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Abstract This paper presents a Q-learning method to solve stochastic linear quadratic Stackelberg games involving a

leader and N followers where the system dynamics are unknown. The objective is to obtain the equilibrium policies by

solving the coupled Hamilton-Jacobi-Bellman equations based on the leader-follower hierarchy. For each player, the Q-

function containing unknown system parameters can be approximated by a critic neural network and the control policy can

be approximated by an actor neural network. Then the tuning laws are given according to Bellman equations and gradient

descent methods. An online model-free algorithm is developed and proven to converge almost surely for arbitrary control

policies when the persistent excitation condition holds. Under some mild conditions, it is proven that the closed-loop system

state and estimated weight errors are almost surely uniformly ultimately bounded. Finally, a numerical example is given to

demonstrate the effectiveness of the proposed algorithm.
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1 Introduction

In recent years, game theory [1] has been widely used in social intelligence [2,3], cooperative intelligence [4],
game intelligence [5], and other research fields. Specifically, game theory can model strategic behaviors in
the case of conflict and cooperation [6] for the competing individuals. Due to the different statuses and
roles of individuals, hierarchical decision-making behaviors arise in a game process. This problem can be
represented by a Stackelberg game, which originated in the field of economics and was used to study the
struggles between the firms with asymmetric statuses [7]. The Stackelberg game generally involves two
groups of players: a group of leaders and a group of followers [8]. The leaders can make decisions first by
predicting the response strategies of the followers, and the followers will select strategies after observing
the leaders’ decisions. Each player’s goal is to minimize its own performance objective.

The Stackelberg game has been studied for many years, among which the linear quadratic Stackelberg
game is one of the classical problems. The objective of the dynamic Stackelberg game is to achieve
Stackelberg equilibria while maintaining system stability through the design of control strategies for both
leaders and followers. Some methods have been proposed to solve the problem for different information
structures. This paper focuses on closed-loop Stackelberg games, which have attracted much attention
[9–11]. In [12], the authors dealt with the min-max and min-min Stackelberg strategies in the case of a
closed-loop information structure. In [13], the authors studied the analytical solution of two identical weak
pursuers and one evader linear differential games by a one-/two-step Stackelberg approach. However, the
above work deals with deterministic systems, whereas stochastic noise is ubiquitous and unavoidable in
real-world scenarios. If the influence of noise is ignored, the effectiveness of these methods may be greatly
reduced in the actual systems.

For stochastic linear quadratic Stackelberg games, a lot of studies [14–18] have been carried out.
The Stackelberg game was investigated for stochastic systems in the cases of continuous-time finite
horizon [19] and discrete-time infinite horizon [20]. In [21], the authors considered mean field Stackelberg
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differential games and proved that the local optimal decentralized controllers for the leader and the
followers constitute an (ǫ1, ǫ2)-Stackelberg-Nash equilibrium. In [22], the authors investigated the linear
quadratic Gaussian Stackelberg game under asymmetric information and proposed a layered calculation
method. It can be observed that the above studies depend on complete system dynamics, but the
system models are usually difficult to obtain accurately in reality or some parameters are uncertain or
completely unknown. Thus it is a challenge to design a model-free method to solve the Stackelberg
equilibrium policies.

Because it is difficult to solve the coupled Hamilton-Jacobi-Bellman (HJB) equations by traditional
methods in the game problem, reinforcement learning (RL) [23] and adaptive/approximate dynamic
programming (ADP) [24] have been widely used to develop algorithms for approximating the solutions to
dynamic games online in recent years. ADP was proposed by Werbos [25] and rapidly applied in discrete-
time and continuous-time systems [26–31]. Q-learning is a model-free RL method by iteratively updating
action-dependent value functions to obtain optimal control policies [32]. For large-scale complex systems,
Q-learning methods are typically implemented within the ADP framework due to storage limitations of
Q-value tables. In [33], the author formulated a novel Q-function and proposed a Q-learning algorithm
to solve the continuous-time non-zero-sum game problem of linear systems. Ref. [34] generalized the
model-free Q-learning algorithm in [33] to the random case. In [35], the authors studied the method
of solving equilibrium points for a linear quadratic two-player Stackelberg game, and extended the Q-
learning algorithm proposed in [33] to the framework of hierarchical decision-making.

Inspired by the aforementioned studies, in this paper, we study the Stackelberg linear quadratic games
involving a leader and N followers for the stochastic system, and propose a model-free Q-learning al-
gorithm with completely unknown system dynamics. The implementation of the algorithm relies on an
actor-critic architecture, which requires two parameter approximators such as neural networks (NNs) for
each player. A critic NN acts as the Q-function and an actor NN acts as the control policy. They can
derive the approximate equilibrium solutions to the Stackelberg games through iterative learning online.
Finally, we provide a theoretical proof and conduct a simulation verification for convergence.

There are two main hurdles tackled in this paper. First, compared with the deterministic studies [33,35],
this paper considers the system dynamics with multiplicative noise depending on the system state. Since
the estimated weight errors almost surely converge to a finite upper bound using conditional expectations,
the closed-loop system is shown to be almost surely stable rather than mean-square stable in [30, 34].
Furthermore, we show that the system state and estimated weight errors are almost surely uniformly
ultimately bounded (UUB) by applying the martingale convergence theorem. Second, due to the existence
of random free terms in error dynamics for critic NNs, it is difficult to prove that the closed-loop system
converges to the origin. In this paper, we select appropriate parameters to make the system state remain
within a finite range. When the norm ‖x‖ of the state exceeds a bound, the differential operator of the
stochastic Lyapunov function is negative definite such that the Lyapunov function almost surely converges
to a finite limit as time goes on to infinity.

The contributions of this paper can be summarized as follows.

(1) To solve the (N+1)-player Stackelberg game with multiplicative noise, we derive the solutions to the
coupled HJB equations with second-order partial derivatives, which constitute a Stackelberg equilibrium.
Then a Q-learning algorithm is designed for approximating the Stackelberg equilibrium policies without
the knowledge of system dynamics.

(2) Under the persistent excitation condition, we first establish the rigorous convergence analysis for
the Q-learning algorithm by virtue of the properties of conditional expectation. Besides, the closed-
loop system state and estimated weight errors are shown to be almost surely UUB by the martingale
convergence theorem and stochastic Lyapunov function.

Notation: Let R denote the real numbers. R
n×m is the set of n × m real matrices; Rn is the n-

dimensional Euclidean space and ‖ ·‖ represents the Euclidean norm for a vector and the Frobenius norm
for a matrix. N denotes the set {1, 2, · · · , N} and S denotes the set {0, 1, 2, · · · , N}. E[·] denotes the
expectation operator. Let diag[·] denote a diagonal matrix, 1n denote a n-dimensional column vector
with all values equal to 1, AT denote the transpose of a vector or matrix A, Tr(A) denote the trace
of a matrix A, and A > 0 (> 0) denote a symmetric positive (semi)definite matrix A. For the matrix
M ∈ R

n×n, λ(M) and λ̄(M) denote the minimum and maximum singular values of M , and vech(M) ,
[M11, · · · ,M1n,M22, · · · ,M2n, · · · ,M(n−1)(n−1),M(n−1)n,Mnn]

T. IfM is a symmetric matrix, vecs(M) ,
[M11, 2M12, · · · , 2M1n,M22, · · · , 2M2n, · · · ,M(n−1)(n−1), 2M(n−1)n,Mnn]

T.
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2 Stackelberg games for stochastic linear systems

2.1 Multi-player non-zero-sum games

Consider a stochastic linear time-invariant system with N + 1 players,

dx(t) =



Ax(t) +B0u0(t) +

N
∑

j=1

Bjuj(t)



 dt+ Cx(t)dw(t), x(t0) = x0, t > t0, (1)

where x(t) ∈ R
n is the state vector, uj(t) ∈ R

mj , j ∈ N is the jth control input (or policy as we shall see
later) of the N followers and u0(t) ∈ R

m0 is the leader’s control input. A,C ∈ R
n×n, and Bi ∈ R

n×mi ,
i ∈ S are unknown constant matrices. w(t) is a one-dimensional standard Brownian motion which is
defined on a complete probability space (Ω,F ,P). Let (Ω,F , {Ft}t>t0

,P) be a filtered probability space
where {Ft}t>t0

= σ {w(s) : t0 6 s 6 t} augmented by all P-null sets in F . Note that the initial state
x0 is a deterministic (almost surely) variable under (Ω,F ,P). The system is defined as (A,Bi, C) for
simplicity.

