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Abstract This paper studies a class of LQ mean-field team problems driven by backward stochastic differential equations
(BSDEs) with drift uncertainty. In this framework, agents cooperate through state-average to minimize a shared social cost
functional. A notable innovation of this work is modeling agent state dynamics using BSDEs with uncertain generators.
Unlike standard social optimal control frameworks that rely on forward stochastic differential equations, we model agent’s
states dynamics using BSDEs, in which the terminal conditions are specified. Moreover, we consider the model uncertainty
in the decision-making process. Accordingly, we construct the backward mean-field team problem under model uncertainty.
We derive the worst-case disturbance and formulate the related social cost. Applying a forward backward version of person-
by-person optimality, we construct an auxiliary control problem for each agent under the worst scenario and establish the
robust decentralized social strategy. The well-posedness of such consistency condition system is obtained by the Riccati
decoupling method. The related asymptotic social optimality is also verified.
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1 Introduction

Large population systems are complex dynamical systems composed of numerous individual agents that
interact according to predefined rules, thereby giving rise to emergent collective behaviors. These systems
have extensive applications across various domains, including economics, finance, engineering, epidemiol-
ogy, traffic flow management, and energy networks. Notable examples include investor groups in financial
markets, vehicle coordination in intelligent transportation systems, and information dissemination on so-
cial media. Mean-field game theory, independently developed by Huang, Malhamé and Caines [1] and
Lasry and Lions [2], provides a powerful theoretical framework for analyzing such large-scale interactive
systems. For further references on mean-field game, see [3-9].

Agents within large population systems are typically coupled through the mean-field terms embedded
in their state dynamics or performance functions. When individual agents adhere to externally enforced
commitments—such as contracts or agreements—and consequently strive to achieve a collectively optimal
return, the resulting framework is referred to as a mean-field team, also known as the social optimum
problem. In this setting, all agents act cooperatively, seeking a unified socially optimal strategy that
minimizes the overall social cost. Fundamentally, this constitutes a cooperative game, wherein each
agent must strike a delicate balance between reducing its own cost and contributing to the minimization
of the aggregate social cost. Huang, Caines, and Malhamé [10] studied the social optima linear-quadratic
(LQ) problem with N decision makers, providing a theoretical foundation for large-population cooperative
control in stochastic dynamic systems. Wang and Zhang [11] analyzed social optima in mean-field linear-
quadratic-Gaussian models with Markov jump parameters. For additional references, see [12-15].

The aforementioned research focuses on cooperative games driven by forward systems. When each
agent sets a predefined objective, describing such interactions using traditional forward systems becomes
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relatively complex. In contrast, backward stochastic differential equations (BSDEs), with their inherent
mathematical structure defined by terminal conditions, provide a more natural formulation for these
problems. Bismut [16] initially introduced BSDEs within a linear framework for stochastic optimal
control problems. Subsequently, Pardoux and Peng [17] further advanced the theoretical framework of
BSDEs, extending it to the nonlinear setting, thereby laying the foundation for subsequent research in
the field. Additionally, Duffie and Epstein [18] introduced BSDEs in the context of economics, proposing
a stochastic differential representation of recursive utility, which extended the standard additive utility.
The LQ optimal control problem for BSDEs with deterministic coefficients and weighting matrices was
first investigated by Lim and Zhou [19]. Buckdahn et al. [20] expanded BSDE theory to mean-field
settings through asymptotic methods, facilitating its broader application in the analysis of large-scale
systems. In recent years, the BSDE theory has been continuously refined and has become an essential
tool in game theory, optimal control, and financial mathematics. Readers interested in this topic may
refer to [21-26].

