Lr .
(20)

With sufficiently large λ, we can then obtain C(K)/
√
λ < 1. From Banach fixed point theorem, the

map u(n+1) = Φ(u(n)) has a unique fixed point u∗ in W 1,r. The sequence u(n) converges to u∗ in W 1,r

and also uniformly by Sobolev embedding. With (17), the convergence of Du(n) in Lr to Du∗ implies
the convergence of q(n) to q∗ in Lr. With (2), m(n) converges to m∗ in W 1,r, where m∗ is the solution
to the FPK equation (7) with qι = q∗. From (13), Du(n) converges uniformly to Du∗. Therefore, q(n)

converges uniformly to q∗ which solves (19). Finally we recall that with (9) and assumption (A1), in fact
HK(x,Du∗) = H(x,Du∗) and DpHK(x,Du∗) = DpH(x,Du∗).
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Now we turn to the case with small discount λ. The results for the ergodic approximation of a stationary
MFG system with non-local (smoothing) couplings have already been obtained in Propositions 3.1 and
3.2 of [6]. Our contribution is to extend the result including the local-coupling case.

Proposition 3. Under assumptions (A1)–(A5), there exists λ0 > 0 such that for all 0 < λ < λ0, the
system (1) has a unique classical solution. Moreover, there exists a constant C > 0, independent of λ,
such that

m > C. (21)

Proof. To show (21), we observe that the FPK equation can be written as

−ε∆m−DpH(x,Du)Dm− tr
(
DppH(x,Du)D2u

)
m = 0.

As ‖∆u‖L∞ and ‖Du‖L∞ can be bounded independently of λ, from strong maximum principle it follows
a positive lower bound C on m independent of λ. For uniqueness, consider two solutions (u1,m1) and
(u2,m2). Using the classical Lasry-Lions monotonicity argument, we obtain

C

∫

(m1 +m2)|Du1 −Du2|2dx 6

∫

(m1 −m2)(f(m1)− f(m2))dx

+

∫

(m1 −m2)(g[m1](x) − g[m2](x))dx − λ

∫

(m1 −m2)(u1 − u2)dx.

(22)

From
∫
m1dx =

∫
m2dx = 1 we have

∫
(m1 −m2)

(∫
u1dx−

∫
u2dx

)
dx = 0, hence

−
∫

(m1 −m2)(u1 − u2)dx = −
∫

(m1 −m2)

(

u1 −
∫

u1dx− u2 +

∫

u2dx

)

dx

6
1

2

∫

|m1 −m2|2dx+
1

2

∫ ∣
∣
∣
∣
u1 −

∫

u1dx− u2 +

∫

u2dx

∣
∣
∣
∣

2

dx

6
1

2
Cm

∫

|m1(Du1 −Du2)|2dx +
1

2
CP

∫

|Du1 −Du2|2dx

6
1

2
Cm‖m1‖L∞

∫

m1|Du1 −Du2|2dx+
1

2
CP

∫

|Du1 −Du2|2dx,

(23)

where CP denotes the constant in (5) from using the Poincaré’s inequality. It is important to notice
that Cm‖m1‖L∞ and CP do not depend on λ. With (21), we can replace the left side of (22) by
2CC

∫
|Du1 − Du2|2dx. By choosing λ sufficiently small, we obtain

∫
|Du1 − Du2|2dx 6 0, therefore

Du1 = Du2 a.e.
To consider the convergence of the system (1) as λ → 0, we write







(i) λuλ − ε∆uλ +H(x,Duλ) = f(x,mλ) + g[mλ](x), in Td,

(ii) − ε∆mλ − div(mλDpH(x,Duλ)) = 0, in Td,

∫

mλdx = 1.
(24)

Theorem 2. Let assumptions (A1)–(A5) hold. Let (û, m̂,Λ) denote the solution to the ergodic problem
(3). Then

‖Duλ −Dû‖L2 + ‖mλ − m̂‖L2 6 Cλ1/2. (25)

Moreover, as λ → 0, ‖Duλ −Dû‖Lr + ‖mλ − m̂‖W 1,r + ‖uλ −
∫
uλ − û‖L∞ + ‖λuλ − Λ‖L∞ → 0.

The estimate (25) is shown exactly the same way as [6, Proposition 3.2]. The main difference in our
result is that, with f(x,m) being a local coupling, the L2 convergence of mλ is not enough for the uniform
convergence of the corrector uλ −

∫
uλ. We only focus on the additional steps in the proof.

