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derive a decentralized control strategy at the number of participants N → ∞ and achieve the (ε1, ε2)-Stackelberg equilibrium.

Finally, this paper validates the effectiveness and feasibility of the proposed control strategies through simulations under

various weight coefficients and initial conditions.

Keywords Stackelberg mean field game, Stackelberg equilibrium, power grid balance, HVAC loads, collective control

Citation Zhang Y X, Yang S H, Shen T L. Stackelberg mean field game-based decentralized collective control for large-

scale population of HVACs under grid balancing. Sci China Inf Sci, 2025, 68(11): 210205, https://doi.org/10.1007/

s11432-025-4657-5

1 Introduction

The rapid integration of renewable energy sources (RES), such as photovoltaics and wind power, has
significantly transformed global power systems [1]. However, the inherent intermittency of RES intro-
duces substantial power fluctuations, thereby imposing heightened requirements on operating reserves to
maintain power balance [2]. In this context, demand response (DR) mechanisms leveraging flexible load
resources have emerged as crucial solutions for providing operating reserves through demand-side regula-
tion [3]. Among various flexible resources, the heating, ventilation, and air conditioning (HVAC) systems,
due to their widespread deployment and inherent thermal inertia characteristics, are usually used as one
of the flexible loads that can be regulated according to the need for grid stable operation. Particularly, in
the case where a large-scale population of HVAC units is collectively connected to a grid, the collective
behavior of the HVACs will influence grid stability and load balancing [4]. Hence, in order to integrate a
large number of HVACs into the power grid for demand response, aggregating the HVAC units to achieve
grid scale operating reserves by handling the collective behavior of the HVACs is a challenging issue.

However, current approaches predominantly adopt centralized control architectures, where an aggre-
gator coordinates large HVAC clusters through real-time communication infrastructure [5]. In this way,
broadcasting command signals to a large number of HVAC units and getting feedback from them in
real-time operation are necessary [6]. When the population of HVAC units becomes extremely large,
this traditional broadcasting approach might be resource-intensive and impractical. Instead of broad-
casting control signals to every individual HVAC unit by the grid side, in a decentralized control fashion,
decision-making is distributed to regional or local controllers [7]; i.e., each HVAC unit makes decisions
based on its own local or an embedded local model.

Meanwhile, as a distributed strategy decision theory for managing a large scale population of dynamical
agents, the mean-field game (MFG) or mean-field type control theory has been proposed during the last
two decades [8, 9]. The foundational work on MFGs, initially proposed by Lasry and Lions [10] and
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independently by Huang et al. [11], has proven effective and viable for analyzing weakly coupled stochastic
controlled systems with mean-field interactions, leading to the establishment of an approximate Nash
equilibrium. Recently, several studies have tackled application issues of the MFG theory in decentralized
control. In [12], a distributed strategy is developed using MFGs for large-scale stochastic multi-agent
systems characterized by coupled cost functions. Moreover, Ref. [13] presented a distributed solution
based on the MFG framework to address the collaborative control problem of large-scale temperature-
controlled loads participating in grid frequency support. In addition, Ref. [14] proposed a distributed
power control algorithm grounded in MFG theory for non-orthogonal multiple access systems. The above
research studies have made positive progress.

In general, under an MFG setting, the collective behavior of a large number of agents is obtained
by adding a penalty term to the consensus of the state response. In other words, the cost function
should involve a term on the difference between the individual agent’s state and the expectation of the
distribution of the agents. If it is aimed to lead the collective behavior closer to a desired state, then it is
necessary to add a penalty related to the difference between the expectation and the reference state. It
means that the reference state has to be broadcast to all agents. As a hierarchical MFG, the Stackelberg
MFG framework enables only the leader, which is a pre-specified agent with the reference state, and a
large number of followers to decide the strategy with the pre-designed leader’s strategy or propagated
neighboring information. The Stackelberg differential game was originally proposed by [15], and then
was extended to (ε1, ε2)-Stackelberg MFG or social optimization problem by [16, 17]. Several examples
of application in practice have also been reported in [18–20].

In this paper, we address the decentralized collective control problem for a large-scale population of
HVACs under grid balancing with the Stackelberg mean-field game setting. A large number of HVACs,
here called followers, with a pre-specified HVAC leader, respectively, will be targeted. The desired
reference state is the command from the grid for the supply-demand power balance, which is only used
by the leader. According to the hierarchical game architecture of Stackelberg MFG, the strategy of the
followers is designed under the assumption that the leader prioritizes strategy decisions. Finally, it will
be shown that a (ε1, ε2)-Stackelberg equilibrium, between the followers and the leader, and among the
followers, can be achieved. As a result, the collective behavior of the overall HVACs is closer to the
desired grid response.

The remainder of this paper is organized as follows: Section 2 delineates the system modeling framework
and fundamental assumptions. Section 3 derives a suite of centralized Stackelberg equilibrium strategies
through rigorous game-theoretic analysis. Subsequently, Section 4 presents a distributed strategy design
methodology, accompanied by formal proofs establishing the existence of a Stackelberg equilibrium. The
verification of the proposed distributed strategy is given in Section 5, followed by concluding remarks in
Section 6.

The notation used in this paper is shown as follows. (Ω,F , {Ft}t∈[0,T ],P, T > 0) denotes a com-
plete filtered probability space satisfying the usual conditions. E denotes the expectation with respect
to P. | · | denotes an absolute value or the modulus of a vector. Let L2(0, T ;R) := {h : [0, T ] →
R|
∫ T

0 |h(t)|2dt < ∞}. L2
F(0, T ; ·) is the space of all F -adapted processes f(·) satisfying the square-

integrability condition: E[
∫ T

0 |f(t)|2dt] 6 ∞. L2
Ft
(Ω; ·) is the space of all Ft-measurable random vari-

ables, for t ∈ [0, T ]. Bi, i = 1, 2, · · · , N are a sequence of one-dimensional independent Wiener pro-
cesses defined on (Ω,F , {Ft}t∈[0,T ],P). Let σ-algebra Ft := σ

(

{βi
0, Bi(s), s 6 t, i = 1, 2, · · · , N}

)

and

F i
t := σ

(

{βi
0, Bi(s), s 6 t}

)

, i = 1, 2, · · · , N .

2 Problem formulation

2.1 Motivation

The system considered in this paper can be illustrated as in Figure 1, where a large number of HVAC
units are connected to a node of the power grid, and the electric power for operating individual HVAC
units is supplied by the grid. As is well-known, the influence of the collective behavior of the HVACs
will be non-negligible when the number of HVACs becomes sufficiently large. The collective behavior of
a large-scale population of HVACs poses challenges for the power supplier not only in power balance but
also in grid stability. However, handling the collective behavior of a large number of HVACs is not an easy
task due to the uncertainties in individual HVAC operations that are usually forced by the customer’s
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Figure 1 The overall dispatch framework of the HVAC-based DRS.

action under the me-first principle with variety and uncertainties.
As a traditional power grid operation technique, power dispatch primarily relies on centralized reg-

ulation by power plants mainly, whose regulation capacity is no longer sufficient to meet the dispatch
requirement in the scenario considered in this paper with a large-scale population of HVACs. The decen-
tralized control of each HVAC with consideration of collective behavior is a feasible approach to deal with
the dispatch problem for the system involving a large number of HVACs. Of course, under the constraint
of power supplier satisfaction, each HVAC’s power consumption will conflict with that of others. In other
words, for decision-making of dispatch, the power supplier must handle the power demand caused by the
collective behavior of the larger-scale population of HVACs. Conversely, the total power consumption of
the large-scale population of HVACs should match the constraint of the power supply once the power
supplier decides the dispatch plan. This paper will address the latter issue. Namely, the following is-
sues will be challenged. For a given power dispatch schedule, find a decentralized control strategy for
individual HVACs under the decentralized operation of HVACs, and the following two goals are achieved.

