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Abstract This paper presents a Q-learning method to solve stochastic linear quadratic Stackelberg games involving a
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be approximated by an actor neural network. Then the tuning laws are given according to Bellman equations and gradient
descent methods. An online model-free algorithm is developed and proven to converge almost surely for arbitrary control
policies when the persistent excitation condition holds. Under some mild conditions, it is proven that the closed-loop system
state and estimated weight errors are almost surely uniformly ultimately bounded. Finally, a numerical example is given to
demonstrate the effectiveness of the proposed algorithm.
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1 Introduction

In recent years, game theory [1] has been widely used in social intelligence [2,3], cooperative intelligence [4],
game intelligence [5], and other research fields. Specifically, game theory can model strategic behaviors in
the case of conflict and cooperation [6] for the competing individuals. Due to the different statuses and
roles of individuals, hierarchical decision-making behaviors arise in a game process. This problem can be
represented by a Stackelberg game, which originated in the field of economics and was used to study the
struggles between the firms with asymmetric statuses [7]. The Stackelberg game generally involves two
groups of players: a group of leaders and a group of followers [8]. The leaders can make decisions first by
predicting the response strategies of the followers, and the followers will select strategies after observing
the leaders’ decisions. Each player’s goal is to minimize its own performance objective.

The Stackelberg game has been studied for many years, among which the linear quadratic Stackelberg
game is one of the classical problems. The objective of the dynamic Stackelberg game is to achieve
Stackelberg equilibria while maintaining system stability through the design of control strategies for both
leaders and followers. Some methods have been proposed to solve the problem for different information
structures. This paper focuses on closed-loop Stackelberg games, which have attracted much attention
[9-11]. In [12], the authors dealt with the min-max and min-min Stackelberg strategies in the case of a
closed-loop information structure. In [13], the authors studied the analytical solution of two identical weak
pursuers and one evader linear differential games by a one-/two-step Stackelberg approach. However, the
above work deals with deterministic systems, whereas stochastic noise is ubiquitous and unavoidable in
real-world scenarios. If the influence of noise is ignored, the effectiveness of these methods may be greatly
reduced in the actual systems.

For stochastic linear quadratic Stackelberg games, a lot of studies [14-18] have been carried out.
The Stackelberg game was investigated for stochastic systems in the cases of continuous-time finite
horizon [19] and discrete-time infinite horizon [20]. In [21], the authors considered mean field Stackelberg
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differential games and proved that the local optimal decentralized controllers for the leader and the
followers constitute an (€1, e2)-Stackelberg-Nash equilibrium. In [22], the authors investigated the linear
quadratic Gaussian Stackelberg game under asymmetric information and proposed a layered calculation
method. It can be observed that the above studies depend on complete system dynamics, but the
system models are usually difficult to obtain accurately in reality or some parameters are uncertain or
completely unknown. Thus it is a challenge to design a model-free method to solve the Stackelberg
equilibrium policies.

Because it is difficult to solve the coupled Hamilton-Jacobi-Bellman (HJB) equations by traditional
methods in the game problem, reinforcement learning (RL) [23] and adaptive/approximate dynamic
programming (ADP) [24] have been widely used to develop algorithms for approximating the solutions to
dynamic games online in recent years. ADP was proposed by Werbos [25] and rapidly applied in discrete-
time and continuous-time systems [26-31]. Q-learning is a model-free RL method by iteratively updating
action-dependent value functions to obtain optimal control policies [32]. For large-scale complex systems,
Q-learning methods are typically implemented within the ADP framework due to storage limitations of
Q-value tables. In [33], the author formulated a novel Q-function and proposed a Q-learning algorithm
to solve the continuous-time non-zero-sum game problem of linear systems. Ref. [34] generalized the
model-free Q-learning algorithm in [33] to the random case. In [35], the authors studied the method
of solving equilibrium points for a linear quadratic two-player Stackelberg game, and extended the Q-
learning algorithm proposed in [33] to the framework of hierarchical decision-making.

Inspired by the aforementioned studies, in this paper, we study the Stackelberg linear quadratic games
involving a leader and N followers for the stochastic system, and propose a model-free Q-learning al-
gorithm with completely unknown system dynamics. The implementation of the algorithm relies on an
actor-critic architecture, which requires two parameter approximators such as neural networks (NNs) for
each player. A critic NN acts as the Q-function and an actor NN acts as the control policy. They can
derive the approximate equilibrium solutions to the Stackelberg games through iterative learning online.
Finally, we provide a theoretical proof and conduct a simulation verification for convergence.

There are two main hurdles tackled in this paper. First, compared with the deterministic studies [33,35],
this paper considers the system dynamics with multiplicative noise depending on the system state. Since
the estimated weight errors almost surely converge to a finite upper bound using conditional expectations,
the closed-loop system is shown to be almost surely stable rather than mean-square stable in [30, 34].
Furthermore, we show that the system state and estimated weight errors are almost surely uniformly
ultimately bounded (UUB) by applying the martingale convergence theorem. Second, due to the existence
of random free terms in error dynamics for critic NNs, it is difficult to prove that the closed-loop system
converges to the origin. In this paper, we select appropriate parameters to make the system state remain
within a finite range. When the norm ||z|| of the state exceeds a bound, the differential operator of the
stochastic Lyapunov function is negative definite such that the Lyapunov function almost surely converges
to a finite limit as time goes on to infinity.

The contributions of this paper can be summarized as follows.

(1) To solve the (N+1)-player Stackelberg game with multiplicative noise, we derive the solutions to the
coupled HJB equations with second-order partial derivatives, which constitute a Stackelberg equilibrium.
Then a Q-learning algorithm is designed for approximating the Stackelberg equilibrium policies without
the knowledge of system dynamics.