Proof. From Egorov theorem, Duλ −Dû → 0 a.e. with ‖Duλ −Dû‖L∞ bounded independently of λ
implies ‖Duλ −Dû‖Lr → 0 for any 1 < r < ∞. The convergence ‖mλ − m̂‖W 1,r → 0 follows then from
(2). Moreover, ‖uλ−

∫
uλ− û‖W 1,r → 0 from Poincaré’s inequality and we obtain ‖uλ−

∫
uλ− û‖Cα → 0

from Sobolev embedding.

Remark 4. We have obtained the uniqueness of solution to system (1) with sufficiently small or large
λ. However, this does not imply uniqueness of solution to system (1) for an arbitrary λ.
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3 Numerical method

We now introduce a policy iteration method based on semi-Lagrangian schemes. To illustrate the main
ideas, it is convenient to separate at first between time and space discretization.

3.1 The semi-discrete system

We first consider the discrete in time infinite horizon control problem. Define a time grid Gh = {tk =
kh : k ∈ Z+ ∪ {0}} with a positive constant h. Consider the discretized problem (see [29]),







uh(x) := inf
q

{ ∞∑

k=0

(1− λh)k (L (Xh(tk), q(tk)) + f(Xh(tk),mh)) dt
∣
∣
∣Xh(t0) = x

}

,

Xh(tk + h) = Xh(tk)− hq(tk) +
√
2dεh

d∑

ι=1

ξkι , X(t0) = x,

(26)

where ξk is a sequence of i.i.d random variables such that P(ξkι = 1) = P(ξkι = −1) = 1
2d and

P

(
⋃d

ι,j{ξkι 6= 0} ∩ {ξkj 6= 0}
)

= 0.

We obtain a semi-discretized version of system (1):






(i) uh(x) = inf
q
{(1− λh)Ah(q)uh(x) + h (L(x, q) + f(x,mh) + g[mh](x))} ,

(ii)

∫

Ah(q
∗)φ(x)dmh(x)−

∫

φ(x)dmh(x) = 0,

∫

mh(x)dx = 1,

(iii) q∗ = argmin
q

{(1 − λh)Ah(q)uh(x) + hL(x, q)} .

(27)

Here Ah(q) denotes the Markov chain transition operator:

Ah(q)φ(x) =

d∑

ι=1

1

2d

(

φ(x− hq + eι
√
2dεh) + φ(x − hq − eι

√
2dεh)

)

, (28)

where eι denotes a d-dimensional canonical basis, i.e., eι = (0, · · · , 1
︸︷︷︸

ι−entry

, · · · , 0). The HJB equation

(27)(i) is derived by dynamic programming principle, for any given mh ∈ P(Td) ∩ C(Td). The discrete
in time FPK equation (ii) is derived as follows. For a given policy q, the evolution of probability density
for the flow X(tk) may be characterized by the measure push-forward:

∫

φ(x)mh(tk + h, x)dx = E

[∫

φ(X(tk + h))mh(tk, x)dx
∣
∣
∣X(tk) = x

]

=

∫

Ah(q)φ(x)mh(tk, x)dx.

(29)

The equation (iii) in (27) is the fixed point characterizing the Nash equilibrium: if q∗ is the optimal
policy for the problem solved by (27)(i), then the probability density mh is also generated by making the
agents adopt q∗.

We define the semi-discretized policy iteration method. Given q̄(0), iterate for each n > 0.

(i) Generate the distribution from the policy. Solve m
(n)
h for all φ,

∫

Ah(q̄
(n))φ(x)dm

(n)
h (x)−

∫

φ(x)dm
(n)
h (x) = 0,

∫

m
(n)
h dx = 1. (30)

(ii) Policy evaluation. Solve

u
(n)
h (x) = (1 − λh)Ah(q̄

(n))u
(n)
h (x) + hL(x, q̄(n)) + hf(x,m

(n)
h ) + hg[mh](x). (31)

(iii) Policy update.

q(n+1) = argmin
q

{

(1− λh)Ah(q)u
(n)
h (x) + hL(x, q)

}

. (32)

(iv) Policy smoothing.
q̄(n+1) = γnq

(n+1) + (1− γn)q̄
(n). (33)
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3.2 Fully-discretized system