• Total power consumption of the collective demand of the large-scale population of HVACs is close
to the dispatched power in the sense of mean-field approximation.

• The large number of HVACs achieves a Nash equilibrium under the specified reward function, more
precisely, the Stackelberg Nash equilibrium.

2.2 Dynamic model of HVACs

Consider a large-scale multi-room system with N +1 homogeneous HVAC units where N is a sufficiently
large number and goes to infinity in the ideal case. Each room is assigned one HVAC unit for regulating
the indoor temperature, and all HVACs are physically connected to the power grid as shown in Figure 1.

The thermodynamic model of HVAC has been constructed in detail in [21]. On this basis, considering
the stochastic noise, for the i-th HVACi (i = 0, 1, ..., N), the dynamics can be represented by the following
stochastic differential equation:















dT0(t) =
1

cAρAV
[Hg,0(t)−Hl,0(t)]dt,

dTi(t) =
1

cAρAV
[Hg,i(t)−Hl,i(t)]dt+ σdBi(t), i = 1, 2, · · · , N

(1)

by choosing the temperature Ti to which the HVACi is connected, where cA is the air heat capacity; ρA
is the air density; V is the room’s volume; Bi denotes the independent Wiener processes which represent
the environment noise, and the constant σ diffusion coefficient represents the magnitude of randomness.
It should be noted that the unit HVAC0 is detached from others, and it is assumed that there is no
stochastic noise in the dynamics. Without loss of generality, the controller is directly connected to the
grid, and the assumption of no stochastic noise is for the simplicity of subsequent derivation. We call
this HVAC0 the leader and the remaining whole units as followers. The result is easy to extend to the
case where the leader’s dynamics involve stochastic noise.
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This dynamical model of the HVAC units is from the energy conservation law with the heat gain from
outside Hg,i and the heat loss of the room Hl,i (i = 0, 1, 2, · · · , N). The heat gain can be calculated by
heat transfer from air leakages and the building envelope, which can be expressed as follows:

Hg,i(t) = UhAs(To − Ti(t)) + cAρAV n(To − Ti(t)), (2)

where Uh is the heat transfer coefficient; As is the envelope’s surface area; To is the ambient temperature;
n denotes the air exchange times; and V n is the product of V and n. The heat loss can be expressed as

Hl,i(t) = η[αi(t)RP + P0], (3)

where η is the coefficient of performance of HVAC, which implies the relationship between the input
power and heat supply (cooling or heating); P0 is the initial power of HVAC; αi is the variable for online
regulation of power used to inject the heat into the room, which is defined as

αi(t) =
∆Pi(t)

RP
, (4)

where ∆Pi(t) are the actual regulation power of HVACi; RP is the admissible regulation capacity. In
practical terms, the range of αi ∈ [0, 1].

For the temperature Ti, we consider a targeted horizon [Tmin, Tmax]. We normalize Ti by defining

βi(t) =
2

Tmax − Tmin
Ti(t)−

Tmax + Tmin

Tmax − Tmin
, (5)

which maps the horizon [Tmin, Tmax] map to [−1, 1], and usually βi is called the comfort state. The lower
bound −1 and upper bound 1 represent cold and heat tolerance limits, respectively. Substituting (5) for
(1)–(3), the dynamics of the comfort state can be formulated as


































dβ0(t)=

[

− (UhAs+cAρAV n)

cAρAV
β0(t)−

ηRP

Tmax−Tmin

2 cAρAV
α0(t)+

(UhAs+cAρAV n)(To−Tmax+Tmin

2 )+ηP0

Tmax−Tmin

2 cAρAV

]

dt,

dβi(t)=

[

− (UhAs+cAρAV n)

cAρAV
βi(t)−

ηRP

Tmax−Tmin

2 cAρAV
αi(t)+

(UhAs+cAρAV n)(To−Tmax+Tmin

2 )+ηP0

Tmax−Tmin

2 cAρAV

]

dt

+ σdBi(t), i = 1, 2, · · · , N.
(6)

For brevity, in the following, Gth = UhAs + cAρAV n and Cth = cAρAV are denoted as the thermal
conductance and thermal capacitance coefficient, respectively [21]. On this basis, the state-space equation
of the HVAC i can be given as

{

dβ0(t) = [aβ0(t) + bα0(t) + c]dt,

dβi(t) = [aβi(t) + +bαi(t) + c]dt+ σdBi(t),
(7)

where

a = −Gth

Cth
, b = − ηRP

Tmax−Tmin

2 Cth

, c =
Gth(To − Tmax+Tmin

2 ) + ηP0

Tmax−Tmin

2 Cth

, i = 0, 1, · · · , N.

The initial value of the leader and the ith follower are given as β0(0) = β0
0 , βi(0) = βi

0, i = 1, 2, · · · , N ,
and {βi

0}, i = 1, 2, · · · , N are a sequence of independent and identically distributed (i.i.d., for short)
random variables.

Based on this model of system dynamics, it is obvious that if we want to maintain βi at a desired value
βe
i , the system must be stabilized at the equilibrium forced by the regulation power with a corresponding

state value αref
i =

−c−aβe

i

b , i = 0, 1, · · · , N . To design a decentralized regulation strategy, consider the
corresponding error dynamics by defining

ui = αi − αref
i , xi = βi − βe

i , i = 0, 1, · · · , N. (8)

Then, the dynamical equation (7) becomes the following form:
{

dx0(t) = [ax0(t) + bu0(t)]dt, x0(0) = ζ0,

dxi(t) = [axi(t) + bui(t)]dt+ σdBi(t), xi(0) = ζi, i = 1, 2, · · · , N. (9)
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2.3 Stackelberg MFG formulation

To achieve the goal of decentralized collective control, we formulate the strategy design problem as the
Stackelberg game within the leader-follower framework. In detail, the leader unit HVAC0 makes policy
decisions first, and then the followers make decisions for the best response according to the leader’s policy
decision. Under this leader-follower structure, the leader decides the leader’s strategy by considering grid-
friendly power consumption so that the whole system of the large-scale population of HVACs achieves
the so-called (ε1, ε2)-Stackelberg equilibrium as an ideal limitation. For ease of reference, we begin with
a brief review of the Stackelberg game setting and concepts.

Let
b0 := b0 (t, x0(t), µ(xi(t)), u0(t)) : [0, T ]× R× P2(R)× U0 → R,

σ0 := σ0 (t, x0(t), µ(xi(t)), u0(t)) : [0, T ]× R× P2(R)× U0 → R,

bi := bi (t, xi(t), µ(xi(t)), ui(t), u0(t)) : [0, T ]× R× P2(R)× Ui × U0 → R,

σi := σi (t, xi(t), µ(xi(t)), ui(t), u0(t)) : [0, T ]× R× P2(R)× Ui × U0 → R,

where ui(·) ∈ Ui, i = 0, 1, · · · , N are permissible strategies; Bi(t), i = 0, 1, · · · , N are independent
Wiener processes; µ represent the empirical distribution; bi, i = 0, 1, · · · , N are drift function; and
σi, i = 0, 1, · · · , N are diffusion function. Consider a leader and the followers with dynamics described
by

{

dx0(t) = b0dt+ σ0dB0(t), x0(0) = ζ0,

dxi(t) = b1dt+ σ1dBi(t), xi(0) = ζi.
(10)

The cost functions of the leader and followers are defined as follows, respectively:

J0
(

u0(·), uN (·)
)

:= E

{

∫ T

0

f0 (t, x0(t), µ(xi(t)), u0(t)) dt+ g0 (x0(T ), µ(xi(T )))

}

, (11)

Ji (ui(·), u−i(·), u0(·)) := E

{

∫ T

0

f1 (t, xi(t), µ(xi(t)), ui(t), u0(t)) dt+ g1 (xi(T ), µ(xi(T )))

}

, (12)

where uN(·) := (u1(·), · · · , uN(·)), u−i(·) := (u1(·), · · · , ui−1(·), ui+1, · · · , uN(·)). The optimization prob-
lem is as follows:

min
u0∈U0

J0
(

u0(·), uN (·)
)

, min
ui∈Ui

Ji (ui(·), u−i(·), u0(·)) , i = 1, . . . , N, (13)

which is subject to dynamical constraints (10).