(2) Under the persistent excitation condition, we first establish the rigorous convergence analysis for
the Q-learning algorithm by virtue of the properties of conditional expectation. Besides, the closed-
loop system state and estimated weight errors are shown to be almost surely UUB by the martingale
convergence theorem and stochastic Lyapunov function.

Notation: Let R denote the real numbers. R™*™ is the set of n X m real matrices; R™ is the n-
dimensional Euclidean space and || - || represents the Euclidean norm for a vector and the Frobenius norm
for a matrix. A denotes the set {1,2,---, N} and S denotes the set {0,1,2,---, N}. E[-] denotes the
expectation operator. Let diag[-] denote a diagonal matrix, 1,, denote a n-dimensional column vector
with all values equal to 1, AT denote the transpose of a vector or matrix A, Tr(A) denote the trace
of a matrix A, and A > 0 (> 0) denote a symmetric positive (semi)definite matrix A. For the matrix
M € R™" \(M) and A\(M) denote the minimum and maximum singular values of M, and vech(M) £
[Miy, -+, Myp, Moz, -+, Man, -+, My—1y(n—1), M(n—1)n> M,,,]*. If M is a symmetric matrix, vecs(M) =
[Mi1,2Myg, -+, 2Min, Mag, - -+ ,2Map, - -+ M(n_1)(n—1), 2M(—1)n> Mnn] "



Cao Y, et al. Sci China Inf Sci November 2025, Vol. 68, Iss. 11, 210204:3

2 Stackelberg games for stochastic linear systems

2.1 Multi-player non-zero-sum games

Consider a stochastic linear time-invariant system with N + 1 players,
N
dx(t) = | Az(t) + Bouo(t) + Z Bju;(t)| dt + Cz(t)dw(t), z(ty) = xo, t = to, (1)
j=1

where z(t) € R™ is the state vector, u;(t) € R™,j € N is the jth control input (or policy as we shall see
later) of the N followers and ug(t) € R™® is the leader’s control input. A,C' € R"*" and B; € R"*"™i,
i € S are unknown constant matrices. w(t) is a one-dimensional standard Brownian motion which is
defined on a complete probability space (2, F,P). Let (£, F, {]—"t}t%() ,P) be a filtered probability space
where {F;},-, = o{w(s) 1o < s <t} augmented by all P-null sets in 7. Note that the initial state
xo is a deterministic (almost surely) variable under (2, F,P). The system is defined as (A, B;, C) for
simplicity.

Definition 1 (Almost sure stability [36]). An autonomous stochastic system (A, C') (u; = 0,7 € Sin (1))
is said to be almost surely (a.s.) stable, if for any initial state xy € R", P {lim;_, o |2(¢; to, o)| = 0} = 1.
Definition 2 (Mean-square stability). An autonomous stochastic system (A,C) (u; = 0,4 € S in (1))
is called mean-square stable, if for any initial state zp € R", E ft:o lz(7)||?dT < +o0.

Then the following assumption is used for the infinite-horizon stochastic Stackelberg games, which
ensures the well-posedness of the cost functions to be defined later.

Assumption 1. System (1) is called mean-square stabilizable, that is, there exist some feedback control

policies w;(t) = —K;x(t), i € S, where K; are constant gain matrices, such that the closed-loop system
dx(t) = (A— BoKo — Zjvzl B;K;)x(t)dt + Cz(t)dw(t) is mean-square stable for any x¢. In this case, the
feedback policy profile {ug, u1,--- ,un} is called stabilizing.
The cost functions associated with control policies u;, ¢ € S are defined as
1 oo
Ji(xo, up,uy) = §E/ ri(x, ug, us)dr, (2)
to

where uy £ {u; | i € N'}. For the leader (i = 0), we define

N N
70 (x, UQ, uf) = xTQ(){E =+ UgRoouo + Z QUEHJ'UJ‘ + Z u]TRojuj, (3)
j=1 j=1

and for the followers (i € ), we define
i, v, up) = 21 Qi + ul Rigus + 2ui Tiug + ug Riouo, (4)

where the weight matrices are constant; for any i € S and j € N, Q; = 0, R;; > 0, Rjo > 0 and Ry; > 0.
Suppose that I'; = IIJ], and the matrices II; € R™0*™i j € A and I'; € R™*™0 j € N describe the
coupling coefficients between the leader and the followers. Assume that (A4, C|\/Q;) is exactly observable.
Remark 1. It is worth mentioning that r;(x, ug, us) for each follower is related to the control policies
of other followers through system (1) since the state x is affected by the control inputs of all players. In
the hierarchical decision-making process, followers can respond optimally to the leader’s decision, but do

not obtain information from other followers’ responses.
Let © = [ud, 0], © = [uf, - ,u}]. Then Egs. (3) and (4) can be rewritten as

Roo M,
_ T T
ro(z, up, uf) =" Qox + © <]\7[6r ‘I’o> o,

where My = [IIy,--- ,Iy], and Vo = diag(Ro1,- - - , Ron) is a diagonal matrix.

Rio M; .
Ti(x,uo,uf):xTQix—i-@T <M’2‘ )@, ZEN,

where M; = [0,---,0,['F,0,---,0], and ¥; = diag(0,--- ,0, R;;,0,---,0) is a diagonal matrix.
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Rio M;

Assumption 2. For each player i € S, let the symmetric matrix M; = <MT v
i i

) be positive definite,

that is, R;o > 0 and the Schur complement W; — M R;;' M; > 0 hold.

This paper considers the linear state feedback control policy u; for each player, that is, u; is a linear
function of state x. Under Assumption 1, the definition of admissible policy profiles is given as follows.
Definition 3 (Admissible policy). A feedback policy profile {ug, w1, -+ ,un} is said to be admissible,
if u;, i € S are {F, }i>,-adapted, {ug,u1, - ,un} is stabilizing, and Eftzo |lz(7)||?dT < +o0.