In the study of stochastic control and differential games, mathematical models typically assume that
system dynamics and cost functions possess specific structural properties, with fixed and precisely es-
timable parameters. However, the inherent complexity and uncertainty of financial markets challenge
the validity of such assumptions. Even with high-frequency data sampling, estimation errors remain
inevitable. Market environments are influenced by a multitude of unpredictable factors, making the
development of precise and reliable models particularly challenging in practice. Consequently, when
analyzing LQ systems and related control problems, incorporating model uncertainty is crucial for en-
hancing the robustness and practical applicability of the model. Uncertainty was first introduced in [27]
and later extended through the Ellsberg paradox [28], having long been recognized as a fundamental
factor in decision-making processes. To address model uncertainty, a soft-constraint approach is com-
monly employed, integrating penalty terms into the objective function to achieve a trade-off between
constraint enforcement and solution flexibility. This method permits mild constraint violations while
adjusting penalty parameters to modulate sensitivity to uncertainty, thereby enhancing the robustness of
the model. In dynamic systems, uncertainty typically manifests in the drift or diffusion terms, referred
to as drift uncertainty and volatility uncertainty, respectively. For drift uncertainty, relevant studies
include [29] for the mean-field LQ game, [30] for social optimal control of the mean field LG model,
and [31] for stochastic Stackelberg LQ differential game. For volatility uncertainty, Ref. [32] provided a
reference for mean field social optimum control, while Ref. [33] examined its impact within the framework
of mean-field game. More studies can be referred to [34-38].

Inspired by the above, we investigate a class of LQ mean-field team problems driven by BSDEs with
drift uncertainty. In this setting, agents cooperate and are coupled through state-average, collectively
minimizing a shared social cost functional. A key novelty of this work lies in the agents’ state dynamics,
which are governed by BSDEs with uncertain generators. This formulation fundamentally distinguishes
our framework from existing studies on robust socially optimal control, where system dynamics is typ-
ically described by forward stochastic differential equations (SDEs). Unlike forward SDEs, BSDEs are
formulated with a prescribed terminal condition, and their solutions consist of a pair of adapted processes
(y(+),2(+)), which depend exclusively on past and present information, without reliance on future data.
We introduce a stochastic process f to represent all unspecified external influences on drift evolution,
serving as a critical factor in the decision-making process. In this setting, f can be interpreted as an
adversarial player acting against all agents, aiming to exacerbate the overall social cost. Therefore, a
soft-constraint analysis is adopted by incorporating a negative quadratic penalty on f in the cost func-
tional to characterize the impact of uncertainty on the system. The principal contributions of this work
are summarized as follows.

e To our best knowledge, this article is the first research endeavor to formulate the robust mean-field
team optimization problem in a backward setting. Through a soft-constraint analysis, we address drift
uncertainty and reformulate the problem as a social optimal control problem governed by a system of
forward-backward stochastic differential equations (FBSDEs). Furthermore, we construct an auxiliary
control problem with FBSDEs as the dynamics and derive a robust decentralized strategy based on
consistency conditions and an approximation scheme.

e With drift uncertainty embedded in the system, the resulting robust decentralized strategy is gov-
erned by two forward and two backward optimal equations, which are coupled through initial values.
It turns out that the asymptotic analysis of the decentralized strategy involves coupled FBSDEs and is
much more challenging than that of [24]. By employing discounting techniques and Riccati decoupling
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methods, we establish relevant estimates for FBSDEs and verify that the derived decentralized strategy
is asymptotically optimal.

Mean-field team models with BSDEs provide a robust framework for analyzing cooperative decision-
making under model uncertainty in finance. It has wide applications in financial domains. A key ap-
plication lies in insurance premium pricing, where insurers must set optimal premiums while accounting
for uncertain claim distributions and collective risk exposure [39,40]. The BSDE state process naturally
aligns with terminal liabilities, allowing insurers to solve robust optimization problems under worst-case
scenarios [41]; similarly, in portfolio management, investors can use this framework to coordinate strate-
gies under fluctuating market conditions, ensuring that wealth targets are met despite the uncertainty
of the parameters [42-44]; another relevant setting is pension fund regulation, where pension funds must
ensure solvency over long horizons amid uncertain investment returns and longevity trends [45]. The back-
ward structure naturally models terminal funding requirements, while the mean-field component captures
how individual contribution decisions aggregate across the system [46,47]. This approach enables fund
managers to develop robust strategies that account for worst-case scenarios, such as prolonged market
downturns or unexpected increases in longevity. The advantage of this model is its unified treatment
of cooperative optimization among agents and stochastic control under uncertainty. This combination
makes it particularly suitable for real-world financial systems characterized by interdependent decision
makers and incomplete information. From an implementation perspective, the high-dimensional nature
of these problems typically requires advanced numerical methods [48,49]. For future research, we can
explore the integration of machine learning techniques with BSDE to enhance the practical applicability
of the model.