Definition 1 (Almost sure stability [36]). An autonomous stochastic system (A,C) (ui ≡ 0, i ∈ S in (1))
is said to be almost surely (a.s.) stable, if for any initial state x0 ∈ R

n, P {limt→∞ |x(t; t0, x0)| = 0} = 1.

Definition 2 (Mean-square stability). An autonomous stochastic system (A,C) (ui ≡ 0, i ∈ S in (1))
is called mean-square stable, if for any initial state x0 ∈ R

n, E
∫∞
t0

‖x(τ)‖2dτ < +∞.

Then the following assumption is used for the infinite-horizon stochastic Stackelberg games, which
ensures the well-posedness of the cost functions to be defined later.

Assumption 1. System (1) is called mean-square stabilizable, that is, there exist some feedback control
policies ui(t) = −Kix(t), i ∈ S, where Ki are constant gain matrices, such that the closed-loop system

dx(t) = (A−B0K0 −
∑N

j=1 BjKj)x(t)dt+Cx(t)dw(t) is mean-square stable for any x0. In this case, the
feedback policy profile {u0, u1, · · · , uN} is called stabilizing.

The cost functions associated with control policies ui, i ∈ S are defined as

Ji(x0, u0, uf) =
1

2
E

∫ ∞

t0

ri(x, u0, uf)dτ, (2)

where uf , {ui | i ∈ N}. For the leader (i = 0), we define

r0(x, u0, uf ) = xTQ0x+ uT
0 R00u0 +

N
∑

j=1

2uT
0 Πjuj +

N
∑

j=1

uT
j R0juj, (3)

and for the followers (i ∈ N ), we define

ri(x, u0, uf) = xTQix+ uT
i Riiui + 2uT

i Γiu0 + uT
0 Ri0u0, (4)

where the weight matrices are constant; for any i ∈ S and j ∈ N , Qi > 0, Rii > 0, Rj0 > 0 and R0j > 0.
Suppose that Γi = ΠT

i , and the matrices Πj ∈ R
m0×mj , j ∈ N and Γi ∈ R

mi×m0 , i ∈ N describe the
coupling coefficients between the leader and the followers. Assume that (A,C|√Qi) is exactly observable.

Remark 1. It is worth mentioning that ri(x, u0, uf ) for each follower is related to the control policies
of other followers through system (1) since the state x is affected by the control inputs of all players. In
the hierarchical decision-making process, followers can respond optimally to the leader’s decision, but do
not obtain information from other followers’ responses.

Let Θ = [uT
0 , Θ̄]T, Θ̄ = [uT

1 , · · · , uT
N ]. Then Eqs. (3) and (4) can be rewritten as

r0(x, u0, uf) = xTQ0x+ΘT

(

R00 M̄0

M̄T
0 Ψ0

)

Θ,

where M̄0 = [Π1, · · · ,ΠN ], and Ψ0 = diag(R01, · · · , R0N ) is a diagonal matrix.

ri(x, u0, uf) = xTQix+ΘT

(

Ri0 M̄i

M̄T
i Ψi

)

Θ, i ∈ N ,

where M̄i = [0, · · · , 0,ΓT
i , 0, · · · , 0], and Ψi = diag(0, · · · , 0, Rii, 0, · · · , 0) is a diagonal matrix.
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Assumption 2. For each player i ∈ S, let the symmetric matrix Mi =

(

Ri0 M̄i

M̄T
i Ψi

)

be positive definite,

that is, Ri0 > 0 and the Schur complement Ψi − M̄T
i R−1

i0 M̄i > 0 hold.

This paper considers the linear state feedback control policy ui for each player, that is, ui is a linear
function of state x. Under Assumption 1, the definition of admissible policy profiles is given as follows.

Definition 3 (Admissible policy). A feedback policy profile {u0, u1, · · · , uN} is said to be admissible,
if ui, i ∈ S are {Ft}t>t0-adapted, {u0, u1, · · · , uN} is stabilizing, and E

∫∞
t0

‖x(τ)‖2dτ < +∞.

Remark 2. The admissible policy profile ensures that the cost functions (2) remain finite under As-
sumption 1. Then we deduce that 0 6 Ji(x0, u0, uf ) < +∞ based on Qi > 0 and Assumption 2.

We focus on a hierarchical dynamic game with a leader and N followers. Specifically, the leader knows
more information and has a decision priority that can make the best policy by predicting the possible
response policies of the followers; then the followers make the optimal response policies after observing
the leader’s policy. Letting u−i , {uj | j ∈ N , j 6= i}, we rewrite uf = ui ∪ u−i. The cost function for
each follower can be rewritten as

Ji(x0, u0, ui, u−i) =
1

2
E

∫ ∞

t0

ri(x, u0, ui, u−i)dτ, i ∈ N .

The goal of the leader and followers is to minimize their cost functions. Then it is necessary to introduce
the following definition of the Stackelberg equilibrium.

Definition 4 (Stackelberg equilibrium). The policy profile {ū0, ū1, · · · , ūN} is said to constitute a
Stackelberg equilibrium solution if for all ui, i ∈ N , and any fixed u0,

Ji(x0, u0, ūi(u0), ū−i(u0)) 6 Ji(x0, u0, ui, ū−i(u0)), (5)

and if there exists a ū0 such that for all u0,

J0(x0, ū0, ūf(ū0)) 6 J0(x0, u0, ūf(u0)), (6)

where ūf (u0) , {ūi(u0) | i ∈ N} is the set of followers’ optimal response policies to u0. ū0 is the
equilibrium policy for the leader which induces the equilibrium policies ūi = ūi(ū0) for the followers, and
ūf = ūf (ū0) , {ūi | i ∈ N}.

2.2 Equilibrium policies

The objective of this paper is to find an admissible policy profile to obtain the value functions for all
players, which are defined as

Vi(x) = min
ui

1

2
E

[
∫ ∞

t

ri(x, u0, uf )dτ

∣

∣

∣

∣

x(t) = x

]

(7)

without any information of the system matrices A, Bi and C. Using Itô’s formula, the Hamiltonians
associated with (1) and (7) for all players are defined as

Hi

(

x,
∂Vi

∂x
,
∂2Vi

∂x2
, u0, uf

)

=
∂Vi

∂x

T(

Ax+B0u0 +
N
∑

j=1

Bjuj

)

+
1

2
ri(x, u0, uf ) +

1

2
Tr

[

xTCT ∂2Vi

∂x2
Cx

]

.