Remark 2. The admissible policy profile ensures that the cost functions (2) remain finite under As-
sumption 1. Then we deduce that 0 < J;(xo, ug, us) < 400 based on @; > 0 and Assumption 2.

We focus on a hierarchical dynamic game with a leader and N followers. Specifically, the leader knows
more information and has a decision priority that can make the best policy by predicting the possible
response policies of the followers; then the followers make the optimal response policies after observing
the leader’s policy. Letting u_; = {u; | j € N,j # i}, we rewrite uy = u; Uu_;. The cost function for
each follower can be rewritten as

1

oo
Ji(xo,uo,ui,u_i) = §E/ Ti(,f,’u,o,’ui,’u_i)dT, ieN.
to

The goal of the leader and followers is to minimize their cost functions. Then it is necessary to introduce
the following definition of the Stackelberg equilibrium.

Definition 4 (Stackelberg equilibrium). The policy profile {@g, 1, - ,un} is said to constitute a
Stackelberg equilibrium solution if for all u;, i € A/, and any fixed wuy,

Ji(wo, uo, wi(uo), u—i(uo)) < Ji(wo, uo, i, u—i(uo)), (5)
and if there exists a g such that for all ug,
Jo(xo, o, ug(to)) < Jo(o, uo, us(uo)), (6)

where wf(ug) £ {u;(ug) | i € N} is the set of followers’ optimal response policies to ug. g is the
equilibrium policy for the leader which induces the equilibrium policies @; = u; (o) for the followers, and
uy = ug(do) = {u; | i € N}.

2.2 Equilibrium policies

The objective of this paper is to find an admissible policy profile to obtain the value functions for all
players, which are defined as

1 oo
Vi(z) = min EE[/ ri(x, uo, ug)dr
t

Us

z(t) = x} (7)

without any information of the system matrices A, B; and C. Using [t6’s formula, the Hamiltonians
associated with (1) and (7) for all players are defined as

oV, 9V ov; T al 1 1 [ o 0%V
Hi(fl],%,ﬁ,’d@,ﬂf) =32 (A:c—i—Bouo—i-ZBjuj) +§Ti(I,UQ,U.f)+§’I‘r|}IJ C ch]
(8)
OH; __

Employing the stationarity condition 5+ = 0, for any given control policy ug of the leader, the optimal
response policies of the followers are

j=1

u!(ug) = arg min H; x% @u u
i 0) — g’U«z i 78I78I2707f

oV,
:_Rnl<ri“0+3?ax)’ i€N.
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Then we can obtain the control policies

ufy, = arg min H, x% %u uwf(ug)
0 — guO 0 78I78x2707f0

N N N —1
oV,
—1 T p—1y7T T p—1 —1 T 1nT 0
_(ROO_E:HJ‘RJ'J'Ii_E:Ia‘Ra‘j 11; +§:IjRijOJ‘RjjIJ‘) (BO O E,I R Bj —— O

j=1 j=1 j=1
0 & av;
1T T 1 1T
_Zn R;'Bf =2 Zr R;'Ro; R} B (%)
=1
avi\ .
uf = uj(uy) = —R;; (ZS—I—BiTax),ZEN. 9)

Let u}(uo) £ {uj(uo) | i € N} and u} £ {u} | i € N'}. Substituting (9) into (8), Hamilton-Jacobi-
Bellman (HJB) equations are given by

v 9%V, L. 8VZT § N . 1 v . 1 T T8V
Hi(x,%,w,uo,uf):% (Ax—i—BOuO—I—ZBjuj)+§ri(x,u0,uf)+§Tr[ C 5 204:0.

Jj=1

(10)

Theorem 1. Suppose that V;, i € S are smooth solutions to HIB equations (10), and the control
policies u}, i € S are given by (9) based on the solutions V;. Let Assumption 2 hold. Then the policy
profile {ug, u7, - ,ul} constitutes a Stackelberg equilibrium, and the corresponding closed-loop system
is asymptotically almost surely stable.

Proof.  Let the value functions V;(z) > 0 of the leader and followers be Lyapunov functions. The
differential operator of V;(x) along the closed-loop trajectory is

ov; T al 1 0%V,
LV;(x) = 9 (A:v + Boug + Z Bjuj) + §Tr |:;[;TCT P $:| .

j=1

According to HIB equations (10), when the control policies u}, i € S are adopted, there exists
1 * *
LVi(@) lus=u; = —§Ti($,u0,uf).

Since Q; > 0 and Assumption 2 holds, LV;|y,—ux < 0. If LV;|y,—ur = 0, v/Qijz = 0 and /M;© = 0 a.s.
Because M; > 0 and (A, C|/Q;) is exactly observable, then LVi|y,—,+ = 0 if and only if 2 = 0 a.s. [37].
Therefore, the closed-loop system (1) is asymptotically almost surely stable under the control policies u}
based on [38].

Since the system is linear, the value function (7) can be represented as a quadratic form: V;(x) =
—:Z:TP:Z: i € §, where P; € R"™ ™ is a symmetric positive definite matrix for each player. Then it
can be obtamed that 2A(P)||z]? < Vi(z) < AA(P)|z|*. Besides, LV;(x) wi=ur = —2ri(z, ug, u})

—3A(Q:)]|z]|?. According to [38], these two inequalities lead to

N

E[Vi(2(t))] < Vi(zo)e "),

where p = A(Q;)/A(P;). Then it can be deduced that E|z(t)||> < A(P;)/A(P)||zol|?e?~t), which
implies that E | tzo |lz(7)||?dT < +o00. Therefore, the system (1) is mean-square stabilizable, Wthh proves
that the control policies u}, i € S constitute an admissible policy profile.