The structure of this paper is outlined as follows. Section 2 introduces the preliminary concepts and
formulates the backward mean-field team problem under model uncertainty. In Section 3, we employ a
soft-constraint approach to derive the worst-case disturbance. Section 4 addresses a social optimal control
problem under the worst scenario and establishes the robust decentralized strategy. Section 5 further
presents consistency conditions and their solvability, identifying the limit term. In Section 6, we further
demonstrate that the decentralized strategy obtained is an e-Nash equilibrium of the original problem.
Finally, Section 7 concludes the paper by summarizing the main results.

2 Problem formulation

Consider a finite time horizon [0,7] for fixed T" > 0. Assume that (2, F, {F:}o<i<r, P) is a complete
filtered probability space satisfying the usual condition and {W;(t),1 < ¢ < N }o<i<r is an N-dimensional
Brownian motion on this space. Let F; be the filtration generated by {W;(s),1 < i < N}ogsgt and
augmented by ANp (the class of all P-null sets of F). Let 7} be the augmentation of o{W;(s),0 < s < t}
by N[P.

Let (-,-) denote the standard Euclidean inner product. =" denotes the transpose of a vector (or matrix)
x. S™ denotes the set of symmetric n x n matrices with real elements. M > (>)0 denotes that M € S™
which is positive (semi)definite, while M > 0 denotes that, 3 ¢ > 0, M — eI > 0. We introduce the
following spaces which will be used in the paper:

o L% (% R™) := {n: Q = R"|n is Fp-measurable such that E|n|?> < co};

o L2.(0,T;R™) = {¢(-) : [0,T] x @ — R"|¢(-) is Fy-progressively measurable process such that
E Jy [((0)Pdt < oo};

o LZ(Q;C([0,T;R™) = {¢() : [0,T] x @ — R"[¢() is Fr-adapted, continuous, such that
E [supscjom ()] < oo

o L>(0,T;R™™) := {C(-) : [0, T] = R™™ | {() is uniformly bounded}.

We consider a weakly coupled large population system with agent {A;,1 < ¢ < N}. The dynamics

of the agents is given by a system of linear backward stochastic differential equations with mean-field
coupling. For 1 <i < N,
N
dyi(t) = — {A(t)yi(t) + B(t)u(t) + C(Oy ™ () + F()|dt + z()dWi(8) + D 2 ()dW;(1),
j=1,j#i (1)
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where & € L% (€;R™) is independent and identical distributed, f(-) € L%(0,T;R™) is some unknown

random disturbance to denote impact from possible modeling uncertainty and yN)(t) = % Zi\;l yi(t) is
the average state of the agents. Let u(-) = (u1(-), -+ ,un(-)) be the set of strategies of all N agents and
u—i(-) = (ur(+), - yui—1(-), wit1(-), - ,un(+)), 1 <4 < N. The cost functional for A;, 1 < i < N, is
given by

T

i £0) = 5B [ (1Ol #1103 @™ Ol 11 )+ 0Ty ™ O[]
2)

Since f(-) is unknown to the agents and each agent regards the disturbance as an adversarial player (e.g.,
[29]). These agents may adopt some soft-constraint analysis and the cost functionals should be revised
as

Ji(ui(-),u—i(-); f(4))
T 3
=52 [ (1013, + 1) — o0 ™ I, + =01 — LR, Yt + 1)~ T2 0] @