(8)

Employing the stationarity condition ∂Hi

∂ui
= 0, for any given control policy u0 of the leader, the optimal

response policies of the followers are

u∗
i (u0) = argmin

ui

Hi

(

x,
∂Vi

∂x
,
∂2Vi

∂x2
, u0, uf

)

= −R−1
ii

(

Γiu0 +BT
i

∂Vi

∂x

)

, i ∈ N .



Cao Y, et al. Sci China Inf Sci November 2025, Vol. 68, Iss. 11, 210204:5

Then we can obtain the control policies

u∗
0 = argmin

u0

H0

(

x,
∂V0

∂x
,
∂2V0

∂x2
, u0, u

∗
f(u0)

)

= −
(

R00 −
N
∑

j=1

ΠjR
−1
jj Γj −

N
∑

j=1

ΓT
j R

−1
jj ΠT

j +

N
∑

j=1

ΓT
j R

−1
jj R0jR

−1
jj Γj

)−1(

BT
0

∂V0

∂x
−

N
∑

j=1

ΓT
j R

−1
jj BT

j

∂V0

∂x

−
N
∑

j=1

ΠjR
−1
jj BT

j

∂Vj

∂x
+

N
∑

j=1

ΓT
j R

−1
jj R0jR

−1
jj BT

j

∂Vj

∂x

)

,

u∗
i = u∗

i (u
∗
0) = −R−1

ii

(

Γiu
∗
0 +BT

i

∂Vi

∂x

)

, i ∈ N . (9)

Let u∗
f (u0) , {u∗

i (u0) | i ∈ N} and u∗
f , {u∗

i | i ∈ N}. Substituting (9) into (8), Hamilton-Jacobi-
Bellman (HJB) equations are given by

Hi

(

x,
∂Vi

∂x
,
∂2Vi

∂x2
, u∗

0, u
∗
f

)

=
∂Vi

∂x

T(

Ax+B0u
∗
0 +

N
∑

j=1

Bju
∗
j

)

+
1

2
ri(x, u

∗
0, u

∗
f ) +

1

2
Tr

[

xTCT ∂2Vi

∂x2
Cx

]

= 0.

(10)

Theorem 1. Suppose that Vi, i ∈ S are smooth solutions to HJB equations (10), and the control
policies u∗

i , i ∈ S are given by (9) based on the solutions Vi. Let Assumption 2 hold. Then the policy
profile {u∗

0, u
∗
1, · · · , u∗

N} constitutes a Stackelberg equilibrium, and the corresponding closed-loop system
is asymptotically almost surely stable.

Proof. Let the value functions Vi(x) > 0 of the leader and followers be Lyapunov functions. The
differential operator of Vi(x) along the closed-loop trajectory is

LVi(x) =
∂Vi

∂x

T(

Ax+B0u0 +

N
∑

j=1

Bjuj

)

+
1

2
Tr

[

xTCT ∂2Vi

∂x2
Cx

]

.

According to HJB equations (10), when the control policies u∗
i , i ∈ S are adopted, there exists

LVi(x) |ui=u∗

i
= −1

2
ri(x, u

∗
0, u

∗
f).

Since Qi > 0 and Assumption 2 holds, LVi|ui=u∗

i
6 0. If LVi|ui=u∗

i
= 0,

√
Qix = 0 and

√
MiΘ = 0 a.s.

Because Mi > 0 and (A,C|√Qi) is exactly observable, then LVi|ui=u∗

i
= 0 if and only if x = 0 a.s. [37].

Therefore, the closed-loop system (1) is asymptotically almost surely stable under the control policies u∗
i

based on [38].
Since the system is linear, the value function (7) can be represented as a quadratic form: Vi(x) =

1
2x

TPix, i ∈ S, where Pi ∈ R
n×n is a symmetric positive definite matrix for each player. Then it

can be obtained that 1
2λ(Pi)‖x‖2 6 Vi(x) 6 1

2 λ̄(Pi)‖x‖2. Besides, LVi(x)|ui=u∗

i
= − 1

2ri(x, u
∗
0, u

∗
f) 6

− 1
2λ(Qi)‖x‖2. According to [38], these two inequalities lead to

E[Vi(x(t))] 6 Vi(x0)e
−ρ(t−t0),

where ρ = λ(Qi)/λ̄(Pi). Then it can be deduced that E‖x(t)‖2 6 λ̄(Pi)/λ(Pi)‖x0‖2e−ρ(t−t0), which
implies that E

∫∞
t0

‖x(τ)‖2dτ < +∞. Therefore, the system (1) is mean-square stabilizable, which proves
that the control policies u∗

i , i ∈ S constitute an admissible policy profile.
From the above proof, it can be concluded that limt→∞ Vi(x) = 0. By subtracting the HJB equations

(10), the cost functions (2) for any given control policies are transformed into

Ji(x0, u0, uf ) =
1

2
E

∫ ∞

t0

ri(x, u0, uf)dτ + Vi(x(t0)) +

∫ ∞

t0

ELVidτ

=Vi(x(t0)) + E

∫ ∞

t0

1

2

[

ri(x, u0, uf)− ri(x, u
∗
0, u

∗
f)
]
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+
∂Vi

∂x

T[

B0(u0 − u∗
0) +

N
∑

j=1

Bj(uj − u∗
j )

]

dτ.

For followers i ∈ N , the leader’s policy u∗
0 is given. Follower i adopts the policy ui, whereas the other

followers take the optimal response policies u∗
−i, where u∗

−i = u∗
−i(u

∗
0). The cost functions are

Ji(x0, u
∗
0, ui, u

∗
−i) =Vi(x(t0)) + E

∫ ∞

t0

1

2

[

ri(x, u
∗
0, ui, u

∗
−i)− ri(x, u

∗
0, u

∗
i , u

∗
−i)
]

+
∂Vi

∂x

T

Bi(ui − u∗
i )dτ

=Vi(x(t0)) + E

∫ ∞

t0

{

1

2

[

(ui − u∗
i )

TRii(ui − u∗
i ) + 2uT

i Riiu
∗
i − 2(u∗

i )
TRiiu

∗
i

+ 2(ui − u∗
i )

TΓiu
∗
0

]

−
[

(u∗
i )

TRii + (u∗
0)

TΓT
i

](

ui − u∗
i

)

}

dτ

=Vi(x(t0)) + E

∫ ∞

t0

1

2
(ui − u∗

i )
TRii(ui − u∗

i )dτ.

Then we can deduce that Ji(x0, u
∗
0, u

∗
i , u

∗
−i) 6 Ji(x0, u

∗
0, ui, u

∗
−i), i ∈ N .

For the leader i = 0, we select any policy u0, which induces the optimal response policies u∗
j (u0), j ∈ N

for all followers. In this case, the cost function of the leader is

J0(x0, u0, u
∗
f(u0)) =E

∫ ∞

t0

1

2

[

r0(x, u0, u
∗
f (u0))− r0(x, u

∗
0, u

∗
f(u

∗
0))
]

+
∂V0

∂x

T[

B0(u0 − u∗
0) +

N
∑

j=1

Bj(u
∗
j (u0)− u∗

j(u
∗
0))

]

dτ + V0(x(t0)).