From the above proof, it can be concluded that lim; ., V;(2) = 0. By subtracting the HIB equations
(10), the cost functions (2) for any given control policies are transformed into

oo

1 o
Ji(xo, ug, uy) :§E/ ri(z, ug, up)dr + Vi(x(to)) +/ ELV;dr

t() tO

=Vi(x(to)) + E/OO % [Tl-(a:, U, Uf) — Ti(x,ug,u;?)]

to
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ov; " . .
o Bo(UQ—UO)+ZBj(Uj—uj) dr.

For followers i € N, the leader’s policy ug is given. Follower ¢ adopts the policy u;, whereas the other
followers take the optimal response policies u* ;, where u*; = u* ;(u§). The cost functions are

—i

Bi (ul — ’u*)dT

2

Ji(zo, ub, ui,u* ;) =Vi(z(ty)) + E 5 [ri(ac,uo,ui,ufi) — n-(x,uo,ui,ufi)} + Da
to €T

=Vi(z(to)) + E/ %[(ui —uf)T Ris(u; — uf) 4 2uf Rijul — 2(uf)T Riju;

to

20— o)) = () R ()0 o = ) b

o0
1
=Vi(x(to)) + IE/ 5(% —u}) Ry (u; — ul)dr.
to
Then we can deduce that J;(xo, ub, uf,u* ;) < Ji(xo, uf, us, u*,), i € N,
For the leader i = 0, we select any policy ug, which induces the optimal response policies u;(uo), jeN
for all followers. In this case, the cost function of the leader is

Jo(xo, ug, u’;(uo)) =E /OO % [To(xaanu;(UO)) - TQ(%‘,US,U;(US))]

to

N
+ % [Bo(uo —ug) + Z Bj(u;“-(uo) — u;‘(u(’;)) dr + Vo (z(to)).

J=1

Due to the equation (9), Hy(z, %‘;‘), %z‘g sug, wi(ug)) < Ho(z, %‘;0, %z‘go,uo,uf(uo)). According to this

inequality, we can deduce that Jo(zo,ug, uj(ug)) < Jo(xo,uo,u}j(uo)). Based on the Definition 4,
{uf,uy, - ,ui} constitutes a Stackelberg equilibrium policy profile. When u; = u}, i € S, the cost
function of the ith player J;(zo, ug, u}) = Vi(x(to)). This completes the proof.

Based on V;(z) = %,TTPiJJ, the equilibrium policies of the leader and the followers are

N N N —1 N
* -1 T p—117T T p—1 -1 T Tp—-1pT
ul = — (Roo > IR, - Y TTRT + ) TR, Ry R, rj> (BO Pz — > TTR B Pox
=1 =1 j=1 =1
N N
> ILR;'Bf Pz +) F}RﬁlRojRﬁlB}ij>,
j=1 j=1

uf = — R, (Tyul + B} Pix), i € N. (11)

Since the equilibrium policies in (11) require explicit knowledge of the system dynamics, they cannot
be obtained analytically. Therefore, we will develop a model-free algorithm and rigorously analyze its
convergence in the subsequent sections.

3 A model-free Q-learning algorithm

In this section, a model-free Q-learning algorithm is proposed to obtain the approximate solution to the
Stackelberg game. It does not need to know the system matrices of (A, B;, C') and only needs to choose
the appropriate weight matrices for cost functions. Since we would like to develop an online algorithm
for tuning the parameters in real time, an actor-critic structure is introduced.

3.1 Q-functions

For each player i € S, we first define the Q-function as the following form:

ov; 0%V;
Qi(xu ’LLQ,Uf) :V;(JI) + Hl ((E, %7 W7u07uf>
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N
1
=3 {xTPi:v + ri(z up, uyp) + 2T P, (A:v + Boug + Z Bjuj)
j=1
N T
+ <Ax + Bouo + Z Bjuj> P+ xTCTch] . (12)
j=1
From HJB equations (10), one has
Qi(z,ug,uy) = Vi(x). (13)

That is, when u; = u}, i € S, Egs. (12) and (7) have the same value. Then the equilibrium policies also

99 (

can be obtained by solving %“f) = 0 from followers to the leader.

Let U = [T, ul, uT, -, uL]T. The above Q-function can be written in the matrix form:
0 U1 N
szw Q,LI’U,() Q,qul e QZIUN
1 1 Q:Luox QZU()U[) QZUOul e Q:Lu.o’u.N
Qi(‘ru Uo, ’U,f) = QUTQZU - §UT Qzlx Q:iluo Qzﬂﬂ e QLNJN U. (14)
_Q'ZN;E QiNuo Q'ZNul T Q'ZN'U,N_

Due to the hierarchical relationships between the leader and followers, there are two different represen-
tations of Q%, i € S. Fori =0, j € S, k € N, the elements of matrix Q° are Q% = Py + Qo + Py A +
ATP() + CTP()O, nguj = Roj, qu] = (Qg]x)T = P()Bj, nguk = (ngug)T = Il;. For any 7 € N,
j € S, the elements of matrix Q' are Q. =P +Q;+PA+ ATP, +CTPC, Qfmuo = Ry, Q;lul = Ry,
Q;uj - (QLJJU)T - BBj’ Qzluo = (onuz)T = Fi-

When the equilibrium policies are found, Q-functions (14) can be defined as

Qi ) = 5 (U)T QU* = 2 [vees(Q)] Tveeh (U (U°)7), i € 5, (15)

where U* = [2T, (ug)T, (u})™, -+, (uy)T]T. Moreover, based on (13), Eq. (15) are also the solutions to
the HJB equations (10).