Definition 1 ((ε1, ε2)-Stackelberg equilibrium, see [22]). A set of strategies (u∗0(·), u∗1(·), · · · , u∗N (·)) is
an (ε1, ε2)-Stackelberg equilibrium with respect to {Ji, i = 0, 1, · · · , N} if the following holds.

(1) For a given strategy of the leader u0(·) ∈ U0, u
N∗(·) = (u∗1(·), · · · , u∗N (·)), u∗i (·) ∈ Ui constitutes an

ε1-Nash equilibrium; i.e., there exists a constant ε1 > 0 such that for all i = 0, 1, · · · , N ,

Ji
(

u∗i (·), u∗−i(·), u0(·)
)

6 inf
ui(·)∈Ui

Ji
(

ui(·), u∗−i(·), u0(·)
)

+ ε1. (14)

(2) There exists a constant ε2 > 0 such that

J0
(

u∗0(·), uN∗ [·;u∗0(·)]
)

6 inf
u0(·)∈U0

J0
(

u0(·), uN∗ [·;u0(·)]
)

+ ε2. (15)

Now, our problem can be formulated as the Stackelberg game by defining the cost functionals for the
leader and the followers (10) as follows, respectively:

J0(u0(·), uN (·)) := 1

2
E

{

∫ T

0

[

r1

(

x0(t)− x(N)(t)
)2

+ r2
(

x0(t)− xref0 (t)
)2

+ r3u
2
0(t)

]

dt

}

, (16)
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where xref0 = 0 is determined by αref
0 given by the power grid and for the ith follower, the cost functionals

(12) are replaced by

Ji(ui(·), u−i(·), u0(·)) :=
1

2
E

{

∫ T

0

[

q1

(

xi(t)− x(N)(t)
)2

+ q2 (xi(t)− x0(t))
2
+ q3u

2
i (t)

]

dt

}

, (17)

where x(N)(t) := 1
N

∑N
i=1 xi(t); ri, i = 1, 2, 3 and qi, i = 1, 2, 3 are the weighting coefficients for different

terms and we have r1, r2 > 0, r3 > 0 and q1, q2 > 0, q3 > 0.
It is worth noting that the cost functional J0 for the leader aims to strike a trade-off between the

collective consensus of the whole HVACs and the tracking of the given reference trajectory xref0 which
is pre-specified by power supplier as dispatch plan αref, according to the HVAC’s inverse-dynamics and
the scale of the population. On the other hand, the followers aim to reach a consensus on the overall
collective behavior, with consideration for consistency with the leader. In the following section, a solution
for this Stackelberg game will be derived first and then decentralized into the strategies.

3 Centralized strategies

3.1 The strategies for the followers

In this subsection, we solve the mean-field Nash game for the N followers under an arbitrary given
strategy of the leader u0(·) ∈ L2(0, T ;R). Once u0(·) is given, the state response x0(·) of the leader is
determined by the dynamical model (9) according to the initial state ζ0. The mean-field game strategy
for the followers can be found by solving the following optimization problem. For the sake of simplicity,
the time variable t will be omitted without ambiguity.

(P1): Minimize Ji, i = 1, · · · , N of (17) over ui(·) ∈ L2
F(0, T ;R).

Theorem 1. Let u0 ∈ L2(0, T ;R) be given. For the initial value ζi, i = 1, · · · , N , if (P1) admits an
optimal control ûi ∈ L2

F(0, T ;R), i = 1, · · · , N , then the adapted solution (x̂i, p̂i, q̂
j
i , i = 1, · · · , N, j =

1, ·, N) to the Hamilton system























dx̂i = [ax̂i − b2q−1
3 p̂i]dt+ σdBi,

dp̂i = −
[

ap̂i +

[

q1

(

1− 1

N

)

+ q2

]

x̂i − q1

(

1− 1

N

)

x̂(N) − q2x0

]

dt+
N
∑

j=1

q̂
j
i dBj ,

x̂i(0) = ζi, p̂i(T ) = 0, i = 1, 2, · · · , N

(18)

satisfies
ûi = −q−1

3 bp̂i, a.e., a.s., i = 1, · · · , N. (19)

See Appendix A for the proof of Theorem 1.
Due to the difficulty in directly solving the Hamilton system (18), we consider the following parame-

terization for p̂i(·):
p̂i(·) = PN (·)x̂i(·) +KN(·)x̂(N)(·) + φ̂N (·), (20)

where PN (·), KN(·) are differential functions with PN (T ) = 0, KN (T ) = 0. By Itô’s formula, we have

dp̂i =ṖN x̂idt+
[

aPN x̂i − PNq
−1
3 b2

(

PN x̂i +KN x̂
(N) + φ̂N

)]

dt+ PNσdBi + K̇N x̂
(N)dt

+
[

aKNx
(N) −KNq

−1
3 b2

(

PN x̂
(N) +KN x̂

(N) + φ̂N

)]

dt+KN
1

N

N
∑

j=1

σdBj + dφ̂N .
(21)

Instituting (20) into the right side of the second equation in (18) obtains

dp̂i = −
[

a
[

PN x̂i +KN x̂
(N) + φ̂N

]

+

[

q1

(

1− 1

N

)

+ q2

]

x̂i − q1

(

1− 1

N

)

x̂(N) − q2x0

]

+

N
∑

j=1

q
j
i dBj .

(22)
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Comparing the coefficients of the right hand side of (21) and (22), yields

qii = PNσ +
KN

N
σ, q

j
i =

KN

N
σ, i 6= j, (23)

ṖN + 2aPN − q−1
3 b2P 2

N +

[

q1

(

1− 1

N

)

+ q2

]

= 0, PN (T ) = 0, (24)

K̇N + 2aKN − PN q
−1
3 b2KN −KNq

−1
3 b2 (PN +KN )− q1

(

1− 1

N

)

= 0, KN(T ) = 0, (25)

Π̇N + 2aΠN − q−1
3 b2Π2

N + q2 = 0, ΠN (T ) = 0, (26)

and

dφ̂N = −
[

(

a− q−1
3 b2 (ΠN )

)

φ̂N + q2x0

]

dt, φ̂N (T ) = 0, (27)

where ΠN = PN +KN . Note that Eqs. (24) and (26) are symmetric Riccati differential equations, and
qi > 0, i = 1, 2, 3; then there exists a unique solution for the Riccati differential equations (24) and (26),
respectively, which gives the solution of Hamilton equation (18). An alternative derivation of the Riccati
equations is provided in Appendix D. Consequently, we immediately have the following conclusion.

Theorem 2. For given u0(·) ∈ L2(0, T ;R), then the (P1) admits a unique solution

ûi = −q−1
3 b

(

PN x̂i +KN x̂
(N) + φN

)

, (28)

where PN and KN are the solution of Riccati differential equations (24) and (26), respectively; φN is
given by (27), and x̂i and x̂

(N) satisfy































dx̂i =
[

(a− q−1
3 b2PN )x̂i − q−1

3 b2KN x̂
(N) − q−1

3 b2φ̂N

]

dt+ σdBi, xi(0) = ζi, i = 1, 2, · · · , N,

dx̂(N) = d
1

N

N
∑

i=1

x̂i =

[

(a− q−1
3 b2PN )

1

N

N
∑

i=1

x̂i − q−1
3 b2KN x̂

(N) − q−1
3 b2φ̂N

]

dt+ σ
1

N

N
∑

i=1

dBi

=
[

(

a− q−1
3 b2ΠN

)

x̂(N) − q−1
3 b2φ̂N

]

dt+ σdB(N), x̂(N)(0) = ζ(N),

(29)

where x̂(N)(·) = 1
N

∑N
i=1 x̂i(·), dB(N)(·) := 1

N

∑N
i=1 dBi(·), and ζ(N) := 1

N

∑N
i=1 ζi.