Due to the equation (9), H0(x,
∂V0

∂x
, ∂2V0

∂x2 , u∗
0, u

∗
f(u

∗
0)) 6 H0(x,

∂V0

∂x
, ∂2V0

∂x2 , u0, u
∗
f(u0)). According to this

inequality, we can deduce that J0(x0, u
∗
0, u

∗
f(u

∗
0)) 6 J0(x0, u0, u

∗
f(u0)). Based on the Definition 4,

{u∗
0, u

∗
1, · · · , u∗

N} constitutes a Stackelberg equilibrium policy profile. When ui = u∗
i , i ∈ S, the cost

function of the ith player Ji(x0, u
∗
0, u

∗
f) = Vi(x(t0)). This completes the proof.

Based on Vi(x) =
1
2x

TPix, the equilibrium policies of the leader and the followers are

u∗
0 =−

(

R00 −
N
∑

j=1

ΠjR
−1
jj Γj −

N
∑

j=1

ΓT
j R

−1
jj ΠT

j +
N
∑

j=1

ΓT
j R

−1
jj R0jR

−1
jj Γj

)−1(

BT
0 P0x−

N
∑

j=1

ΓT
j R

−1
jj BT

j P0x

−
N
∑

j=1

ΠjR
−1
jj BT

j Pjx+

N
∑

j=1

ΓT
j R

−1
jj R0jR

−1
jj BT

j Pjx

)

,

u∗
i =−R−1

ii (Γiu
∗
0 +BT

i Pix), i ∈ N . (11)

Since the equilibrium policies in (11) require explicit knowledge of the system dynamics, they cannot
be obtained analytically. Therefore, we will develop a model-free algorithm and rigorously analyze its
convergence in the subsequent sections.

3 A model-free Q-learning algorithm

In this section, a model-free Q-learning algorithm is proposed to obtain the approximate solution to the
Stackelberg game. It does not need to know the system matrices of (A,Bi, C) and only needs to choose
the appropriate weight matrices for cost functions. Since we would like to develop an online algorithm
for tuning the parameters in real time, an actor-critic structure is introduced.

3.1 Q-functions

For each player i ∈ S, we first define the Q-function as the following form:

Qi(x, u0, uf) =Vi(x) +Hi

(

x,
∂Vi

∂x
,
∂2Vi

∂x2
, u0, uf

)
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=
1

2

[

xTPix+ ri(x, u0, uf) + xTPi

(

Ax+B0u0 +
N
∑

j=1

Bjuj

)

+

(

Ax+B0u0 +

N
∑

j=1

Bjuj

)T

Pix+ xTCTPiCx

]

. (12)

From HJB equations (10), one has

Qi(x, u
∗
0, u

∗
f) = Vi(x). (13)

That is, when ui = u∗
i , i ∈ S, Eqs. (12) and (7) have the same value. Then the equilibrium policies also

can be obtained by solving
∂Qi(x,u0,uf )

ui
= 0 from followers to the leader.

Let U = [xT, uT
0 , u

T
1 , · · · , uT

N ]T. The above Q-function can be written in the matrix form:

Qi(x, u0, uf) =
1

2
UTQ̄iU =

1

2
UT



















Qi
xx Qi

xu0
Qi

xu1
· · · Qi

xuN

Qi
u0x

Qi
u0u0

Qi
u0u1

· · · Qi
u0uN

Qi
u1x

Qi
u1u0

Qi
u1u1

· · · Qi
u1uN

...
...

...
. . .

...

Qi
uNx Qi

uNu0
Qi

uNu1
· · · Qi

uNuN



















U. (14)

Due to the hierarchical relationships between the leader and followers, there are two different represen-
tations of Q̄i, i ∈ S. For i = 0, j ∈ S, k ∈ N , the elements of matrix Q̄0 are Q0

xx = P0 + Q0 + P0A +
ATP0 + CTP0C, Q0

ujuj
= R0j , Q0

xuj
= (Q0

ujx
)T = P0Bj , Q0

u0uk
= (Q0

uku0
)T = Πk. For any i ∈ N ,

j ∈ S, the elements of matrix Q̄i are Qi
xx = Pi +Qi + PiA+ATPi +CTPiC, Qi

u0u0
= Ri0, Qi

uiui
= Rii,

Qi
xuj

= (Qi
ujx

)T = PiBj , Qi
uiu0

= (Qi
u0ui

)T = Γi.
When the equilibrium policies are found, Q-functions (14) can be defined as

Qi(x, u
∗
0, u

∗
f ) =

1

2
(U∗)TQ̄iU∗ =

1

2
[vecs(Q̄i)]Tvech(U∗(U∗)T), i ∈ S, (15)

where U∗ = [xT, (u∗
0)

T, (u∗
1)

T, · · · , (u∗
N )T]T. Moreover, based on (13), Eq. (15) are also the solutions to

the HJB equations (10).

3.2 Actor-critic structure

According to the Weierstrass higher-order approximation theorem [39], there are ideal critic neural net-
work (NN) weights Wci =

1
2vecs(Q̄i) such that the Q-functions can be approximated using critic neural

networks (NNs) as

Q̂i(x, u0, uf) = ŴT
civech(UUT), i ∈ S, (16)

where Ŵci are the estimated critic NN weights, and vech(UUT) is the activation function for critic NNs.
According to (11) and (14), the equilibrium policies can be written as

u∗
i = Dix, i ∈ S, (17)

where D0 , −∆−1
(

Q0
u0x

−∑N
j=1 Γ

T
j R

−1
jj Q0

ujx
−∑N

j=1 ΠjR
−1
jj Qj

ujx
+
∑N

j=1 Γ
T
j R

−1
jj R0jR

−1
jj Qj

ujx

)

, ∆ =

R00 −
∑N

j=1 ΠjR
−1
jj Γj −

∑N
j=1 Γ

T
j R

−1
jj ΠT

j +
∑N

j=1 Γ
T
j R

−1
jj R0jR

−1
jj Γj , Di , −R−1

ii (ΓiD0 +Qi
uix

), i ∈ N .

Remark 3. Although the system matrices are unknown, the values of weight matrices in the cost
functions are known. So ∆ is able to compute and invert. Note that the known weight matrices are
not represented by the corresponding elements of Q̄i, and the unknowns for the control policies are
represented by the elements in the matrix Q̄i, i ∈ S.

The control policies can be approximated using actor NNs as

ûi(x) = ŴT
aix, i ∈ S, (18)
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Algorithm 1 A model-free Q-learning algorithm.

Step 1: Initialize the estimated weights Ŵ 0
ci, Ŵ

0
ai and the state x(t0). Set l = 0 and t = t0. Let T > 0 be a time interval, and

let ε > 0 be a small threshold.

Step 2: Employ ûl
i = (Ŵ l

ai)
Tx(t)+e as the input for each player, where e is the exploration noise. Calculate the state trajectory

of system (1) from t to t + T under the policy profile {ûl
0, · · · , ûl

N}.
Step 3: Calculate the estimation errors elci with Ŵ l

ci, ûl
i, x(t) and x(t + T ) by (20), and then update the estimated weights

Ŵ
l+1

ci
by (23).

Step 4: Calculate the estimation errors elai by (22), and update the estimated weights Ŵ
l+1

ai by (24).

Step 5: Stop if
∥

∥Ŵ
l+1

ci
− Ŵ l

ci

∥

∥ < ε, otherwise let l = l + 1, t = t + T , and go to Step 2.

where Ŵai are the estimated actor NN weights, and x is served as the activation function for actor NNs.
Wai = Di, i ∈ S denote the ideal actor NN weights.