3.2.1 One dimensional case

Next we consider the policy iteration on the fully discretized system. To highlight the main idea, we first
restrict the discussion to the 1d problem. We define the time-space grid Gh,i = {(tk, xi) = (kh, iρ) : k ∈
Z+ ∪ {0}, i = 0, 1, · · · , N − 1} with positive constants h and ρ. The index operator

[·] = {(·+N) mod N} (34)

will be used to account for the periodic boundary conditions.
The vector Ui gives an approximation of u at xi. We set Li = L(xi, Q

∗
i ), fi = f(xi,Mi) and gi =

g[M ](xi). For approximating u(xi − hq
(n)
i +

√
2dεh) and u(xi − hq

(n)
i −

√
2dεh) we use an interpolation

method. Consider the set of P1 basis functions {βi} defined by

βi(x) = max

{

1− |x− xi|
ρ

, 0

}

. (35)

It is clear that 0 6 βi(x) 6 1,
∑

i βi(x) = 1 for all x ∈ Td and βi(xj) = δij where δij denotes the
Kronecker delta function. We can then define the interpolation

I[φ](x) =
∑

i

φ(xi)βi(x). (36)

Let (Uρ,h,Mρ,h) denote the solution to the fully discrete system with q discretized by Q∗,







Ui =
1− λh

2




∑

j

βj(xi − hQ∗
i +

√
2dεh)Uj +

∑

j

βj(xi − hQ∗
i −

√
2dεh)Uj



 + h(Li + fi + gi),

Mi =
1

2




∑

j

βi(xj − hQ∗
j +

√
2dεh)Mj +

∑

j

βi(xj − hQ∗
j −

√
2dεh)Mj



 .

(37)
In order to characterize the discretization of optimal control Q∗, we have two approaches. The first one
is to use system (27)(iii):

q∗i = argmin
Qi







1− λh

2




∑

j

βj(xi − hQi +
√
2dεh)Uj +

∑

j

βj(xi − hQi −
√
2dεh)Uj



+ L(xi, Qi)






.

(38)
The second approach is to follow the method from [19–21] and use approximate feedback control

q∗num = DpH(·, Dûδ), where ûδ = û ∗ ηδ and Q∗
i = q∗num(xi). (39)

In (39), û is the piecewise constant interpolation of U , and ηδ is the mollifier 1
δ η(

x
δ ) for 0 6 η ∈ C∞

0 (Td)
with

∫
ηdx = 1. This method has the advantage in efficiency and it preserves the semiconcavity of the

numerical solution. Theoretically, it has been shown in [19–21] that if the system (1) has a unique classical
solution (u,m), the SL scheme with the approximate feedback control method is convergent.

Theorem 3. Let assumptions (A1)–(A5) hold. Let (Uρ,h,δ,Mρ,h,δ) be the solution to the system given
by (27) and (39). If δ → 0, h

δ2 → 0 and ρ2/h → 0, then the sequence (Uρ,h,δ,Mρ,h,δ) converges to (u,m)
uniformly.

The proof of Theorem (3) will be very long and similar to [20, Theorem 4.2]; hence we omit it.
Now we consider the policy iteration method for the fully discretized system (27) and (39). The full

discretization of (31) becomes

U
(n)
i =

1− λh

2




∑

j

βj(xi − hQ
(n)
i +

√
2dεh)U

(n)
j +

∑

j

βj(xi − hQ
(n)
i −

√
2dεh)U

(n)
j





+ h(L
(n)
i + f

(n)
i + g

(n)
i ),

(40)
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where L
(n)
i = L(xi, Q

(n)
i ), f

(n)
i = f(xi,M

(n)
i ) and g

(n)
i = g[M (n)](xi). To fully discretize (30), we test

(29) with φ(x) = βi(x), then

M
(n)
i =

1

2




∑

j

βi(xj − hQ
(n)
j +

√
2dεh)M

(n)
j +

∑

j

βi(xj − hQ
(n)
j −

√
2dεh)M

(n)
j



 . (41)

A possible approach to update policy would be to use (32) and (38):

q
(n+1)
i

= argmin
Qi







1− λh

2




∑

j

βj(xi − hQi +
√
2dεh)U

(n)
j +

∑

j

βj(xi − hQi −
√
2dεh)U

(n)
j



+ hL(xi, Qi)






.

In practice, it is more efficient to approximate the feedback control method (39). Let û(n) be the piecewise
constant interpolation of U (n). Then we set

q(n+1)
num = DpH(·, Dû

(n)
δ ). (42)

Let A(Q) denote the N ×N transition matrix where the (i, j)-element is defined as

Aij(Q) =
1

2d

(

βj(xi − hQi +
√
2dεh) + βj(xi − hQi −

√
2dεh)

)

.