3.2 Actor-critic structure

According to the Weierstrass higher-order approximation theorem [39], there are ideal critic neural net-
work (NN) weights W,; = %VQCS(Ql) such that the Q-functions can be approximated using critic neural
networks (NNs) as

Q;(x,up, up) = Wivech(UUT), i € S, (16)

where W,; are the estimated critic NN weights, and vech(UUT) is the activation function for critic NNs.
According to (11) and (14), the equilibrium policies can be written as

u; =Dz, i €S, (17)

where Dy 2 —A=1(Q% , — S TTRIQY , — S0 [ TLR; QL , + S0 TTR Ry R Q) ), A =
Roo — Yo IGRAT; — S0 TTRMT + 527 TTR 'Ry R;'T;, Di & —R;;'(TiDo + Q3 ,), i € N.

Remark 3. Although the system matrices are unknown, the values of weight matrices in the cost
functions are known. So A is able to compute and invert. Note that the known weight matrices are
not represented by the corresponding elements of QF, and the unknowns for the control policies are

represented by the elements in the matrix Q%, i € S.
The control policies can be approximated using actor NNs as

Gi(z) =Wtz ieS, (18)
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Algorithm 1 A model-free Q-learning algorithm

Step 1: Initialize the estimated weights W, W0 and the state x(tg). Set | =0 and ¢t = tg. Let T' > 0 be a time interval, and
let € > 0 be a small threshold.

Step 2: Employ ﬁi = (W(il)Tw(t) + e as the input for each player, where e is the exploration noise. Calculate the state trajectory
of system (1) from t to t + T under the policy profile {u07 cee ,'0,5\,}

Step 3: Calculate the estimation errors el; with W', 4!, x(t) and x(t + T) by (20), and then update the estimated weights
WL by (23).

Step 4: Calculate the cstlmatlon errors ¢!, by (22), and update the estimated weights Wl+1 by (24).

Step 5: Stop if HWZ+1 — H <eg, othcr\msc letl=10141,t=1t+ T, and go to Step 2.

C'L7

where Wai are the estimated actor NN weights, and z is served as the activation function for actor NNs.
Wai = D;, i € S denote the ideal actor NN weights.
Note that Eq. (13) holds. The Bellman equations about the functions Q;(x, ug, u}) are defined as

1 t
Qi(x(t), up, uy) = Qi(x(t —T),ug,u}) — 5/ ri(z,ug, uy)dr, i €S, (19)
t—T

where T' > 0 is a fixed time interval. Substituting (16) and (18) into (19), the estimation errors of critic
NNs are given by

. o o 1 [t o
eei = Qi(x(t), Go, Uys) — Qi(x(t —T), Qo, Uyp) + 5/ ri(z, to, Uy)dr, (20)
t—T
where Q; = %UT élﬁ, and U = [z7, a8, af, -, a%]T. W can be transformed into o by operating the
inverse of vecs(:). Then the control policies are estimated by critic NNs as
e = <ngw ZFT ]]1 Qg x ZH Rjjl ta T ZFTR ' Ro; ]]1 o w)
J=1 Jj=1
Uej = —R; (FiWaoiE + Qulzx), 1€ N, (21)

where Qu 2 €S and Qijx, J € N represent the block matrices in Qi Subtracting (21) from (18), the
estimation errors of actor NNs are given by

ai = Wha — s, i € S. (22)

Define the mean-square errors as T¢; = 1 lleci]|? and Yo = sE leas||?, i € S. In order to minimize the
above mean-square errors, we use the gradient descent method to design the tuning laws of the estimated
weights for critic and actor NNs. They are given by

B 0Y o T
ci — Qe = — 1 1. T2 ) 23
oW, 1t oT0)2 29
B Y .
Wai = —Oémgv = —agzey;, i €S, (24)

where o = vech(U (t)UT (t)) — vech(U(t — T)UT(t — T)). The learning rates a.; > 0 and g > 0, which
are tuning parameters in NNs.

3.3 Algorithm design

According to the tuning laws, we develop a model-free Q-learning algorithm as shown in Algorithm 1. In
the next section, we are going to analyze and prove the convergence of the algorithm in detail.

Reinforcement learning is a direct adaptive optimal control [40]. In order to guarantee the convergence
of the estimated weights for critic NNs, we need the appropriate persistent excitation condition.
Definition 5 (Persistent excitation). Let the signal ¢ = o/(1 + 0T 0) be a persistent excitation (PE)
over the time interval [¢,¢ + T, that is, there exist 81, B2 € RT such that, for all ¢ > ty, T > 0,

4T
Bl < Ag = E[/ a(t)at (r)dr
t

]-"t] < Bl (as.), (25)

where I is an identity matrix of appropriate dimensions and F; is a o-algebra.
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Remark 4. During the execution of the algorithm, an exponentially decaying exploration noise such
as e(t) = ae™ M Zjﬂ‘} sin(w;t), where a > 0, A > 0 and w; are randomly selected from [—600, 600], can be
introduced into control inputs to enrich the data and satisfy the PE condition.

Remark 5. The convergence of critic NNs implies that the Bellman equations (19) hold under the
unique equilibrium policies. Then the control policies approximated by actor NNs converge to equilibrium
policies, since the update of actor NNs relies on the Q-functions approximated by critic NNs. Therefore,
we only consider the convergence of W.; as the stopping criterion for Algorithm 1.

4 Convergence analysis

In this section, we first prove the convergence of Algorithm 1, that is, the estimated weights W,; almost
surely converge to the ideal weights W,;. Furtherly, the boundedness of the closed-loop system is studied
by the stochastic Lyapunov function.