Accordingly, the aggregate team functional of N agents is

N
Tsoe(u(); F()) = > Jilua(-),ui(-); (). (4)
i=1
We impose the following assumptions on the coefficients.
Assumption 1. A(-), B(-),C(-) are matrix-valued functions satisfying
A(),C() € L=(0, T;R™™), B(-) € L*™(0,T;R™™).
Assumption 2. G,T's e R Ri(-),I'1(-),Q(-), H(:), Ro(-) are matrix-valued functions satisfying
Ri(-) € L®(0,T;8™), Q(t), H(), Ro() € L®(0,T;8"), T1()) € L(0, T;R™™),
Assumption 3. Q> 0,G>0,H >0, Ry(-), Ro(-) > 0.
Fori=1,---, N, the centralized admissible strategy set for the i-th agent is given by
U = {u(lui() € L30.TiR™) }.
Correspondingly, the decentralized admissible strategy set for the i-th agent is given by
U = {uwOlui() € L1 (0.TsR™) }.

According to the minimax control problem, we need to consider the possibility of the worst case scenario.
Thus, the social cost under the worst-case disturbance is defined as

J.:(})(é(u()) = sup Jsoc(u(');f)-
fFELZ(0,T5R™)

Then we can propose the following optimal control problem.
Problem 1. Find a strategy set 4 = (41, -+ ,un) € U° = ®fi1 Uy, such that

Jeoe(u()) = inf Jigc(u(-)). (5)

Due to the framework of a large population system, it is intractable for the agents to find the optimal
centralized strategies. Therefore, we introduce our robust BLQ-MFT problem which focuses on the
decentralized strategies.

Problem 2. Find a strategy set @ = (1, -- ,uy), where u; € U?, 1 < i < N such that
1
—(Jwo(u()) = inf Jwe )<7
() = b Tw()) <<

where e = (N) > 0, limy_,00 £(N) = 0.
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3 Mean-field BLQ problem for the disturbance

In this section, we will first seek the worst-case disturbance f(-); i.e., for any u; € uy, find f(-) such that

Jsoc(u('); f()) = sSup Jsoc(u('); f())

fELZ(0,TR™)

Clearly, the above problem is equivalent to minimize —Jyoc(u(-); f(+)) over f(-) € L%(0,T;R™), where

N
Jsoc( Z Jl )? f())
=1
1 N
=—5 Y E| / (sl + s Try ™I + 1zl % =171, ) dt + ly:(0)~Tay™ )13
=1

For further analysis, we make the following assumption.
Assumption 4. —Jsoc(u(+); f(+)) is uniformly convex respect to f.

We will apply the variation analysis to construct the worst disturbance f() For this, let (y;,z;;) and
(y?, 2f;) be the states corresponding to f(-) and f(-)+0f, respectively, where f € LZ%(0,T;R™) and 0 € R.

That is,
N

dy; = — (Agi + Bu; + Cg™N) + f) dt + ZdWi(t) + > Zi;dWi(t),
J=1,j#i

ui(T) =&

and
N

dy? = — (Ayf + Bug + Cy™0 4 F 19 f)dt +Rlawi(t) + S 2hawy(e),
j=1.j#i

yf(T) = §i7

where y(V)0 = L Z iyl g =4 Zi\;l ;. Therefore,
- Jsoc(u('>;f+ 0f) + JSOC(U(')U?)
N
_ 1 E g 0 _ N2 _ 17 (V)2 0112 _ 13112, — (| T+ 0F]|2 712, Vit
= 22 . lly; 1Y ”Q lly: 1Y ||Q+||ZiHH Izl — IIf + f||R0+||fHR0
+ 1192 (0) = Tay™2(0)[12 — 117:(0) — T2 ™M (0) (1% }

Yo = DY O | Zill3r = 11, )t -+ [¥:(0) = Ty ™) (0)]12,|6°

|

|
N =
— =

=
S~
!
—_—

((Qi =12y ™). 5 — 11 ™)) + (HZi, %) — (Rof. ) dt
+ (G(0) = T2 ™ (0),5:(0) - 25 (0)) |},

where
6 _ ~ 0 _ = 0 _ 3 N
Yi —Yi 2 T & Fij — #ij (N) 1
}/;: 7Zi: 7Zi‘:77y t) = — }/;,t
and
aY; = = (AYi+ €YW) 4 f)at + Ziawi(t Z Zi;dW(t
j=1,j#i