Clearly, Aij(Q) is the discretized form of the operator Ah(q) introduced in (28). We observe that the
transposed matrix AT is defined by

AT
ij(Q) =

1

2d

(

βi(xj − hQj +
√
2dεh) + βi(xj − hQj −

√
2dεh)

)

.

We now introduce the policy iteration algorithm for solving the fully discretized system. Recall that

let I denote the d× d identity matrix. Let L(n) and f (n) denote d-dimensional vectors with elements L
(n)
i

and f
(n)
i . For (45), we choose a reasonably large K > 0. At the end of iteration we check the output

vector Q̌ satisfies maxi{|Q̌i|} < K.
We make some further observations on the structure of the matrix A(Q), which is crucial to the

implementation of Algorithm 1.
For each point xi, there exist j(i), j′(i) ∈ Z such that xj(i) 6 xi − hQi +

√
2dεh 6 xj(i)+1 and

xj′(i) 6 xi − hQi −
√
2dεh 6 xj′(i)+1. Letting ⌊·⌋ denote the floor function, j(i), j′(i) are defined as

j(i) =

⌊

xi − hQi +
√
2dεh

ρ

⌋

, j′(i) =

⌊

xi − hQi −
√
2dεh

ρ

⌋

. (43)

With (34), we obtain

∑

j

βj(xi − hQi +
√
2dεh)Uj =

(

−hQi +
√
2dεh

ρ
−
⌊

−hQi +
√
2dεh

ρ

⌋)

U[j(i)+1]

+

(

1− −hQi +
√
2dεh

ρ
+

⌊

−hQi +
√
2dεh

ρ

⌋)

U[j(i)],

∑

j

βj(xi − hQi −
√
2dεh)Uj =

(

−hQi −
√
2dεh

ρ
−
⌊

−hQi −
√
2dεh

ρ

⌋)

U[j′(i)+1]

+

(

1− −hQi −
√
2dεh

ρ
+

⌊

−hQi −
√
2dεh

ρ

⌋)

U[j′(i)].

(44)

Therefore, with d = 1 each row of the matrix A(Q) has at most 5 nonzero entries. The positions of
nonzero entries for each row in A(Q(n)) depend on Q(n).
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Algorithm 1 Policy Iteration method: semi-Lagrangian schemes.

Data: Initial values Q̄(0), and positive parameters λ, ρ, h, ε, δ,K.

Result: solution (U,M).

1: while ‖M(n+1) − M(n)‖ > 10−5 do

2: Solve the FPK equation (41):
(

I − AT(Q̄(n))
)

M(n) = 0;

3: Updating the Lagrangian and mean field interaction terms: L
(n)
i

= L(xi, Q
(n)
i

), f
(n)
i

= f(xi,M
(n)
i

), g
(n)
i

= g[M(n)](xi);

4: Solve the HJB equation (40):
(

I − (1 − λh)A(Q̄(n))
)

U(n) = hL(n) + hf (n) + hg(n);

5: Update approximate feedback control q(n+1)
num with (42):

Q
(n+1)
i

= min{max{q(n+1)
num (xi),−K},K}; (45)

6: Policy smoothing Q̄(n+1) = γnQ
(n+1) + (1 − γn)Q̄

(n).

7: end while

Remark 5. We consider a situation where the construction of matrix A(Q) is particularly simple and
the SL scheme is very similar to an implicit finite difference schemes. If the optimal control q and viscosity
ε are small then it might happen

max{|hQi +
√
2dεh|, |hQi −

√
2dεh|} 6 ρ, s.t. x[i−1] 6 xi − hQi ±

√
2dεh 6 x[i+1]. (46)

We can write the interpolation operators in the form

∑

j

βj(xi − hQi +
√
2dεh)Uj

=
(−hQi +

√
2dεh)+

ρ
U[i+1] +

(−hQi +
√
2dεh)−

ρ
U[i−1] +

(

1− | − hQi +
√
2dεh|

ρ

)

Ui,

∑

j

βj(xi − hQi −
√
2dεh)Uj

=
(−hQi −

√
2dεh)+

ρ
U[i+1] +

(−hQi −
√
2dεh)−

ρ
U[i−1] +

(

1− | − hQi −
√
2dεh|

ρ

)

Ui.