3.2 The strategy of the leader

Upon implementing the strategies of followers ûi(·), i = 1, · · · , N according to (28), we derive the best
strategy for the leader by solving the following optimization problem:

(P2): Minimize JN
0 (u0(·)) over u0(·) ∈ U0[0, T ], where

J0(u0(·), uN (·)) = 1

2
E

{

∫ T

0

[

r1

(

x0 − x̂(N)
)2

+ r2
(

x0 − xref0

)2
+ r3u

2
0

]

dt

}

(30)

subject to the following Forward-backward stochastic differential equations (FBSDEs):































dx0 = [ax0 + bu0] dt,

dx̂i =
[

(a− q−1
3 b2PN )x̂i − q−1

3 b2KN x̂
(N) − q−1

3 b2φ̂N

]

dt+ σdBi(t),

dφ̂N = −
[

(

a− q−1
3 b2ΠN

)

φ̂N − q2x0

]

dt, φ̂N (T ) = 0,

x0(0) = ζ0, xi(0) = ζi, i = 1, 2, · · · , N,

(31)

where x̂i and x̂
(N)(·) are the state response of the followers forced by their strategies given in Theorem 2

and the average value of the states ofN followers, respectively. The result of this subsection is summarized
as follows.
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Theorem 3. Let the followers adopt the optimal strategy (28). If (P2) admits an optimal control

û0(·) ∈ L2(0, T ;R), then the adapted solution
(

x̂0(·), x̂(N)(·), φ̂N (·), ŷ0(·), ŷ(N)(·), ψ̂N (·)
)

to the Hamilton

system































































dx̂0 =
[

ax̂0 − r−1
3 b2ŷ0

]

dt, x̂0(0) = ζ0,

dx̂(N) =
[

(

a− q−1
3 b2ΠN

)

x̂(N) − q−1
3 b2φ̂N

]

dt+ σdB(N), x̂(N)(0) = ζ(N),

dφ̂N = −
[

(

a− q−1
3 b2ΠN

)

φ̂N − q2x̂0

]

dt, φ̂N (T ) = 0,

dŷ0 = −
[

aŷ0 + (r1 + r2) x̂0 − r1x̂
(N) − r2x

ref
0 + q2ψ̂N

]

dt, ŷ0(T ) = 0,

dŷ(N) = −
[

(

a− q−1
3 b2ΠN

)

ŷ(N) − r1

(

x̂0 − x̂(N)
)]

dt+ g1dB
(N), ŷ(N)(T ) = 0,

dψ̂N =
[

(

a− q−1
3 b2ΠN

)

ψ̂N + q−1
3 b2ŷ(N)

]

dt, ψ̂N (0) = 0

(32)

satisfies

û0 = −r−1
3 bŷ0, a.e., a.s. (33)

The proof of the theorem is in Appendix B.

The results obtained in this section exhibit the essential characteristics of the Stackelberg leader-
follower game: the follower’s strategy decision is made according to the leader’s strategy, and then under
the correspondence between the follower’s and the leader’s strategy, the latter makes the decision of
strategy that minimizes the cost functional J0. In the next section, the strategies will be decentralized
and it will be shown that the strategies will achieve the (ε1, ε2)-Stackelberg equilibrium.

4 Decentralized strategies and (ε1, ε2)-Stackelberg equilibrium

Let N → ∞, then PN (·) → P̄ (·),KN (·) → K̄(·), where P̄ (·), K̄(·) satisfy

˙̄P + 2aP̄ − q−1
3 b2P̄ 2 + q1 + q2 = 0, P̄ (T ) = 0, (34)

˙̄K + 2aK̄ − P̄ q−1
3 b2K̄ − K̄q−1

3 b2(P̄ + K̄)− q1 = 0, K̄(T ) = 0. (35)

Furthermore, let Π̄(·) := P̄ (·) + K̄(·); then it is easy to confirm that Π̄(·) satisfies

˙̄Π + 2aΠ̄− q−1
3 b2Π̄2 + q2 = 0, Π̄(T ) = 0. (36)

Since qi > 0, i = 1, 2, 3, it follows that Eqs. (34) and (35) admit a unique solution, respectively. Inspired
by (32), we consider











































dx̄0 =
[

ax̄0 − r−1
3 b2ȳ0

]

dt, x̄0(0) = ζ0,

dx̄ =
[(

a− q−1
3 b2Π̄

)

x̄− q−1
3 b2φ̄

]

dt, x̄(0) = ζ̄,

dφ̄ = −
[(

a− q−1
3 b2Π̄

)

φ̄− q2x0
]

dt, φ̄(T ) = 0,

dȳ0 = −
[

aȳ0 + (r1 + r2) x̄0 − r1x̄− r2x
ref
0 + q2ψ̄

]

dt, ȳ0(T ) = 0,

dȳ = −
[(

a− q−1
3 b2Π̄

)

ȳ − r1 (x̄0 − x̄)
]

dt, ȳ(T ) = 0,

dψ̄ =
[(

a− q−1
3 b2Π̄

)

ψ̄ + q−1
3 b2ȳ

]

dt, ψ̄(0) = 0.

(37)

Let X = (x̄0, x̄, ψ̄)
⊤, Y = (φ̄, ȳ0, ȳ)

⊤, C = (0, r2x
ref
0 , 0)⊤ and

A1 :=









a 0 0

0 a− q−1
3 b2Π̄ 0

0 0 a− q−1
3 b2Π̄









, B1 :=









0 −r−1
3 b2 0

−q−1
3 b2 0 0

0 0 q−1
3 b2









,
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A2 :=









q2 0 0

−(r1 + r2) r1 −q2
r1 −r1 0









, B2 :=









−(a− q−1
3 b2Π̄) 0 0

0 −a 0

0 0 −(a− q−1
3 b2Π̄)









.

With the above notions, we can rewrite (37) as

{

dX = [A1X +B1Y ] dt, X(0) =
[

ζ0, ζ̄ , 0
]⊤
,

dY = [A2X + B2Y + C] dt, Y (T ) = [0, 0, 0]
⊤
.

(38)

Suppose (X(·), Y (·)) is an adapted solution to (38) and due to the coupling between the two state
equations in (38), so assume that X(·) and Y (·) are related by the following affine transformation:

X(·) = Φ(·)Y (·) + Ψ(·),

where Φ(·) and Ψ(·) are both differentiable functions, with Φ(0) = 0 and Ψ(0) =
[

ζ0, ζ̄ , 0
]⊤

. Next, by
Itô’s formula, we have

dX = [Φ̇Y + Ψ̇]dt+Φ [A2(ΦY +Ψ) +B2Y + C] dt.

This together with the first equation in(38) gives

Φ̇ + ΦB2 +ΦA2Φ−A1Φ−B1 = 0, Φ(0) = 0,

Ψ̇ + ΦA2Ψ+ΦC −A1Ψ = 0, Ψ(0) =
[

ζ0, ζ̄, 0
]⊤
.

(39)

Note that the Riccati equation (39) is non-symmetric. By Theorem 4.1 on page 47 of [23] again, if Eq.
(39) admits a solution Φ(·), then Eq. (38) admits a unique adapted solution (X(·), Y (·)). The existence
of a unique solution to the first equation in (39) is discussed in Appendix C.

Theorem 4. Motivated by (28) and (33), we design the decentralized strategies below:

{

u∗0 = −r−1
3 bȳ0,

u∗i = −q−1
3 b

(

P̄ x∗i + K̄x̄+ φ̄
)

, i = 1, · · · , N,
(40)

where ȳ0(·), x̄(·), φ̄(·) are given by (37), and x∗i (·) satisfies

dx∗i = [(a− b2q−1
3 P̄ )x∗i − b2q−1

3 K̄x̄− b2q−1
3 φ̄]dt+ σdBi, x∗i (0) = ζi, i = 1, · · · , N. (41)

Next, we will demonstrate that the decentralized strategies (40) employed by the leader and followers
asymptotically form an (ε1, ε2)-Stackelberg equilibrium as the number of agents N approaches infinity.
To obtain the result, the following lemma is required.