4.1 Convergence of Algorithm 1

First, define the estimated weight errors We = We — We and Wy = W — Wai, i € S; then the
corresponding error dynamics for critic NNs are

z < o

_ 7T ) ) .
Wci = — Q00 Wm + ammsh (26)

where g; = T We;+1 ftt_T ri(z, g, 4 )dr is arandom free term, and ¢ = o/(1+0T ). The corresponding
error dynamics for actor NNs are

N N
_ T} T( A0 T p—1A0 p-1Aj
Wao = — agoxrx™ Wy — agoze (ngz — g IR Qe — E ;R Q.
=1 =1

N T
T p—1 ~1Aj -1
+> TR Roj Ry, Qijw) AT
j=1
Wai = — agizr Wy — aaixxTWaol";rR;-l — agizat Q;uiR;‘la 1eEN (27)
with Ql =Q — Qi, . Then consider the error dynamics system with output defined as
) ) ()

2 ~ g
Wei = —aeio6" Wei + acim

Yi=6 Weu, i €S. (28)

Eiy

To prove the convergence of W,; for any given control policies u;, we need to introduce the martingale
theory to system stability problems for the following proofs.

Lemma 1 ([38]). Let g(t,w), t > tg be a stochastic process with finite expectation Eg(¢,w), which is
Fi-measurable. The family (g(¢,w), F) is called a supermartingale if for any to < s < ¢, E(g(¢,w) | Fs) <
g(s) (P-a.s.). If the supermartingale (¢g(t,w), F3) is positive, then the lim;_,~ ¢g(¢,w) almost surely exists
and is finite.

We know ¢; and y; are stochastic processes over [to, 00) on the filtered probability space (2, F, {F¢},5,, »
P). Then random upper bounds are given for ¢; and y; in the following assumption.
Assumption 3. There exist random variables €, ., ¥, .., and &; such that E[||e;(¢')| | F¢] < €%,4. and
E [yi(t)yl (') | Fi] < (yha)? as. for t < ¢/, and sup,cq ||ei(2, o, @f)|| < &/(fo,df) a.s. for a compact
set 2 C R™ (containing the origin).

Remark 6. The bound &;(to,%y) depends on control policies u;, ¢ € S. When #; converge to the
equilibrium policies u} for all ¢ € S, &; in Assumption 3 converge to zero almost surely based on the

Bellman equations (19).

Next, we present Theorem 2 to demonstrate the effectiveness of Algorithm 1 under the PE condition
(25) and Assumption 3.
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Theorem 2. Let u;, i € S be any admissible bounded control policies and assume that & is a PE signal.
Let Assumption 3 hold. Consider the error dynamics system (28) and the tuning laws (23) for critic NNs.
Then, the estimated weight errors for critic NNs almost surely converge to the residual set

VBT
B1

where ( is a positive constant of first order.

o] < Y3 1+ 260tz (@) (29)

Proof. Consider the dynamics system

{ @i (t) = Bi(t)u;(t), (30)
yi(t) = CT (t)a; (1)
Letting T' > 0, the integral form of the above system is
t+T
xi(t+T)=ua;(t) + /t B;(7)u;(r)dr, (31)

yi(t +T) = CT(t + T)ai(t +T).

Let C(t) be PE, that is 817 < S = E[["" O(h)CT( )dh | F1] < o1 holds almost surely. The output in
(31) can be written as y;(t +T') = CT(t + 1)z ftJrT CT(t + T)B;(7)u;(7)dr, then

/tHT ( / Ct(h ()dT>dh=/ttJrTC(h)CT(h)dh-xi(t).

Take the conditional expectation on both sides as

IE{ /t " C(h) <yi(h) - /t ' OT(h)Bi(T)’UJi(T)dT) dh ’ ]—"t] = E[ /t o C(h)CT (h)dh ’ ]-'t} -y (t),

so z;(t) = S7E[ [T C(h) (yi(h) — [ CT(h)Bi(r)ui(r)dr)dh | F;]. Taking the norms on both sides
yields
t+T
+ S;HEU / cT(h u (1 )deh‘]—‘}

<(611)1\/E[ [ emeran ]~ \/E[ [ o \ ft}

0w [ im@uenE] [T lewe ) a| £ | 7]

T ) t+T
<Y ym+%ﬂz[ / 1B - sl dr ft] (32)

[EAQIES

S;lE[/tHT C(h)yi(h)dh ‘ }'t}

where ( is a first-order positive constant. ~
Let w; = Wy, B; = aei0, u; = —y; + #’ yi = 6 We;, and C = &. Then Eq. (30) can be

transformed into (28). It can be deduced that E[|[y;|| | 7] < \/IE [y @)yX (') | Fi] < yl1ap- Then based

on the inequality |lu;|| < |ly:|| + Hlﬁﬁ

=] [ B - ) ar

< ||lyill + ll&sll, one has

] ) t+T
ft} < 0ei(Ya + eimm[ [ lewiar
t

7

) ) t+T
< st +a:m>[E / lo()2dr | 7
t

g O[Ci(y;zam ma;ﬂ) \% ﬂQ (33)
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ACCOI‘dng to (32) and (33)5 ||WCZ( )H [ymam + CBQQCZ (ymaw + Ema;ﬂ)]
Consider the Lyapunov function G; = l [WToz Wm}, 1 € §. The differential operator of G; is

2 ct et

T~ -T T &
Lgl E |:VVC oo W W HT:|

o2
—-E H_TWCi _H TWC’L
{ 7 1—|—UT
i\ _Tix
Lgig—E{Ha Wei E[Ha Wei —Hm 'ft”.
Therefore, LG; < 0, if y¢,,, > [HO’TWmH |]-"t} > el > E 1+f;T Il F]-

In this case, it provides an effective practical bound for E[||aTW,| | F:] as Gi(t) decreases based on
Lemma 1. Consider the error dynamics system (28) bounded effectively by y!,.. < €t Then the
estimated weight errors for critic NNs almost surely converge to the residual set

Sl

max*

HWCZ(t)H < 1+ 2§ﬁ2a0i) aimw} (a.s.).