In this case, A(Q) is in fact a tri-diagonal matrix. The central diagonal is 2− |−hQi+
√
2dεh|

ρ − |−hQi−
√
2dεh|

ρ

The upper and lower diagonals are, respectively, (−hQi+
√
2dεh)+

ρ + (−hQi−
√
2dεh)+

ρ , (−hQi+
√
2dεh)−

ρ +
(−hQi−

√
2dεh)−

ρ . Under (46), the matrices I− (1− λh)A(Q) and I−AT(Q) are tri-diagonal M -matrices.

Therefore the scheme is stable. Moreover, Eq. (41) can be understood as a fully discrete Kolmogorov
equation. We can write

(
I−AT(Q)

)
M = 0 more explicitly as, with d = 1,

(∣
∣
∣
∣
∣
−Qi +

√

2ε

h

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣
−Qi −

√

2ε

h

∣
∣
∣
∣
∣

)

Mi

︸ ︷︷ ︸

flux out of xi

=

((

−Q[i−1] +

√

2ε

h

)

+

+

(

−Q[i−1] −
√

2ε

h

)

+

)

M[i−1]

︸ ︷︷ ︸

flux from x[i−1]→xi

+

((

−Q[i+1] +

√

2ε

h

)

−
+

(

−Q[i+1] −
√

2ε

h

)

−

)

M[i+1]

︸ ︷︷ ︸

flux from x[i+1]→xi

.

(47)

3.2.2 Schemes for two dimensional systems

Next, we sketch the SL for the HJB equation in the 2d case. We define the (x, y)-space gird Mi,j =
{(xi, yj) = (iρx, jρy) : i = 0, 1, · · · , Nx − 1, j = 0, 1, · · · , Ny − 1} with positive constants ρx and ρy.
Here ρx = xi+1 − xi and ρy = yj+1 − yj are the grid spacings in the x- and y-directions, respectively.
We approximate u(xi, yj) and m(xi, yj) by Ui,j and Mi,j . The control q(xi, yj) is approximated by
Qi,j = (Qi,j ·ex, Qi,j ·ey). Consider the set of Q1 basis functions βi,j defined by the tensor product of the
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Figure 1 (Color online) Graphic illustration of 2d Q1 interpolation.

1D basis functions: βi(x) = max
{

1− |x−xi|
ρx

, 0
}

, βj(y) = max
{

1− |y−yj|
ρy

, 0
}

. Using the tensor product

of these basis functions, we define the bilinear interpolation as I[φ](x, y) =
∑

i,j φ(xi, yj)βi(x)βj(y).
We now illustrate the method for constructing the 2d Q1 interpolation. Let (xp, yp) denote a generic

point, enclosed by grid points: (xî, yĵ), (xî, yĵ+1), (xî+1, yĵ), (xî+1, yĵ+1), as shown in Figure 1.
The fully discretization of the HJB equation (27)(i) becomes (see [23, 24])

Ui,j =
1− λh

4

∑

k,l

βk(xi − hQ∗
i,j · ex +

√
4εh)βl(yj − hQ∗

i,j · ey)Uk,l

+
1− λh

4

∑

k,l

βk(xi − hQ∗
i,j · ex −

√
4εh)βl(yj − hQ∗

i,j · ey)Uk,l

+
1− λh

4

∑

k,l

βk(xi − hQ∗
i,j · ex)βl(yj − hQ∗

i,j · ey +
√
4εh)Uk,l

+
1− λh

4

∑

k,l

βk(xi − hQ∗
i,j · ex)βl(yj − hQ∗

i,j · ey −
√
4εh)Uk,l + h(Li,j + fi,j + gi,j),

(48)

where Li,j = L(xi, yj , Q
∗
i,j), fi,j = f(xi, yj ,Mi,j) and gi,j = g[M ](xi, yj).

Taking φ(x, y) = βi,j(x, y) in (29), the fully discretized FPK equation is given by the dual formulation:

Mi,j =
1

4

∑

k,l

βi(xk − hQ∗
k,l · ex +

√
4εh)βj(yl − hQ∗

k,l · ey)Mk,l

+
1

4

∑

k,l

βi(xk − hQ∗
k,l · ex −

√
4εh)βj(yl − hQ∗

k,l · ey)Mk,l

+
1

4

∑

k,l

βi(xk − hQ∗
k,l · ex)βj(yl − hQ∗

k,l · ey +
√
4εh)Mk,l

+
1

4

∑

k,l

βi(xk − hQ∗
k,l · ex)βj(yl − hQ∗

k,l · ey −
√
4εh)Mk,l.