Lemma 1. Under the control inputs u∗0 and u∗i that are given in (40), ones have

E

∫ T

0

(

x∗(N) − x̄
)2

dt = O

(

1

N

)

. (42)

Proof. By (41), we can get

dx∗(N) = [(a− b2q−1
3 P̄ )x∗(N) − b2q−1

3 K̄x̄− b2q−1
3 φ̄]dt+ σdB(N), x∗(N)(0) = ζ(N). (43)

Combining this with the second equation of (37) yields

dZ(t) = [(a− b2q−1
3 P̄ )Z(t)]dt+ σdB(N)(t), Z(0) = ζ(N) − ζ̄ , (44)

where Z(t) := x∗(N)(t)− x̄(t). Hence, the solution of equation (44) is

Z(t) = Z(0)e(a−b2q−1

3
P̄ )t + σ

∫ t

0

e(a−b2q−1

3
P̄ )(t−s)dB(N)(s). (45)
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If a− b2q−1
3 P̄ < 0, its expectation is E [Z(t)] = Z(0)e(a−b2q−1

3
P̄ )t. According to the Itô isometric theorem,

we can obtain

E
[

Z2(t)
]

=
[

Z(0)e(a−b2q−1

3
P̄ )t
]2

+ σ2
E

{

[
∫ t

0

e(a−b2q−1

3
P̄ )(t−s)dB(N)(s)

]2
}

=
[

Z(0)e(a−b2q−1

3
P̄ )t
]2

+ σ2

∫ t

0

e2(a−b2q−1

3
P̄ )(t−s)

E

{

[

dB(N)(s)
]2
}

=
[

Z(0)e(a−b2q−1

3
P̄ )t
]2

+
σ2

N

∫ t

0

e2(a−b2q−1

3
P̄ )(t−s)ds

= Z2(0)e2(a−b2q−1

3
P̄ )t +

σ2

N
· e

2(a−b2q−1

3
P̄ )t − 1

2(a− b2q−1
3 P̄ )

6 Z2(0)e2(a−b2q−1

3
P̄ )t +

σ2

2N |a− b2q−1
3 P̄ | ,

where the third last step is according to the dB(N)(s) = 1
N

∑N
i=1 dBi(s). Integral from 0 to t, one can

obtain

E

∫ T

0

[

Z2(t)
]

dt 6

∫ T

0

Z2(0)e2(a−b2q−1

3
P̄ )tdt+

∫ T

0

σ2

2N |a− b2q−1
3 P̄ |dt

=

∫ T

0

Z2(0)e2(a−b2q−1

3
P̄ )tdt+O

(

1

N

)

.

Under ζi that are i.i.d., it is easy to know that Z(0) is i.i.d. and E
[

Z2(0)
]

= O
(

1
N

)

. Then the above
can verify that

E

∫ T

0

[

Z2(t)
]

dt = O

(

1

N

)

.

The proof is complete.

Theorem 5. (u∗0(·), u∗1(·), · · · , u∗N (·)) given in (40) constitutes an (ε1, ε2)-Stackelberg equilibrium, where

ε1 = ε2 = O
(

1√
N

)

.

Proof. Firstly, prove (1) in Definition 1. For i = 1, · · · , N , let ũi(·) := ui(·) − u∗i (·) and x̃i(·) :=
xi(·)− x∗i (·). Then x̃i(·) satisfies

dx̃i = (ax̃i + bũi) dt, x̃i(0) = 0, i = 1, · · · , N. (46)

From (17), we have

Ji
(

ui(·), u∗−i(·), u0(·)
)

− Ji
(

u∗i (·), u∗−i(·), u0(·)
)

=
1

2
E

{

∫ T

0

{

q1

[

(xi − x(N))2 − (x∗i − x∗(N))2
]

+ q2
[

(xi − x0)
2 − (x∗i − x0)

2
]

+ q3
[

u2i − (u∗i )
2
]

}

dt

}

=
1

2
E

{

∫ T

0

{

q1

[

x̃i − x̃(N) + 2x∗i − 2x∗(N)
] (

x̃i − x̃(N)
)

+ q2(2x
∗
i + x̃i − 2x0)x̃i + q3(2u

∗
i + ũi)ũi

}

dt

}

=J̃i
(

ũi(·), u∗−i(·), u0(·)
)

+ Ii,

where

J̃i
(

ũi(·), u∗−i(·), u0(·)
)

:=
1

2
E

{

∫ T

0

[

q1

(

x̃i − x̃(N)
)2

+ q2(x̃i)
2 + q3ũ

2
i

]

dt

}

,

and

Ii := E

{

∫ T

0

[

q1

(

x∗i − x∗(N)
)(

x̃i − x̃(N)
)

+ q2 (x
∗
i − x0) x̃i + q3u

∗
i ũi

]

dt

}

. (47)

Applying Itô’s formula to x̃i(·)
(

P̄ (·)x∗i (·) + K̄(·)x̄(·) + φ̄(·)
)

,

d
[

x̃i
(

P̄ x∗i + K̄x̄+ φ̄
)]

= d(x̃i)
(

P̄ x∗i + K̄x̄+ φ̄
)

+ x̃i

[

˙̄Px∗i + P̄d(x∗i ) +
˙̄Kx̄+ K̄d(x̄) + d(φ̄)

]

. (48)
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Substitute (34), (35), (37), (41) and (46) into (48) and integrate from 0 to T , and taking expectation, we
have

E

{

∫ T

0

d
[

x̃i
(

P̄ x∗i + K̄x̄+ φ̄
)]

}

= −E

{

∫ T

0

[q1 (x
∗
i − x̄) x̃i + q2 (x

∗
i − x0) x̃i + q3u

∗
i ũi] dt

}

.

Due to P̄ (T ) = K̄(T ) = φ̄(T ) = 0 and x̃i(0) = 0, we have

E

{

∫ T

0

d
[

x̃i
(

P̄ x∗i + K̄x̄+ φ̄
)]

}

=E
{

x̃i(T )
[

P̄ (T )x∗i (T ) + K̄(T )x̄(T ) + φ̄(T )
]

− x̃i(0)
[

P̄ (0)x∗i (0) + K̄(0)x̄(0) + φ̄(0)
]}

= 0,

hence,

E

{

∫ T

0

[q2 (x
∗
i − x0) x̃i + q3u

∗
i ũi] dt

}

= −E

{

∫ T

0

[q1 (x
∗
i − x̄) x̃i] dt

}

. (49)

Then, Eq. (47) can be rewritten as

Ii = E

{

∫ T

0

[

q1

(

x∗i − x∗(N)
)(

x̃i − x̃(N)
)

+ q2 (x
∗
i − x0) x̃i + q3u

∗
i ũi

]

dt

}

= E

{

∫ T

0

[

q1 (x
∗
i − x̄)

(

x̃i − x̃(N)
)

+ q1

(

x̄− x∗(N)
)(

x̃i − x̃(N)
)

+ q2 (x
∗
i − x0) x̃i + q3u

∗
i ũi

]

dt

}

.

(50)
Substituting (49) into (50) yields

Ii = E

{

∫ T

0

[

q1

(

x̄− x∗(N)
)(

x̃i − x̃(N)
)]

dt

}

. (51)

Given the ui, u
∗
i ∈ L2

Fi(0, T ;R), i = 1, · · · , N , we establish the square-integrability condition

E

[

∫ T

0

|ũi(t)|2 dt
]

<∞. (52)

By (46), we can get E
[

∫ T

0 (x̃i(t))
2
dt
]

<∞. Combining this result with (42) and (51), we derive

Ii = O

(

1√
N

)

.