This completes the proof.

Remark 7. Theorem 2 is a generalization of Theorem 1 in [41] since the system (28) is stochastic.
Conditional expectation and its properties are applied in the proof process to ensure the random results
hold almost surely.

4.2 Boundedness of the closed-loop system

Next, we will demonstrate that, under certain mild conditions, Lyapunov-based closed-loop control en-
sures that the system state in the Stackelberg game remains within a finite range. The following definition
is requisite for our results.

Definition 6 (Almost surely UUB). The trajectory (z(t),t > to) of the stochastic system (1) is said to
be almost surely uniformly ultimately bounded (UUB) if there exists a compact set S C R™ so that for
all x(tg) = xo € 9, there exists a bound B and a time T'(B, x() such that ||z(¢)|| < B holds almost surely
forallt >ty +T.

Prior to presenting the main theorem, the parameters in the tuning laws and the cost functions are
selected first. Based on (26) and (27), the error dynamics for actor NNs depends on the error dynamics
for critic NNs. Thus the convergence of VVCZ needs to be faster than the convergence of Wm We can set
Qei > Qqi, 1 € S. The learning rates ag;, i € S and the weight matrices @); are selected to satisfy the
inequalities as

(N + 15+ 3%, auid®A(TTR;)

Qo > y (34)
20 — )\( )[1 + Z] 1 (FTRJJ ) + Z] 1 (HTRJJ ) + Z] 1 (PTR 1R0JR )]
(N +1)6 :
ai > N 5 5 35
o S TR ) S (35)
N N N ) ) N B N N B B
DOMQ) DY MQh,0 k) + D @aibA(R K =Y A(DJ Ro;D;) = Y A(DILD;)
i=0 =0 j=0 i=1 7=0 i=1
B N B N B N B
0N (A) |G+ K AT + YRR R + KA R R )|
Jj=1 Jj=1 j=1
(36)
where 6 > max{ AMATEAYL AT R+, ;HT DA A FTR'leOjR;jl)]7maXi6j\/ w},
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o 2I1;

_ R
Ki =~ BZT[(l +2(Botci)elnan), Di = (DE DE)T, and I, = (2 ) The selection of parameters de-

pends on the proof of the following theorem.

Theorem 3. Consider the stochastic system dynamics given by (1), the critic NN and the actor NN
for each player i € S given by (16) and (18), respectively. Let the PE condition (25) and Assumption 3
hold. The tuning laws of the estimated weights for critic NNs are (23), and for actor NNs are (24).
Provided that the inequalities (34)—(36) hold, and R;; > 4T; R;;'T1;, the closed-loop system state x(t) and
estimated weight errors Wci, Wm-, 1 € § are almost surely UUB.

Proof.  The convergence proof is established via Lyapunov analysis. Consider the Lyapunov function

N
V(x)_z[m() —||Wm|\2+ Tr(WTW )}ies. (37)
1=0

The differential operator of the Lyapunov function (37) is given by

Y (ov,T al 1
Lyv(z) =" { o <Aa: + Boiig + Y Bjaj> +5Tr|a

i=0 j=1

TCT%ZOQ;

N
£ Z(LVil + LYo + LVZ'3), (38)
1=0

where V;(z) take the derivative along the closed-loop trajectories under control policies ;.
Then we will evaluate the three terms of LV (z). The first term can be defined as

LV; _ vt A +ZB += Tr
Zl_()x x u]

7=0

T
08

ov; " T 10Vi
= 5 <Aw+ZBu ZB ) Ct——Ca|. (39)
Subtracting the HJB equations (10) from the above equations (39) yields
1 al 1
LV = —QxTQox —> "Dy, Dz — —:CTZD RojDjx — xTZ 0, Wi,
j=1 7=0 j=0
L r L v T T L rpr T - i YT,
LV = —5a" Qi — 5" DI Ry Diw — " DT Doz — 5" D Rig Dox — > L, Wha, i€ N. (40)
j=0
The terms (40) are upper bounded after using Young’s inequality by
| X
) .
D <~ 2a(@0+ 3o D1 R, ) ol 232 03D, ) 1l + 25 1
7=0 j=1 7=0
1 N
j=0
1
LV < = 5A(Qi + DI RisDi + Dj Rio Do) [lz* = A (DIT: Do) [l + 5 Z Wy |
j =0
1 N
+§IIIHQZ/\(QZNQ§CW)7 i€N. (41)
=0

Substituting the tuning laws (23) and (24) into (38), the second term LV;s becomes

T g
LV»LQ = —OZCZW oo Wcl + Oémwmmf
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Applying Young’s inequality, LV;2 is bounded as

1 r o 1 . 1
LVrL‘Q § —50461W 00 Wcz + 201615 mf'. (42)

The 2-norm of each contiguous submatrix is bounded by that of its parent matrix such that HQZ() ‘ <

HWGi . Based on Theorem 2, it is known that HWGi <K (as), K=~ ﬁ2T[(1 + 2(Bacei )l 4] Using
Young’s inequality, the third term for each player has the upper bound given by