(49)

We now show that even though our methodology and Algorithm 1 were introduced in the one dimensional
case, they can be easily adapted to study a dimensional problem. The Nx×Ny matrix U can be reshaped

into the Nx ×Ny dimensional vector Ũ :

u(xi, yj) → {u(x0, y0), u(x0, y1), . . . , u(x0, yNy−1), . . . , u(xNx−1, yNy−1)}, (50)

and similar M into M̃ . For each given Q∗, we can construct a (Nx ×Ny)× (Nx ×Ny) matrix A(Q∗).

Let L, f and g denote the matrices with entries Li,j , fi,j , gi,j . L̃, f̃ and g̃ are their reshaped vectors
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following the same method as in (50). We can then write (48) and (49) in the matrix form

(

I− (1− λh)A(Q̃∗)
)

Ũ = hL̃+ hf̃ + hg̃ and
(

I−AT(Q̃∗)
)

M̃ = 0.

Remark 6. For the discretization of the HJB equation in 2d we followed the area-weighting method
as in [23, 24]. For the FPK equation, we use the dual formulation. In practice, this involves a matrix
transposition as in the 1d case. The comparison with the schemes in [23,24], and a rigorous convergence
analysis of our schemes in 2d will be addressed in our future work. The effectiveness of our schemes will
be shown in the numerical section.

3.3 Alternative approach: finite difference schemes

In this section, we use a finite difference scheme to implement the policy iteration method, with a space
grid in 1d: Gi = {xi = iρ : i = 0, 1, · · · , Nx − 1}. Ui and Mi approximate u and m at xi. Similarly, fi
and gi approximate f(xi,Mi) and g[M ](xi). We introduce the finite difference operators:

(∆ρU)i =
U[i−1] − 2Ui + U[i+1]

ρ2
, (DU)i =

(U[i+1] − Ui)

ρ
, [∇U ]i =




(DU)i
︸ ︷︷ ︸

forward

, (DU)[i−1]
︸ ︷︷ ︸

backward






T

.

Discrete Hamiltonian (see [5, Chapter 4.2]): Let H : T × R × R → R, (x, p1, p2) 7→ H(x, p1, p2)
be a discrete Hamiltonian, assumed to satisfy the following properties.

• Monotonicity: for each x ∈ T, H is nonincreasing in p1 and nondecreasing in p2.
• Consistency: for every x ∈ T, p ∈ R, H(x, p, p) = H(x, p).
• Differentiability: for each x ∈ T, H is almost everywhere differentiable in p1 and p2.
• Convexity: for every x ∈ T, (p1, p2) 7→ H(x, p1, p2) is convex.

We can then discretize the HJB equation (1)(i) by

λUi − ε(∆ρU)i + H(xi, [∇U ]i) = fi + gi. (51)

We use a double-sided discretization of the drift q: [Q]i = (Qi,F , Qi,B). This terminology is to reflect
that Qi,F and Qi,B are often characterized by the forward and backward difference operators of Ui. We
discretize −ε∆u+ qDu by

−ε(∆ρU)i + (Qi,F , Qi,B) · [∇U ]i,

which we can transform into a vector form D(Q)U with a sparse matrix D(Q). Let q = DpH(x,Du) and
from the monotonicity of H, we can discretize DpH(x,Du) by

(Qi,F , Qi,B) =




Dp1H(xi, [∇U ]i)
︸ ︷︷ ︸

60

, Dp2H(xi, [∇U ]i)
︸ ︷︷ ︸

>0




 . (52)

It is clear that under the upwind form (52), (λI+D(Q)) and DT(Q) are all M -matrices. The dis-
cretization of the FPK equation with drift q is DT(Q)M = 0 with

∑
Mi = 1, which is the matrix form

for

− ε(∆ρM)i −
Q[i+1],BM[i+1] −Qi,BMi

ρ
− Qi,FMi −Q[i−1],FM[i−1]

ρ
= 0,

∑

Mi = 1. (53)

In order to use the policy iteration method with [Q]i, we need to consider the numerical approximation
of the Lagrangian.