Note that Eq. (13) holds. The Bellman equations about the functions Qi(x, u
∗
0, u

∗
f ) are defined as

Qi(x(t), u
∗
0, u

∗
f ) = Qi(x(t− T ), u∗

0, u
∗
f )−

1

2

∫ t

t−T

ri(x, u
∗
0, u

∗
f)dτ, i ∈ S, (19)

where T > 0 is a fixed time interval. Substituting (16) and (18) into (19), the estimation errors of critic
NNs are given by

eci = Q̂i(x(t), û0, ûf )− Q̂i(x(t− T ), û0, ûf ) +
1

2

∫ t

t−T

ri(x, û0, ûf )dτ, (20)

where Q̂i =
1
2 Û

T ˆ̄QiÛ , and Û = [xT, ûT
0 , û

T
1 , · · · , ûT

N ]T. Ŵci can be transformed into ˆ̄Qi by operating the
inverse of vecs(·). Then the control policies are estimated by critic NNs as

ûc0 = −∆−1

(

Q̂0
u0x

−
N
∑

j=1

ΓT
j R

−1
jj Q̂0

ujx
−

N
∑

j=1

ΠjR
−1
jj Q̂j

ujx
+

N
∑

j=1

ΓT
j R

−1
jj R0jR

−1
jj Q̂j

ujx

)

x,

ûci = −R−1
ii (ΓiŴ

T
a0x+ Q̂i

uix
x), i ∈ N , (21)

where Q̂0
uix

, i ∈ S and Q̂j
ujx

, j ∈ N represent the block matrices in ˆ̄Qi. Subtracting (21) from (18), the
estimation errors of actor NNs are given by

eai = ŴT
aix− ûci, i ∈ S. (22)

Define the mean-square errors as Υci =
1
2E ‖eci‖2 and Υai =

1
2E ‖eai‖2, i ∈ S. In order to minimize the

above mean-square errors, we use the gradient descent method to design the tuning laws of the estimated
weights for critic and actor NNs. They are given by

˙̂
Wci = −αci

∂Υci

∂Ŵci

= −αci

σ

(1 + σTσ)2
eTci, (23)

˙̂
Wai = −αai

∂Υai

∂Ŵai

= −αaixe
T
ai, i ∈ S, (24)

where σ = vech(Û(t)ÛT(t)) − vech(Û(t − T )ÛT(t − T )). The learning rates αci > 0 and αai > 0, which
are tuning parameters in NNs.

3.3 Algorithm design

According to the tuning laws, we develop a model-free Q-learning algorithm as shown in Algorithm 1. In
the next section, we are going to analyze and prove the convergence of the algorithm in detail.

Reinforcement learning is a direct adaptive optimal control [40]. In order to guarantee the convergence
of the estimated weights for critic NNs, we need the appropriate persistent excitation condition.

Definition 5 (Persistent excitation). Let the signal σ̄ = σ/(1 + σTσ) be a persistent excitation (PE)
over the time interval [t, t+ T ], that is, there exist β1, β2 ∈ R

+ such that, for all t > t0, T > 0,

β1I 6 Λ0 ≡ E

[
∫ t+T

t

σ̄(τ)σ̄T(τ)dτ

∣

∣

∣

∣

Ft

]

6 β2I (a.s.), (25)

where I is an identity matrix of appropriate dimensions and Ft is a σ-algebra.
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Remark 4. During the execution of the algorithm, an exponentially decaying exploration noise such
as e(t) = αe−λt

∑100
i=1 sin(ωit), where α > 0, λ > 0 and ωi are randomly selected from [−600, 600], can be

introduced into control inputs to enrich the data and satisfy the PE condition.

Remark 5. The convergence of critic NNs implies that the Bellman equations (19) hold under the
unique equilibrium policies. Then the control policies approximated by actor NNs converge to equilibrium
policies, since the update of actor NNs relies on the Q-functions approximated by critic NNs. Therefore,
we only consider the convergence of Ŵci as the stopping criterion for Algorithm 1.

4 Convergence analysis

In this section, we first prove the convergence of Algorithm 1, that is, the estimated weights Ŵci almost
surely converge to the ideal weights Wci. Furtherly, the boundedness of the closed-loop system is studied
by the stochastic Lyapunov function.

4.1 Convergence of Algorithm 1

First, define the estimated weight errors W̃ci = Wci − Ŵci and W̃ai = Wai − Ŵai, i ∈ S; then the
corresponding error dynamics for critic NNs are

˙̃Wci = −αciσ̄σ̄
TW̃ci + αci

σ

(1 + σTσ)2
εi, (26)

where εi = σTWci+
1
2

∫ t

t−T
ri(x, û0, ûf )dτ is a random free term, and σ̄ = σ/(1+σTσ). The corresponding

error dynamics for actor NNs are

˙̃Wa0 =− αa0xx
TW̃a0 − αa0xx

T

(

Q̃0
u0x

−
N
∑

j=1

ΓT
j R

−1
jj Q̃0

ujx
−

N
∑

j=1

ΠjR
−1
jj Q̃j

ujx

+
N
∑

j=1

ΓT
j R

−1
jj R0jR

−1
jj Q̃j

ujx

)T

∆−1,

˙̃Wai =− αaixx
TW̃ai − αaixx

TW̃a0Γ
T
i R

−1
ii − αaixx

TQ̃i
xui

R−1
ii , i ∈ N (27)

with Q̃i
(·) = Qi

(·) − Q̂i
(·). Then consider the error dynamics system with output defined as

˙̃Wci = −αciσ̄σ̄
TW̃ci + αci

σ

(1 + σTσ)2
εi,

yi = σ̄TW̃ci, i ∈ S. (28)

To prove the convergence of W̃ci for any given control policies ui, we need to introduce the martingale
theory to system stability problems for the following proofs.

Lemma 1 ([38]). Let g(t, ω), t > t0 be a stochastic process with finite expectation Eg(t, ω), which is
Ft-measurable. The family (g(t, ω), Ft) is called a supermartingale if for any t0 6 s < t, E(g(t, ω) | Fs) 6
g(s) (P-a.s.). If the supermartingale (g(t, ω), Ft) is positive, then the limt→∞ g(t, ω) almost surely exists
and is finite.

We know εi and yi are stochastic processes over [t0,∞) on the filtered probability space (Ω,F , {Ft}t>t0
,

P). Then random upper bounds are given for εi and yi in the following assumption.

Assumption 3. There exist random variables εimax, y
i
max and ε̄i such that E [‖εi(t′)‖ | Ft] 6 εimax and

E
[

yi(t
′)yTi (t

′) | Ft

]

6 (yimax)
2 a.s. for t 6 t′, and supx∈Ω ‖εi(x, û0, ûf)‖ 6 ε̄i(û0, ûf ) a.s. for a compact

set Ω ⊆ R
n (containing the origin).

Remark 6. The bound ε̄i(û0, ûf ) depends on control policies ûi, i ∈ S. When ûi converge to the
equilibrium policies u∗

i for all i ∈ S, ε̄i in Assumption 3 converge to zero almost surely based on the
Bellman equations (19).

Next, we present Theorem 2 to demonstrate the effectiveness of Algorithm 1 under the PE condition
(25) and Assumption 3.
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Theorem 2. Let ui, i ∈ S be any admissible bounded control policies and assume that σ̄ is a PE signal.
Let Assumption 3 hold. Consider the error dynamics system (28) and the tuning laws (23) for critic NNs.
Then, the estimated weight errors for critic NNs almost surely converge to the residual set

∥

∥

∥
W̃ci(t)

∥

∥

∥
6

√
β2T

β1

[

(1 + 2ζβ2αci)ε
i
max

]

(a.s.), (29)

where ζ is a positive constant of first order.