Thereby,
Ji
(

u∗i (·), u∗−i(·), u0(·)
)

6 Ji
(

ui(·), u∗−i(·), u0(·)
)

+ ε1. (53)

Thus, (u∗1(·), · · · , u∗N (·)) is an ε1-Nash equilibrium, where ε1 = O
(

1√
N

)

.

Next, prove (2) in Definition 1. Let X̂ = (x̂0, x̂, ψ̂)
⊤, Ŷ = (φ̂, ŷ0, ŷ)

⊤, Ĉ = (0, r2x
ref
0 , 0)⊤, D̂1 =

(0, σ, 0)⊤, D̂2 = (0, 0, g1)
⊤ and

A1 :=









a 0 0

0 a− q−1
3 b2ΠN 0

0 0 a− q−1
3 b2ΠN









, B1 :=









0 −r−1
3 b2 0

−q−1
3 b2 0 0

0 0 q−1
3 b2









,

A2 :=









q2 0 0

−(r1 + r2) r1 −q2
r1 −r1 0









, B2 :=









−(a− q−1
3 b2ΠN ) 0 0

0 −a 0

0 0 −(a− q−1
3 b2ΠN )









.
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With the above notions, we can rewrite (32) as







dX̂ =
[

Â1X̂ + B̂1Ŷ
]

dt+ D̂1dB
(N), X̂(0) =

[

ζ0, ζ
N , 0

]⊤
,

dŶ =
[

Â2X̂ + B̂2Ŷ + Ĉ
]

dt+ D̂2dB
(N), Ŷ (T ) = [0, 0, 0]

⊤
.

Let X̃ := X̂ − X, Ỹ := Ŷ − Y, C̃ := Ĉ − C, and Ã1 := Â1 − A1, Ã2 := Â2 − A2, B̃1 := B̂1 − B1,
B̃2 := B̂2 −B2, where X, Y, C, A1, A2, B1, B2 are given in (38). We have























dX̃ =
[

A1X̃ + Ã1X̂ +B1Ỹ + B̃1Ŷ
]

dt+ D̂1dB
(N),

dỸ =
[

A2X̃ + Ã2X̂ +B2Ỹ + B̃2Ŷ + C̃
]

dt+ D̂2dB
(N),

X̃(0) =
[

ζ0, ζ
(N) − ζ̄ , 0

]⊤
, Ỹ (T ) = [0, 0, 0]

⊤
.

(54)

Let Z1 := Ã1X̂ + B̃1Ŷ , Z2 := Ã2X̂ + B̃2Ŷ + C̃. By the continuous dependence of the solution on the
parameter in Theorem 4 of [24], we have sup06t6T |Z1|2 = O

(

1
N

)

, sup06t6T |Z2|2 = O
(

1
N

)

. Then we
can rewrite (54) as























dX̃ =
[

A1X̃ +B1Ỹ + Z1

]

dt+ D̂1dB
(N),

dỸ =
[

A2X̃ +B2Ỹ + Z2

]

dt+ D̂2dB
(N),

X̃(0) =
[

ζ0, ζ
(N) − ζ̄ , 0

]⊤
, Ỹ (T ) = [0, 0, 0]

⊤
.

(55)

We assume that Ỹ (·) = Θ(·)X̃(·), where Θ(·) is a differential function with Θ(T ) = 0. By Itô’s formula,
we have

dỸ = Θ̇X̃dt+Θ
[(

A1X̃ +B1ΘX̃ + Z1

)

dt+ D̂1dB
(N)
]

. (56)

According to the second equation in (55),

dỸ =
[

A2X̃ +B2ΘX̃ + Z2

]

dt+ D̂2dB
(N). (57)

Comparing the corresponding coefficients of (56) and (57), we have

Θ̇ + ΘA1 +ΘB1Θ−A2 −B2Θ = 0, Θ(T ) = 0.

Then we achieve

dX̃ =
[

(A1 +B1Θ) X̃ + Z1

]

dt+ D̂1dB
(N), X̃(0) =

[

ζ0, ζ
(N) − ζ̄, 0

]⊤
.

This implies

X̃(t) = e(A1+B1Θ)tX̃(0) +

∫ t

0

e(A1+B1Θ)(t−s)
[

Z1ds+ D̂1dB
(N)(s)

]

,

which is similar to the method of obtaining (42). Then we can give

sup
06t6T

E|X̃(t)|2 = O

(

1

N

)

,

and since Ỹ (·) = Θ(·)X̃(·), then
sup

06t6T
E|Ỹ (t)|2 = O

(

1

N

)

,

which means

E

∫ T

0

(x̂0 − x̄0)
2
dt = O

(

1

N

)

, E

∫ T

0

(

x̂(N) − x̄
)2

dt = O

(

1

N

)

, (58)
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and

E

∫ T

0

(ŷ0 − ȳ0)
2 dt = O

(

1

N

)

, E

∫ T

0

(

ŷ(N) − ȳ
)2

dt = O

(

1

N

)

, E

∫ T

0

(

ψ̂ − ψ̄
)2

dt = O

(

1

N

)

.

(59)
Combining this with (42), we have

E

∫ T

0

(

x∗(N) − x̂(N)
)2

dt = O

(

1

N

)

, (60)

and x̄0(t) = x∗0(t), for all t ∈ [0, T ]. Then

E

∫ T

0

(x∗0 − x̂0)
2 dt = O

(

1

N

)

. (61)

We need two steps. First, by (60), we get

J0
(

û0(·), ûN [·; û0(·)]
)

6 J0
(

u0(·), ûN [·;u0(·)]
)

=
1

2
E

{

∫ T

0

[

r1

(

x0 − x̂(N)
)2

+ r2
(

x0 − xref0

)2
+ r3u

2
0

]

dt

}

=
1

2
E

{

∫ T

0

[

r1(x0 − x∗(N))2 + r2(x0 − xref0 )2 + r3u
2
0

]

dt

}

+
1

2
E

{

∫ T

0

r1

(

x∗(N) − x̂(N)
)2

dt+ 2

∫ T

0

r1

(

x0 − x∗(N)
)(

x∗(N) − x̂(N)
)

dt

}

6J0
(

u0(·), uN∗ [·;u0(·)]
)

+O

(

1

N

)

+O

(

1√
N

)

.

Next, from (58)–(61), we have

J0
(

u∗0(·), uN∗ [·;u∗0(·)]
)

=
1

2
E

{

∫ T

0

[

r1

(

x∗0 − x∗(N)
)2

+ r2
(

x∗0 − xref0

)2
+ r3(u

∗
0)

2

]

dt

}

=
1

2
E

{

∫ T

0

[

r1

(

x∗0 − x∗(N)
)2

+ r2
(

x∗0 − xref0

)2
+ r3

(

−r−1
3 bȳ0

)2
]

dt

}

=
1

2
E

{

∫ T

0

r1

(

x̂0 − x̂(N) + x∗0 − x̂0 − x∗(N) + x̂(N)
)2
}

+
1

2
E

{

∫ T

0

[

r2
(

x̂0 − xref0 + x∗0 − x̂0
)2 − b (ŷ0 + ȳ0 − ŷ0)

2
]

dt

}

6J0
(

û0(·), ûN [·; û0(·)]
)

+O

(

1

N

)

+O

(

1√
N

)

.

Hence,
J0
(

u∗0(·), u∗N [·;u∗0(·)]
)

6 J0
(

u0(·), u∗N [·;u0(·)]
)

+ ε2.

The proof is complete.

5 Numerical simulation

Consider a large scale population of HVACs with the numberN = 1000, and a leader HVAC is additionally
appointed. The dynamic equations of HVACs are given in (1), where the physical parameters are detailed
in Table 1. Let the ambient temperature To = 30◦C, the rated power RP = 8 kW, the initial power
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Table 1 Typical parameters for HVACs and corresponding rooms.