Discrete Lagrangian: Let L : T× R× R → R, (x, q1, q2) 7→ L(x, q1, q2) be a discrete Lagrangian

L(x, q1, q2) = sup
(p1,p2)

{(q1, q2) · (p1, p2)− H(x, p1, p2)} . (54)

With (54) and using the upwind form (52), we can rewrite the finite difference approximation (51) as

λUi − ε(∆ρU)i + (Qi,F , Qi,B) · [∇U ]i − L(xi, Qi,F , Qi,B) = fi + gi.
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Remark 7. For example, let H(x,Du) = 1
2 |Du|2. We can take H(x, p1, p2) =

1
2 |((p1)2− + ((p2)+)

2|.

H(xi, [∇U ]i) =
1

2

(
((DU)i)

2
− + ((DU)i−1)

2
+

)
, L(xi, [Q]i) =

1

2

(
(Qi,F )

2 + (Qi,B)
2
)
, (55)

(Dp1H(xi, [∇U ]i), Dp2H(xi, [∇U ]i)) = (−((DU)i)−, ((DU)i−1)+).

The main idea of implementing policy iteration with FD schemes is presented in Algorithm 2.

Algorithm 2 Policy iteration with finite difference schemes.

Data: initial values Q(0), and parameters λ, ρ, h, ε.

Result: solution (U,M).

1: while ‖M(n+1) − M(n)‖ > 10−5 do

2: Solve the FPK equation:
(

DT(Q(n))
)

M(n) = 0;

3: Update Lagrangian and the mean field interaction terms L
(n)
i

= L(xi, [Q
(n)]i), f

(n)
i

= f(xi,M
(n)
i

), g
(n)
i

= g[M(n)](xi);

4: Solve the HJB equation:
(

λI + D(Q(n))
)

U(n) = L(n) + f (n) + g(n);

5: Update Q(n+1) :

[Q(n+1)]i =
(

Dp1H(xi, [∇U(n)]i), Dp2H(xi, [∇U(n)]i)
)

; (56)

6: Policy smoothing Q̄(n+1) = γnQ
(n+1) + (1 − γn)Q̄

(n);

7: end while

L(n), f (n) and g(n) are vectors with elements L
(n)
i , f

(n)
i and g

(n)
i .

We compare the methodology of discretizing policies between the Lagrangian (SL) and Eulerian (FD)
points of views. With SL, the discretized policy q is defined as a vector in Td and updated in an implicit
way. With FD, the discretized policy q needs to be split into the forward-backward parts, hence defined
on T2d. Even though we are considering in (1) a stationary MFG system, with the SL method we still
need to introduce a time step h. For some particular cases such that Eq. (46) holds in the SL schemes,
the policy evaluation and distribution generation steps are similar for SL and FD methods. Both consist
of solving linear systems with tri-diagonal matrices. The matrix structures with FD and SL schemes for
solving a single HJB equation have also been discussed in [8].

Remark 8. The FD scheme (57) of the FPK equation in 1d also has the Markov chain interpretation,
with M being an invariant measure on Gi:

(

Qi,B −Qi,F +
2ε

ρ

)

Mi

︸ ︷︷ ︸

flux out of xi

=

(

Q[i+1],B +
ε

ρ

)

M[i+1]

︸ ︷︷ ︸

flux fromx[i+1]→xi

+

(

−Q[i−1],F +
ε

ρ

)

M[i−1]

︸ ︷︷ ︸

flux from x[i−1]→xi

,
∑

Mi = 1. (57)

It is interesting to compare (57) with (47). We have
√

2ε
h = 2ε

ρ if we choose ρ =
√
2εh.

4 Numerical examples

We first consider some 1d examples with Nx = 500, with H(x,Du) = 1
2 |Du|2, V (x) = sin(2πx)+cos(4πx),

as shown in Figures 2–5.

• Test 1: ε = 0.3, f(x,m) = V (x) +m2, g = 0;
• Test 2: ε = 0.01, f(x,m) = V (x) +m2, g = 0;
• Test 3: ε = 0.01, f(x,m) = V (x), g = 0;
• Test 4: ε = 0.01, f(x,m) = V (x), g = 10x

∫
xmdx.

We solve the discounted MFG (1) with different values of λ using Algorithm 1 (SL schemes). We set
the initial guess q(0) = 0 on grid. We solve the ergodic problem with FD schemes, following [9]. We
observe that the solution to the discounted problem becomes closer to the solution of the ergodic problem
as λ decreases. Test 1 shows our result is consistent with [9, Figure 1]. Comparing test 2 and test 3, we
observe that due to the m2 term, concentration is penalized in test 2 and more mass is moved to the
local minima of u on the left. Similar observation has been made with ergodic MFGs in [30].