Proof. Consider the dynamics system

{

ẋi(t) = Bi(t)ui(t),

yi(t) = CT(t)xi(t).
(30)

Letting T > 0, the integral form of the above system is










xi(t+ T ) = xi(t) +

∫ t+T

t

Bi(τ)ui(τ)dτ,

yi(t+ T ) = CT(t+ T )xi(t+ T ).

(31)

Let C(t) be PE, that is β1I 6 Sc ≡ E[
∫ t+T

t
C(h)CT(h)dh | Ft] 6 β2I holds almost surely. The output in

(31) can be written as yi(t+ T ) = CT(t+ T )xi(t) +
∫ t+T

t
CT(t+ T )Bi(τ)ui(τ)dτ , then

∫ t+T

t

C(h)

(

yi(h)−
∫ h

t

CT(h)Bi(τ)ui(τ)dτ

)

dh =

∫ t+T

t

C(h)CT(h)dh · xi(t).

Take the conditional expectation on both sides as

E

[
∫ t+T

t

C(h)

(

yi(h)−
∫ h

t

CT(h)Bi(τ)ui(τ)dτ

)

dh

∣

∣

∣

∣

Ft

]

= E

[
∫ t+T

t

C(h)CT(h)dh

∣

∣

∣

∣

Ft

]

· xi(t),

so xi(t) = S−1
c E

[ ∫ t+T

t
C(h)

(

yi(h) −
∫ h

t
CT(h)Bi(τ)ui(τ)dτ

)

dh
∣

∣Ft

]

. Taking the norms on both sides
yields

‖xi(t)‖ 6

∥

∥

∥

∥

∥

S−1
c E

[
∫ t+T

t

C(h)yi(h)dh

∣

∣

∣

∣

Ft

]

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

S−1
c E

[
∫ t+T

t

C(h)

∫ h

t

CT(h)Bi(τ)ui(τ)dτdh

∣

∣

∣

∣

Ft

]

∥

∥

∥

∥

∥

6(β1I)
−1

√

E

[
∫ t+T

t

C(h)CT(h)dh

∣

∣

∣

∣

Ft

]

×
√

E

[
∫ t+T

t

yTi (h)yi(h)dh

∣

∣

∣

∣

Ft

]

+ (β1I)
−1

E

[
∫ t+T

t

‖Bi(τ)ui(τ)‖E
[
∫ t+T

τ

∥

∥C(h)CT(h)
∥

∥ dh

∣

∣

∣

∣

Fτ

]

dτ

∣

∣

∣

∣

Ft

]

6

√
β2T

β1
yimax +

β2ζ

β1
E

[
∫ t+T

t

‖Bi(τ)‖ · ‖ui(τ)‖ dτ
∣

∣

∣

∣

Ft

]

, (32)

where ζ is a first-order positive constant.
Let xi = W̃ci, Bi = αciσ̄, ui = −yi +

εi
1+σTσ

, yi = σ̄TW̃ci, and C = σ̄. Then Eq. (30) can be

transformed into (28). It can be deduced that E
[

||yi|| | Ft

]

6
√

E
[

yi(t′)yTi (t
′) | Ft

]

6 yimax. Then based

on the inequality ‖ui‖ 6 ‖yi‖+
∥

∥

∥

εi
1+σTσ

∥

∥

∥
6 ‖yi‖+ ‖εi‖, one has

E

[
∫ t+T

t

‖Bi(τ)‖ · ‖ui(τ)‖ dτ
∣

∣

∣

∣

Ft

]

6 αci(y
i
max + εimax)E

[
∫ t+T

t

‖σ̄(τ)‖ dτ
∣

∣

∣

∣

Ft

]

6 αci(y
i
max + εimax)

[

E

∫ t+T

t

‖σ̄(τ)‖2 dτ
∣

∣

∣

∣

Ft

]
1
2
(
∫ t+T

t

1dτ

)
1
2

6 αci(y
i
max + εimax)

√

β2T . (33)
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According to (32) and (33), ‖W̃ci(t)‖ 6
√
β2T
β1

[yimax + ζβ2αci(y
i
max + εimax)].

Consider the Lyapunov function Gi =
1
2E

[

W̃T
ciα

−1
ci W̃ci

]

, i ∈ S. The differential operator of Gi is

LGi = −E

[

W̃T
ci σ̄σ̄

TW̃ci − W̃T
ci σ̄

εi
1 + σTσ

]

6 −E

[

∥

∥

∥
σ̄TW̃ci

∥

∥

∥

2

−
∥

∥

∥
σ̄TW̃ci

∥

∥

∥

∥

∥

∥

∥

εi
1 + σTσ

∥

∥

∥

∥

]

,

LGi 6 −E

{

∥

∥

∥
σ̄TW̃ci

∥

∥

∥
E

[

∥

∥

∥
σ̄TW̃ci

∥

∥

∥
−
∥

∥

∥

∥

εi
1 + σTσ

∥

∥

∥

∥

∣

∣

∣

∣

Ft

]}

.

Therefore, LGi < 0, if yimax > E[‖σ̄TW̃ci‖ | Ft

]

> εimax > E[‖ εi
1+σTσ

‖ | Ft].

In this case, it provides an effective practical bound for E[‖σ̄TW̃ci‖ | Ft] as Gi(t) decreases based on
Lemma 1. Consider the error dynamics system (28) bounded effectively by yimax < εimax. Then the
estimated weight errors for critic NNs almost surely converge to the residual set

∥

∥

∥
W̃ci(t)

∥

∥

∥
6

√
β2T

β1

[(

1 + 2ζβ2αci

)

εimax

]

(a.s.).

This completes the proof.

Remark 7. Theorem 2 is a generalization of Theorem 1 in [41] since the system (28) is stochastic.
Conditional expectation and its properties are applied in the proof process to ensure the random results
hold almost surely.

4.2 Boundedness of the closed-loop system

Next, we will demonstrate that, under certain mild conditions, Lyapunov-based closed-loop control en-
sures that the system state in the Stackelberg game remains within a finite range. The following definition
is requisite for our results.

Definition 6 (Almost surely UUB). The trajectory (x(t), t > t0) of the stochastic system (1) is said to
be almost surely uniformly ultimately bounded (UUB) if there exists a compact set S ⊂ Rn so that for
all x(t0) = x0 ∈ S, there exists a bound B and a time T (B, x0) such that ‖x(t)‖ 6 B holds almost surely
for all t > t0 + T .