Symbol Parameter Value Unit

V Room’s volume 300 m3

As Envelope’s surface area 320 m2

cA Heat capacity of air 1.005 kJ/(kg ·◦ C)

ρA Density of air 1.205 kg/m3

Uh Heat transfer coefficient 7.69 W/(m2 ·◦ C)

n Air exchange times 0.5 1/h

η Coefficient of performance 3 –

Figure 2 Regulation power and temperature comfort of HVACs and their probability distribution in Case I. (a) The control input

u0; (b) the regulation power α0; (c) the temperature comfort β0; (d) the control inputs ui; (e) the regulation power αi; (f) the

temperature comfort βi; (g) the probability distribution of α; (h) the probability distribution of β.

P0 = 0.837 kW and the targeted horizon of Ti is [23◦C, 27◦C]. Hence, the parameters of the dynamic
equations (6) are a = −0.0069087, b = −0.0330296, and c = 0.020726. Suppose βe

i = 0.5, i = 0, 1, · · · , N .

Then according to (6), we have αref
i =

−c−aβe

i

b = 0.52291, i = 0, 1, · · · , N that should be the admissible
average value of the regulation power expected by the power grid. The simulation time is set to T = 900 s.

In the simulation, we examine four different simulation scenarios.

Case I (Benchmark): Let the initial value of the leader’s state β0(0) = 0.3 (T0(0) = 25.6◦C), and the
follower’s initial state βi(0) ∼ N (0, 0.7) (Ti(0) ∼ N (25, 0.7)), where N denotes normal distributions. The
weighting coefficients in the cost functions (16) and (17) are set as q1 = 400, q2 = 0.5, q3 = 50, r1 = 0.01,
r2 = 4, r3 = 6. The results of Case I are shown in Figure 2, where Figure 2(a) (or (d)) represents
the control input of the leader (or followers), while Figures 2(b) (or (e)) and (c) (or (f)), respectively,
represent the state changes of the leader’s regulation power α0 (or αi) and temperature comfort β0 (or βi)
under the control input represented in Figure 2(a) (or (d)). The results demonstrate that the collective
behaviors αi and βi, i = 0, · · · , N are maintained close to the reference values, confirming the effectiveness
of the control algorithm (40). Additionally, Figures 2(g) and (h) display distributions of regulation power
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Figure 3 The temperature comfort of the leader in Case II.

Figure 4 Regulation power and temperature comfort of HVACs in Case III. (a) The control input u0; (b) the regulation power

α0; (c) the temperature comfort β0; (d) the control inputs ui; (e) the regulation power αi; (f) the temperature comfort βi.

and temperature comfort. The findings indicate that the probability densities for both the state variable
and the control input increase over time, reflecting consistent performance across all agents.

Case II (Parameter changes): The initial value is the same as Case I. The parameters are set as
q1 = 400, q2 = 0.5, q3 = 50, r1 = 0.01, r2 = 8 (or r2 = 10), r3 = 6, where r2 is decreased compared
with Case I, which means prioritizing the leader’s own tracking performance over consensus with the
collective behavior of the followers. The responses of β0 and β(N) with the difference r2 are represented
in Figure 3. Obviously, the responses show that the intent of the aforementioned is incorporated.

Case III (Parameter and time changes): The initial value is the same as Case I. The parameters are
set as q1 = 400, q2 = 0.5, q3 = 50, r1 = 0.1, r2 = 1, r3 = 25, and the simulation time is set to T = 1400 s.
In Figure 4, it can be seen that βi is close to β0.

Case IV (Initial value changes): Let the initial value of the leader’s state β0(0) = 0.3 (T0(0) =
25.6◦C), and the follower’s initial state βi(0) ∼ U(−1, 1) (Ti(0) ∼ U(23, 27)), where U denotes uniform
distributions. The coefficients in the cost functionals are set the same as in Case I. In Figure 5, the
regulation power and temperature comfort αi and βi are close to their desired values. This indicates that
the control strategies demonstrate adaptability and robustness in managing various types of initial value
distributions.
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Figure 5 Regulation power and temperature comfort of followers and their probability distribution in Case IV. (a) The control

inputs ui; (b) the regulation power αi; (c) the temperature comfort βi; (d) the probability distribution of α; (e) the probability

distribution of β.

6 Conclusion

To control a large number of HVACs with consideration of grid balancing, it is generally accepted that a
centralized control system should be avoided since the infeasibility of implementation with constraints of
limited resources and the uncertainties of the system dynamics, especially when the population becomes
sufficiently large. Motivated by the benefit of the mean-field game framework where the collective behavior
of a large number of agents is handled, but under decentralized control, to achieve the Nash equilibrium,
a Stackelberg MFG-based approach is proposed in this paper for the decentralized control of large-
scale HVAC systems, aiming to achieve grid balancing. First, we provide the thermodynamic model
of HVAC systems, followed by the formulation of the Stackelberg MFG problem in a general context.
We derived centralized strategies from a detailed analysis of agents’ dynamics and costs, leading to
decentralized strategies that establish a (ε1, ε2)-Stackelberg equilibrium. The derivation process of the
proposed strategy is given in detail. Specifically, the method starts by addressing an N -player game
problem within a large, finite population framework. It then decouples or reduces high-dimensional
systems to derive centralized control based on the state of an individual player and the average state of
the population. As the population size N approaches infinity, the development of decentralized strategies
becomes feasible. Finally, we present simulation results under various weight coefficients and initial
conditions to demonstrate the effectiveness of the proposed control algorithm.
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Appendix A Proof of Theorem 1

Proof. We consider the ith follower. For given ζi ∈ L2
Fi

0

(Ω;R), u0(·) ∈ L2(0, T ;R), ûi(·) ∈ L2
F (0, T ;R), suppose that

(x̂i(·), p̂i(·), q̂
j
i (·), j = 0, 1, · · · , N) is an adapted solution to (18). For any ui(·) ∈ L2

F (0, T ;R) and ε ∈ R, let xεi (·) be the

solution to the following perturbed state equation:
{

dxεi = [axεi + buεi ]dt+ σdBi,

xεi (0) = ζi.
(A1)

Then, ũi =
uε
i
(·)−ûi

ε
and x̃i =

xε
i
−x̂i

ε
are independent of ε and satisfy

{
dx̃i = [ax̃i + bũi]dt,

x̃i(0) = 0,
(A2)

which depend on Lemma 3.1 in the reference1). Applying Itô’s formula to p̂i(·)x̃i(·), integrating from 0 to T , and taking

the expectation, we have

0 =E [p̂i(T )x̃i(T ) − p̂i(0)x̃i(0)]

=− E

∫ T

0

{

q1

(

1−
1

N

)

(x̂i − x̂(N))x̃i + q2(x̂i − x̂0)x̃i − bũip̂i

}

dt.
(A3)

Hence,
JN
i (uεi (·), u−i(·), u0(·)) − JN

i (ûi(·), u−i(·), u0(·))

=
1

2
E

{∫ T

0

[

q1

(

xεi − xε(N)
)2

+ q2 (x
ε
i − x0)

2 + q3(u
ε
i )

2

]

dt

}

−
1

2
E

{∫ T

0

[

q1

(

x̂i − x̂(N)
)2

+ q2 (x̂i − x0)
2 + q3û

2
i

]

dt

}

=
1

2
ε2E

{∫ T

0

[

q1

(

1−
1

N

)

x̃2i + q2x̂
2
i + q3ũ

2
i

]

dt

}

+ εE

{∫ T

0

[

q1

(

x̂i − x̂(N)
)(

1−
1

N

)

x̃i + q2 (x̂i − x0) x̃i + q3ûiũi

]

dt

}

=
1

2
ε2E

{∫ T

0

[

q1

(

1−
1

N

)

x̃2i + q2x̃
2
i + q3ũ

2
i

]

dt

}

︸ ︷︷ ︸

N1

+ εE

{∫ T

0
[q3ûiũi + bũip̂i] dt

}

︸ ︷︷ ︸

N2

,

(A4)

where only here x̂(N)(·) := x̂i(·)
N

+ 1
N

∑

j 6=i xj(·), x̂
(N)(·) := x̂i(·)

N
+ 1

N

∑

j 6=i xj(·). According to q1, q2 > 0, q3 > 0 and

(19), we get N1 > 0 and N2 = 0. Therefore,

JN
i (ûi(·), u−i(·), u0(·)) 6 JN

i (ûi(·) + εui(·), u−i(·), u0(·)) .