Test 4 is an example of potential MFG with J =
∫ +∞
0 e−λt

(∫
1
2q

2mdx+ 5
(∫

xmdx
)2
)

dt. Comparing

with test 3, in test 4 more mass is moved to the local minima on the left. In test 4 there is a high
concentration of mass, compared to test 2.



Tang Q, et al. Sci China Inf Sci November 2025, Vol. 68, Iss. 11, 210206:14

Figure 2 (Color online) Test 1: (a) the corrector ũ and (b) the density m.

Figure 3 (Color online) Test 2: (a) the corrector ũ and (b) the density m.

Figure 4 (Color online) Test 3: (a) the corrector ũ and (b) the density m.

We consider 2d examples from section 9 of [31], as shown in Figures 6 and 7. We take Nx = Ny = 50.
Let λ = 0.01, V (x, y) = sin(2πx) + cos(4πx) + sin(2πy) and f(x, y,m) = V (x, y) + m2. We plot the
solutions with ε = 1 (Test 5) and ε = 0.01 (test 6). We observe that our results for the 2d discounted
MFG examples are graphically very similar to the solution of the ergodic counterparts (see [31, Figures
27 and 28]).

Finally we consider an example in dimension one with an explicit solution (to the ergodic problem).
• Test 7: λ = 10−5, ε = 0.5, f(x,m) = 2π2(− sin(2πx) + (cos(2πx))2)− 2 sin(2πx) + ln(m) + 1, g = 0.

The corresponding explicit solution to the ergodic system (3) is given by (see [30, Section 5.2])

u(x) = − sin(2πx), m(x) =
e2 sin(2πx)

∫ 1

0
e2 sin(2πy) dy

.



Tang Q, et al. Sci China Inf Sci November 2025, Vol. 68, Iss. 11, 210206:15

Figure 5 (Color online) Test 4: (a) the corrector ũ and (b) the density m.

Figure 6 (Color online) Test 5 ε = 1: (a) the corrector ũ and (b) the density m.

Figure 7 (Color online) Test 6 ε = 0.01: (a) the corrector ũ and (b) the density m.

We use Table 1 to show the performance of solving with value iteration and policy iteration algorithms,
using the SL scheme for discretization. By value iteration, we solve the HJB equation with a standard
value iteration algorithm, while the FPK equation is solved in the same way as Algorithm 1. We also
show the performance of the finite difference scheme with policy iteration (Algorithm 2).

Each iteration is defined as updating a new distribution. Value iteration is double looped: the HJB
equation is fully solved at each iteration. Our policy iteration algorithms are single looped.

We use Figure 8 to show the comparison between the numerical solutions obtained from the SL method
(with policy iteration) under different sizes of grids, using the explicit solution to the ergodic problem as
the benchmark.
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Table 1 Test 7: performance of various methods under grid refinement (Nx), number of iterations (Its), averaged CPU time per

iteration (Av.CPU/It), and total CPU time.

Nx Its Av.CPU/It (s) Total CPU (s)

Value iteration SL 100 10 0.0162 0.1624

Policy iteration FD 100 20 0.0016 0.0321

Policy iteration SL 100 20 0.0007 0.0134

Value iteration SL 200 10 0.0287 0.2867

Policy iteration FD 200 20 0.0030 0.0608

Policy iteration SL 200 20 0.0015 0.0307

Value iteration SL 500 10 0.1850 1.8498

Policy iteration FD 500 20 0.0127 0.2533

Policy iteration SL 500 20 0.0096 0.1928

Value iteration SL 1000 10 0.4701 4.7012

Policy iteration FD 1000 20 0.0443 0.8862

Policy iteration SL 1000 20 0.0388 0.7767

Value iteration SL 2000 10 3.9131 39.131

Policy iteration FD 2000 20 0.2135 4.2695

Policy iteration SL 2000 20 0.3761 3.7611

Figure 8 (Color online) Test 7: (a) the corrector ũ and (b) the density m.

These numerical results in this paper were obtained using CPU-based computations on an AMD Ryzen
7 7840H processor (8 cores, 16 threads, 3.8 GHz). The code was written in Python.

Finally, we observe that policy iteration is a powerful tool for improving the efficiency of numerical
resolution. Its parallelization potential, which is particularly relevant for large-scale applications, has been
explored in the domain decomposition framework proposed in [8]. We plan to explore these directions in
the MFG framework in our future work.
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