Prior to presenting the main theorem, the parameters in the tuning laws and the cost functions are
selected first. Based on (26) and (27), the error dynamics for actor NNs depends on the error dynamics
for critic NNs. Thus the convergence of W̃ci needs to be faster than the convergence of W̃ai. We can set
αci ≫ αai, i ∈ S. The learning rates αai, i ∈ S and the weight matrices Qi are selected to satisfy the
inequalities as

αa0 >
(N + 1)δ +

∑N
i=1 αaiδ

2λ̄
(

ΓT
i R

−1
ii

)

2δ − λ̄
(

∆−1
)[

1 +
∑N

j=1 λ̄
(

ΓT
j R

−1
jj

)

+
∑N

j=1 λ̄
(

ΠT
j R

−1
jj

)

+
∑N

j=1 λ̄
(

ΓT
j R

−1
jj R0jR

−1
jj

)]
, (34)

αai >
(N + 1)δ

2δ − λ̄
(

ΓT
i R

−1
ii

)

− λ̄
(

R−1
ii

) , i ∈ N , (35)

N
∑

i=0

λ(Qi) >

N
∑

i=0

N
∑

j=0

λ̄
(

Qi
ujx

Qi
xuj

)

+

N
∑

i=1

αaiδλ̄
(

R−1
ii

)

K2
i −

N
∑

j=0

λ
(

DT
j R0jDj

)

−
N
∑

i=1

λ
(

D̄T
i IiD̄i

)

+ αa0δλ̄
(

∆−1
)

[

K2
0 +K2

0

N
∑

j=1

λ̄
(

ΓT
j R

−1
jj

)

+

N
∑

j=1

K2
j λ̄
(

ΠT
j R

−1
jj

)

+

N
∑

j=1

K2
j λ̄
(

ΓT
j R

−1
jj R0jR

−1
jj

)

]

,

(36)

where δ > max

{

λ̄(∆−1)[1+
∑N

j=1
λ̄(ΓT

j R
−1

jj
)+

∑N
j=1

λ̄(ΠT
j R

−1

jj
)+

∑N
j=1

λ̄(ΓT
j R

−1

jj
R0jR

−1

jj
)]

2 ,maxi∈N
λ̄(ΓT

i R
−1

ii
)+λ̄(R−1

ii
)

2

}

,
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Ki =
√
β2T
β1

[(1 + 2ζβ2αci)ε
i
max], D̄i = (DT

0 DT
i )

T, and Ii =

(

Ri0 2Πi

2Γi Rii

)

. The selection of parameters de-

pends on the proof of the following theorem.

Theorem 3. Consider the stochastic system dynamics given by (1), the critic NN and the actor NN
for each player i ∈ S given by (16) and (18), respectively. Let the PE condition (25) and Assumption 3
hold. The tuning laws of the estimated weights for critic NNs are (23), and for actor NNs are (24).
Provided that the inequalities (34)–(36) hold, and Rii > 4ΓiR

−1
i0 Πi, the closed-loop system state x(t) and

estimated weight errors W̃ci, W̃ai, i ∈ S are almost surely UUB.

Proof. The convergence proof is established via Lyapunov analysis. Consider the Lyapunov function

V(x) =
N
∑

i=0

[

Vi(x) +
1

2
‖W̃ci‖2 +

1

2
Tr
(

W̃T
aiW̃ai

)

]

, i ∈ S. (37)

The differential operator of the Lyapunov function (37) is given by

LV(x) =
N
∑

i=0

{

∂Vi

∂x

T
(

Ax+B0û0 +

N
∑

j=1

Bj ûj

)

+
1

2
Tr

[

xTCT ∂2Vi

∂x2
Cx

]

+ W̃T
ci

˙̃Wci + W̃T
ai

˙̃Wai

}

,

N
∑

i=0

(LVi1 + LVi2 + LVi3), (38)

where Vi(x) take the derivative along the closed-loop trajectories under control policies ûi.
Then we will evaluate the three terms of LV(x). The first term can be defined as

LVi1 =
∂Vi

∂x

T
(

Ax+

N
∑

j=0

Bj ûj

)

+
1

2
Tr

[

xTCT ∂2Vi

∂x2
Cx

]

=
∂Vi

∂x

T
(

Ax+

N
∑

j=0

Bju
∗
j −

N
∑

j=0

BjW̃
T
ajx

)

+
1

2
Tr

[

xTCT ∂2Vi

∂x2
Cx

]

. (39)

Subtracting the HJB equations (10) from the above equations (39) yields

LV01 = −1

2
xTQ0x−

N
∑

j=1

xTDT
0 ΠjDjx− 1

2
xT

N
∑

j=0

DT
j R0jDjx− xT

N
∑

j=0

Q0
xuj

W̃T
ajx,

LVi1 = −1

2
xTQix− 1

2
xTDT

i RiiDix− xTDT
i ΓiD0x− 1

2
xTDT

0 Ri0D0x− xT
N
∑

j=0

Qi
xuj

W̃T
ajx, i ∈ N . (40)

The terms (40) are upper bounded after using Young’s inequality by

LV01 6− 1

2
λ

(

Q0 +

N
∑

j=0

DT
j R0jDj

)

‖x‖2 − λ

( N
∑

j=1

DT
0 ΠjDj

)

‖x‖2 + 1

2

N
∑

j=0

‖xTW̃aj‖2

+
1

2
‖x‖2

N
∑

j=0

λ̄(Q0
ujx

Q0
xuj

),

LVi1 6− 1

2
λ
(

Qi +DT
i RiiDi +DT

0 Ri0D0

)

‖x‖2 − λ
(

DT
i ΓiD0

)

‖x‖2 + 1

2

N
∑

j=0

‖xTW̃aj‖2

+
1

2
‖x‖2

N
∑

j=0

λ̄(Qi
ujx

Qi
xuj

), i ∈ N . (41)

Substituting the tuning laws (23) and (24) into (38), the second term LVi2 becomes

LVi2 = −αciW̃
T
ci σ̄σ̄

TW̃ci + αciW̃
T
ci

σ

(1 + σTσ)2
εi.
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Applying Young’s inequality, LVi2 is bounded as

LVi2 6 −1

2
αciW̃

T
ci σ̄σ̄

TW̃ci +
1

2
αciε̄

T
i

1

(1 + σTσ)2
ε̄i. (42)

The 2-norm of each contiguous submatrix is bounded by that of its parent matrix such that
∥

∥

∥
Q̃i

(·)

∥

∥

∥
6

∥

∥

∥
W̃ci

∥

∥

∥
. Based on Theorem 2, it is known that

∥

∥

∥
W̃ci

∥

∥

∥
6 Ki (a.s.), Ki =

√
β2T
β1

[(1 + 2ζβ2αci)ε
i
max]. Using

Young’s inequality, the third term for each player has the upper bound given by

LV03 =− αa0W̃
T
a0xx

TW̃a0 − αa0W̃
T
a0xx

T

(

Q̃0
u0x

−
N
∑

j=1

ΓT
j R

−1
jj Q̃0

ujx
−

N
∑

j=1

ΠjR
−1
jj Q̃j

ujx

+
N
∑

j=1

ΓT
j R

−1
jj R0jR

−1
jj Q̃j

ujx

)T

×∆−1

6
αa0

2δ

(

λ̄(∆−1) + λ̄(∆−1)

N
∑

j=1

λ̄(ΓT
j R

−1
jj ) + λ̄(∆−1)

N
∑

j=1

λ̄(ΠT
j R

−1
jj ) + λ̄(∆−1)

N
∑

j=1

λ̄(ΓT
j R

−1
jj R0jR

−1
jj )

− 2δ

)

∥

∥

∥
xTW̃a0

∥

∥

∥

2

+
αa0δ

2
λ̄(∆−1)

[

K2
0 +K2

0

N
∑

j=1

λ̄(ΓT
j R

−1
jj ) +

N
∑

j=1

K2
j λ̄(Π

T
j R

−1
jj )

+

N
∑

j=1

K2
j λ̄(Γ

T
j R

−1
jj R0jR

−1
jj )

]