N N
- 77T TTf T . T A0 Tp-130 p-1Aj
LYoz = — aqoWyozx™ Weo — aqo Wz (Quw — E IyR;; Qe — E ;R Qo

j=1 j=1

T
—i-ZPTR 'R RO z) x A7

Jj=1
a N N N
al [ ¥ T 3\ T T 1
<25(/\(A ZFR ‘ AT R + XA ZFR Ro; R
J=1 3:1 j=1
00 ~ al
_25) Hx Waol| + =2 /\( [ICO+IC Z ATTR +ZIC2 nt
+Z/c2 ATT R R R )} [E
Jj=1
LYz = — aaiW(;rixa:TWai — aain;l;:rxTWaoF?R;l — aain};ImT Q;ule_ll
MTTRZY) + MR 12 Qaid s 5 |12, @il
v (PG ) o[+ ST o]+ AR

(43)

with § > 0, i € N.
To ensure the system stability, the differential operator of the Lyapunov function should be less than

zero. Combining with (38), (41), (42) and (43),

1 N N 1 B
LV(z) < — {Fl HiUH Z i 71+ ) 61] —i—FQHxTWaoHQ+ZX;F3||:UTWM||2 ;gaciH&TWaHQ,
where
1 L N o LA _ N5
=3 > AMQj + D Ro;Dy) + 3 > A(DILD;) - 5 SO NQLLQ0) =Y ‘; AR;HK?
7=0 =1 1=0 j=0 =1
N
_ 04305)\(A1)[IC(2,+IC§Z)\(FJTR Z’C2 A(IITR; ZIC2 (TR Ry, )}
Jj=1 j=1
N +1 N am-éf - Oza()j\(Ail) N N
F2 :T_OCQO'FZlT)\(PlTRMI)—f—T{l_’_Zl I\TR Z
1= = =1
N —
+ /\(F;-erleojRjjl)}
j=1
N+ TACTRGY) + ARG
FB_T+aa1|: 26 —1:|

Rijo 211; ) . . . . .
or R ) i € N, I; > 0 is equivalent to the matrix inequalities R;o > 0
and R;; — 4I‘Z-R51Hi > 0. The former is obviously true, and the latter also holds by selecting proper

parameters Rii; Fi, RiO and Hl

For the symmetric matrix I; = (
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Figure 1 (Color online) The evolution of the system state Figure 2 (Color online) The convergence of the estimated
trajectories. actor NN weights Wg;, i =0,1,2,3.

Since the conditions (34)—(36) are satisfied, then Fy > 0, F, < 0, F3 < 0. When

LY(z) is negative definite. Hence the process V(x) is a positive supermartingale. Based on Lemma 1,
V() converges almost surely to a finite limit as t — co. Consequently, the state z and estimated weight
errors We;, Wy, i € S are almost surely UUB. This completes the proof.

Remark 8. When applying Algorithm 1 to a specific Stackelberg game problem, once the parameter §
is fixed, the learning rates aq;, i € S can be selected based on (34) and (35). The values of parameters
Q; can be determined by (36), but it is difficult to accurately obtain the right-hand side of the inequality
(36) which depends on the parameters of the system model. Nevertheless, the simulation experiment
results indicate that generally selecting a large value of @); for each player is conducive to the convergence
of the algorithm.

5 Simulation

In this section, a numerical example is given to show the effectiveness of Algorithm 1. Consider a
stochastic linear differential game with a leader and three followers given by

where A = The

) 2 =

dx(t) = [Aa:(t) + Bouo(t) + ZB u;( }dt + Cz(t)dw(t),
0.03 —0.02] [1
By =

0.1 3.2 -2 11
y s Bl = s B3 = and C = .
0.01 —-1.01 2 1.4 —-1.1 3 11

parameters in cost functions are selected as Qo = diag[16,16], @1 = diag[15,15], Q2 = diag[10, 10],
Q3 = diag[12,12], Ryy = Ri1 = Rz = R3z3 = Ro1 = Rigp = Roz = Rz0 = Ro3 = Rz = 1, and
I, =T, =0.32, Ty = ['s = 0.13, I3 = I'3 = 0.21.

Given the initial state 29 = [~0.2,0.2]T, we can obtain the system trajectory with unknown system
dynamics. The learning rates for critic and actor NNs are a.; = 5, ago = 1.4, aq1 = 3.5, g2 = 2 3, and
Qa3 = 1.8 in (23) and (24). We set 7' = 0.01s. Since the matrix Q' € RGXS for each player, W, is a
21 dimensional column vector. Let the initial estimated critic NN weights WO0 =15x 121, WO o= =11x 121,
W n = 12 x 19y, Wc3 = 10 x 197 and the initial estimated actor NN weights WaO = Wal = Wa2 = W
[0,0]T.

We add an exponentially decaying exploration noise e(t) = 0.1~ sin(w;t), where w; € [ 600, 600],

the control inputs to ensure the PE condition and exploration. The stopping criterion is H i — Wiz ! H

1072 for all i € S. The evolution of the system state trajectories is shown in Figure 1. The convergence
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Figure 3 (Color online) The convergence of the estimated critic NN weights Wci, i =0,1,2,3. (a) Weo; (b) Wer; (¢) Weas
(d) Wes.

of the estimated weights for actor NNs is shown in Figure 2, and the convergence of the estimated weights
for critic NNs is shown in Figure 3.

6 Conclusion

In this paper, we have investigated the stochastic linear quadratic (N + 1)-player Stackelberg game
with unknown system dynamics. To minimize the cost functions which are coupled through the state and
policies, the equilibrium policies, as the solutions to HJB equations, have been derived hierarchically from
followers to the leader. Since the system drift and diffusion dynamics are unknown, the HJB equations
cannot be solved analytically. Thus a model-free Q-learning algorithm has been developed to approximate
the equilibrium policies by the actor-critic structure. Then we have provided the convergence analysis
of the proposed algorithm under the proper PE condition, and have proven that the system state and
estimated weight errors are almost surely UUB. The effectiveness of the proposed algorithm has been
validated through simulation results.
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