The proof is complete.
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Appendix B Proof of Theorem 3

Proof. Given ζ0 ∈ L2
F0

0

(Ω;R) and û0(·) ∈ L2(0, T ;R), let
(

x̂0(·), x̂(N)(·), φ̂N (·), ŷ0(·), ŷ(N)(·), ψ̂N (·)
)

be an adapted solu-

tion to (32). For any u0(·) ∈ L2(0, T ;R) and ε ∈ R, let
(
xε0(·), x

ε(N)(·), φεN (·)
)
be the solution to the following perturbed

state equation of the leader:





dxε0 = [axε0 + buε0] dt, xε0(0) = ζ0,

dxε(N) =
[(

a− q−1
3 b2ΠN

)

xε(N) − q−1
3 b2φεN

]

dt + σdB(N) , xε(N)(0) = ζ(N),

dφεN = −
[(

a− q−1
3 b2ΠN

)

φεN − q2x
ε
0

]

dt, φεN (T ) = 0.

(B1)

Then, let
(

x̃0(·), x̃(N)(·), φ̃N (·)
)

denote the solution to






dx̃0 = [ax̃0 + bũ0] dt,

dx̃(N) =
[

(a − q−1
3 b2ΠN )x̃(N) − q−1

3 b2φ̃N

]

dt,

dφ̃N = −
[(

a− q−1
3 b2ΠN

)

φ̃N − q2x̃0

]

dt, φ̃N (T ) = 0,

x̃0(0) = 0, x̃i(0) = 0, i = 1, 2, · · · , N.

(B2)

We have xε0(·) = x̂0(·) + εx̃0(·), xε(N)(·) = x̂(N)(·) + εx̃(N)(·), φεN (·) = φ̂N (·) + εφ̃N (·), and applying Itô’s formula to

x̃0(·)ŷ0(·) + x̃(N)(·)ŷ(N)(·) + φ̃N (·)ψ̂N (·), integrating from 0 to T and taking expectation, we obtain

0 = −E

{∫ T

0
d
(

x̃0(·)ŷ0(·) + x̃(N)(·)ŷ(N)(·) + φ̃N (·)ψ̂N (·)
)}

= −E

{∫ T

0

[

r1

(

x̂0 − x̂(N)
)(

x̃0 − x̃(N)
)

+ r2

(

x0 − xref0

)

x̃0 − bŷ0ũ0

]

dt

}

.

(B3)

Hence,
J0 (u

ε
0(·)) − J0 (û0(·))

=
1

2
E

{∫ T

0

[

r1

(

xε0 − xε(N)
)2

+ r2

(

xε0 − xref0

)2
+ r3(u

ε
0)

2

]

dt

}

−
1

2
E

{∫ T

0

[

r1

(

x̃0 − x̃(N)
)2

+ r2

(

x̌0 − xref0

)2
+ r3ũ

2
0

]

dt

}

=
1

2
ε2E

{∫ T

0

[

r1

(

x̃0 − x̃(N)
)2

+ r2x̃
2
0 + r3ũ

2
0

]

dt

}

+ εE

{∫ T

0

[

r1

(

x̂0 − x̂(N)
)(

x̃0 − x̃(N)
)

+ r2

(

x0 − x
ref
0

)

x̃0 + r3ũ0ũ0

]

dt

}

=
1

2
ε2E

{∫ T

0

[

r1

(

x̃0 − x̃(N)
)2

+ r2x̃
2
0 + r3ũ

2
0

]

dt

}

︸ ︷︷ ︸

Q1

+ εE

{∫ T

0
[bŷ0ũ0 + r3û0ũ0] dt

}

︸ ︷︷ ︸

Q2

.

(B4)

Due to r1, r2 > 0, r3 > 0 and (33), we have Q1 > 0 and Q2 = 0. Therefore,

JN
0 (û0(·)) 6 JN

0 (ûε0(·)) .

The proof is complete.

Appendix C

Theorem C6. Let the pair (ω1(·), ω2(·)) be the solution to the following differential equation:

d

dt

(ω1(t)

ω2(t)

)

=

(

A1 B1

A2 B2

)
(ω1(t)

ω2(t)

)

,
(ω1(T )

ω2(T )

)

=
(03×3

I3

)

.

If ω2(t) is invertible for all t ∈ [0, T ], then the Riccati equation (39) has a unique solution Φ(t) = ω1(t)ω
−1
2 (t) for all

t ∈ [0, T ].

Proof. Note that
dω−1

2 (t)

dt
= −ω−1

2 (t)
dω2(t)

dt
ω−1
2 (t) = −ω−1

2 (t)A2ω1(t)ω
−1
2 (t) − ω−1

2 (t)B2,

which implies

dΦ(t)

dt
=

dω1(t)

dt
ω−1
2 (t) + ω1(t)

dω−1
2 (t)

dt

= A1ω1(t)ω
−1
2 (t) + B1 − ω1(t)ω

−1
2 (t)A2ω1(t)ω

−1
2 (t) − ω1(t)ω

−1
2 (t)B2

= A1Φ(t) +B1 −Φ(t)A2Φ(t) − Φ(t)B2,

and the proof is achieved.
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Appendix D

If the form of p̂i set in (20) is different, different Riccati equations can be obtained for solving. When we consider the

following parameterization for p̂i(·),

p̂i(·) = PN (·)(x̂i(·)− x̂(N)(·)) + ΠN (·)x̂(N)(·) + φ̂N (·), (D1)

where PN (·), ΠN (·) are differential functions with PN (T ) = 0, ΠN (T ) = 0. By Itô’s formula, we have

dp̂i =ṖN (x̂i − x̂(N))dt +
[

aPN x̂i − PN q
−1
3 b2

(

PN (x̂i − x̂(N)) + ΠN x̂
(N) + φ̂N

)]

dt + PNσdBi

− PN

1

N

N∑

j=1

σdBj + Π̇N x̂
(N)dt +

[

aΠNx
(N) −ΠN q

−1
3 b2

(

PN (x̂i − x̂(N)) + ΠN x̂
(N) + φ̂N

)]

dt

+ΠN

1

N

N∑

j=1

σdBj + dφ̂N .

(D2)

Instituting (D1) into the right side of the second equation in (18) obtains

dp̂i =−

[

a
[

PN (x̂i − x̂(N)) + ΠN x̂
(N) + φ̂N

]

+

[

q1

(

1−
1

N

)

+ q2

]

x̂i − q1

(

1−
1

N

)

x̂(N) − q2x0

]

+
N∑

j=1

q
j
i dBj .

(D3)

Comparing the coefficients of the right hand side of (D2) and (D3), yields

qii = PNσ +
ΠN − PN

N
σ, q

j
i =

ΠN − PN

N
σ, i 6= j, (D4)

ṖN + 2aPN − q−1
3 b2P 2

N + q1

(

1−
1

N

)

+ q2 = 0, PN (T ) = 0, (D5)

Π̇N − ṖN + 2aΠN − 2aPN + q−1
3 b2P 2

N − q−1
3 b2Π2

N − q1

(

1−
1

N

)

= 0, KN (T ) = 0, (D6)

and

dφ̂N = −
[(

a− q−1
3 b2 (ΠN )

)

φ̂N + q2x0

]

dt, φ̂N (T ) = 0. (D7)
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