‖x‖2 ,

LVi3 =− αaiW̃
T
aixx

TW̃ai − αaiW̃
T
aixx

TW̃a0Γ
T
i R

−1
ii − αaiW̃

T
aixx

TQ̃i
xui

R−1
ii

6αai

(

λ̄(ΓT
i R

−1
ii ) + λ̄(R−1

ii )

2δ
− 1

)

∥

∥

∥
xTW̃ai

∥

∥

∥

2

+
αaiδ

2
λ̄(ΓT

i R
−1
ii )

∥

∥

∥
xTW̃a0

∥

∥

∥

2

+
αaiδ

2
λ̄(R−1

ii )K2
i ‖x‖2

(43)

with δ > 0, i ∈ N .
To ensure the system stability, the differential operator of the Lyapunov function should be less than

zero. Combining with (38), (41), (42) and (43),

LV(x) 6−
[

F1 ‖x‖2 −
N
∑

i=0

1

2
αciε̄

T
i

1

(1 + σTσ)2
ε̄i

]

+ F2‖xTW̃a0‖2 +
N
∑

i=1

F3‖xTW̃ai‖2 −
N
∑

i=0

1

2
αci‖σ̄TW̃ci‖2,

where

F1 =
1

2

N
∑

j=0

λ
(

Qj +DT
j R0jDj

)

+
1

2

N
∑

i=1

λ
(

D̄T
i IiD̄i

)

− 1

2

N
∑

i=0

N
∑

j=0

λ̄
(

Qi
ujx

Qi
xuj

)

−
N
∑

i=1

αaiδ

2
λ̄(R−1

ii )K2
i

− αa0δ

2
λ̄
(

∆−1
)

[

K2
0 +K2

0

N
∑

j=1

λ̄
(

ΓT
j R

−1
jj

)

+

N
∑

j=1

K2
j λ̄
(

ΠT
j R

−1
jj

)

+

N
∑

j=1

K2
j λ̄
(

ΓT
j R

−1
jj R0jR

−1
jj

)

]

,

F2 =
N + 1

2
− αa0 +

N
∑

i=1

αaiδ

2
λ̄
(

ΓT
i R

−1
ii

)

+
αa0λ̄

(

∆−1
)

2δ

[

1 +

N
∑

j=1

λ̄
(

ΓT
j R

−1
jj

)

+

N
∑

j=1

λ̄
(

ΠT
j R

−1
jj

)

+

N
∑

j=1

λ̄
(

ΓT
j R

−1
jj R0jR

−1
jj

)

]

,

F3 =
N + 1

2
+ αai

[

λ̄(ΓT
i R

−1
ii ) + λ̄(R−1

ii )

2δ
− 1

]

.

For the symmetric matrix Ii =

(

Ri0 2Πi

2Γi Rii

)

, i ∈ N , Ii > 0 is equivalent to the matrix inequalities Ri0 > 0

and Rii − 4ΓiR
−1
i0 Πi > 0. The former is obviously true, and the latter also holds by selecting proper

parameters Rii, Γi, Ri0 and Πi.
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Figure 1 (Color online) The evolution of the system state

trajectories.

Figure 2 (Color online) The convergence of the estimated

actor NN weights Ŵai, i = 0, 1, 2, 3.

Since the conditions (34)–(36) are satisfied, then F1 > 0, F2 < 0, F3 < 0. When

‖x‖ >
1

1 + σTσ

√

√

√

√

N
∑

i=0

αci ‖ε̄i‖2
2F1

,

LV(x) is negative definite. Hence the process V(x) is a positive supermartingale. Based on Lemma 1,
V(x) converges almost surely to a finite limit as t → ∞. Consequently, the state x and estimated weight
errors W̃ci, W̃ai, i ∈ S are almost surely UUB. This completes the proof.

Remark 8. When applying Algorithm 1 to a specific Stackelberg game problem, once the parameter δ
is fixed, the learning rates αai, i ∈ S can be selected based on (34) and (35). The values of parameters
Qi can be determined by (36), but it is difficult to accurately obtain the right-hand side of the inequality
(36) which depends on the parameters of the system model. Nevertheless, the simulation experiment
results indicate that generally selecting a large value of Qi for each player is conducive to the convergence
of the algorithm.

5 Simulation

In this section, a numerical example is given to show the effectiveness of Algorithm 1. Consider a
stochastic linear differential game with a leader and three followers given by

dx(t) =

[

Ax(t) +B0u0(t) +
3
∑

j=1

Bjuj(t)

]

dt+ Cx(t)dw(t),

where A =

[

0.03 −0.02

0.01 −1.01

]

, B0 =

[

1

2

]

, B1 =

[

0.1

1.4

]

, B2 =

[

3.2

−1.1

]

, B3 =

[

−2

3

]

and C =

[

1 1

1 1

]

. The

parameters in cost functions are selected as Q0 = diag[16, 16], Q1 = diag[15, 15], Q2 = diag[10, 10],
Q3 = diag[12, 12], R00 = R11 = R22 = R33 = R01 = R10 = R02 = R20 = R03 = R30 = 1, and
Π1 = Γ1 = 0.32, Π2 = Γ2 = 0.13, Π3 = Γ3 = 0.21.

Given the initial state x0 = [−0.2, 0.2]T, we can obtain the system trajectory with unknown system
dynamics. The learning rates for critic and actor NNs are αci = 5, αa0 = 1.4, αa1 = 3.5, αa2 = 2.3, and
αa3 = 1.8 in (23) and (24). We set T = 0.01 s. Since the matrix Q̄i ∈ R

6×6 for each player, Ŵci is a
21-dimensional column vector. Let the initial estimated critic NN weights Ŵ 0

c0 = 15×121, Ŵ
0
c1 = 11×121,

Ŵ 0
c2 = 12× 121, Ŵ

0
c3 = 10× 121 and the initial estimated actor NN weights Ŵ 0

a0 = Ŵ 0
a1 = Ŵ 0

a2 = Ŵ 0
a3 =

[0, 0]T.
We add an exponentially decaying exploration noise e(t) = 0.1e−0.1t sin(ωit), where ωi ∈ [−600, 600], in

the control inputs to ensure the PE condition and exploration. The stopping criterion is
∥

∥

∥
Ŵ l

ci − Ŵ l−1
ci

∥

∥

∥
6

10−5 for all i ∈ S. The evolution of the system state trajectories is shown in Figure 1. The convergence



Cao Y, et al. Sci China Inf Sci November 2025, Vol. 68, Iss. 11, 210204:15

Figure 3 (Color online) The convergence of the estimated critic NN weights Ŵci, i = 0, 1, 2, 3. (a) Ŵc0; (b) Ŵc1; (c) Ŵc2;

(d) Ŵc3.

of the estimated weights for actor NNs is shown in Figure 2, and the convergence of the estimated weights
for critic NNs is shown in Figure 3.

6 Conclusion

In this paper, we have investigated the stochastic linear quadratic (N + 1)-player Stackelberg game
with unknown system dynamics. To minimize the cost functions which are coupled through the state and
policies, the equilibrium policies, as the solutions to HJB equations, have been derived hierarchically from
followers to the leader. Since the system drift and diffusion dynamics are unknown, the HJB equations
cannot be solved analytically. Thus a model-free Q-learning algorithm has been developed to approximate
the equilibrium policies by the actor-critic structure. Then we have provided the convergence analysis
of the proposed algorithm under the proper PE condition, and have proven that the system state and
estimated weight errors are almost surely UUB. The effectiveness of the proposed algorithm has been
validated through simulation results.
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