Yi(T) = 0.
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Introducing the following adjoint equation:

dp; = a;dt + B;dW;(t),
pi(0) = —=G3:(0) + (GT2 — T3 G + T'; G)g™M(0)

and ptN) = & Efil pi. Applying It6’s formula to (Y;, p;) and combining with (6), we have
— Jaoc(u(-); f +0F) + Juoc(u(-); f)
1 T
=5 X B[ (1= £ 120~ 11, )dt+ 1Y) Ty V(0]

i=1

N T N
-2 |E /0 ({QU: =Ty, 5 = Tag™) + (HZi, %) — (Rof, 1) ) dt

i=1

+ (G(Yi(0) = 2y ™)(0)),5(0) — T2 (0))] 0
1
2

N T
— =32 [B [ (=T O N2 151, e+ Vi) = Ty 0) 6

N T ~
-S0[E [ (@05 i) — (LTI QU =TI + (HZ,5)  (Rof. ) (AVip)

1

—(CYi,p™My = (f,pi) + <K,ai>+<6i,Zi>)dt}9.

Let
= ATpi+CTpN) — Qi + QT — T QT +T{ Q)y™), 8, = —HzZ:.
We have
uaelt(); F+OF) - Tuoelu(); ) =3 S [E (—||Y»—P YOOIZ, — 1 Zil + 11 £, )dt
soc soc 7 _2 i 1 Q | H Ro
=1

¥i(0) - T2y ™) 0) 2] 6% + Z B [ gm0l + it
Then f is a minimizer of —Jsoc(u(-); f) if

N T
> [E/O (= 1% = oY N = Zil% + 1711, ) de = 1%:(0) = T2y M (0))1%] > 0

i=1
and
N T N
ZE/ (f,Rof +pi)dt =0.
i=1 70
Therefore, f = —+ Ry ZZ \pi = =Ry 'p™) | where
N
dj; = — (Agi + Bu; + O™ — Rglp<N>)dt F AW+ D Fdwy(t),
=15

dp; = (Asz- +CTpN) — Qs + (QTy — T QT + FIQ)@““) dt — HzdW;(t),
7i(T) = &,pi(0) = =G7i(0) + (GT2 = TJ GT2 + T'y G)5™)(0).
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4 Stochastic optimal control problem for the agents A;

For simplicity, let
[ =QI —I{ QI +1,Q, Ty =GI'y — Ty GT, + T4 G.

In Section 3, the robust disturbance is determined. Then the state equation of the agent can be written

as
N

dys = = (Ays + Bui + Cy™) = Ry'p™ )t + zidWi(t) + > 244dW; (1), ya(T) = &, -
J=1,j#1 7

dp; = (ATPi +CTp™ — Qu; + fly(N))dt — HzdWi(t), pi(0) = —Gys(0) + Tay™(0),
and the corresponding cost functionals become

1 T
Jilui (), umi()) = 5E| / (sl + s = Ty ™ + 22l F = I 12,0 )de + 13a(0) = Ty ™ (0)]1%

N
T () =Y Tiui(), us(-)).
i=1
Since the agents focus on minimizing the social cost instead of their individual costs, a variational analysis

is essential to quantify the total variation in social cost, 0.J3° (du;), triggered by individual variation du;

of a generic agent A;. This type of analysis is not necessary in a cooperative framework and highlights
the key distinction between MFG and MFT.

Remark 1. Based on Assumptions 1-4 and referring to Lemma 2.1 in [30], we can further establish

the uniform convexity of the social cost functional J%9(u(-)) with respect to w.

4.1 Person-by-person optimality

Let {u;,u; € US}Y | be centralized optimal strategy of all agents. In order to quantify (total) variation

dJ%0 (du;) owing to basic du; by a generic agent A;, we need to consider the perturbation that the agent A;

uses the strategy u; € U and all the other agents use the strategy 4_; = (@, -+ , U1, Uit1, -+ ,Un). The
realized states (7) corresponding to (u;,4—;) and (@;, u—;) are defined as (y1, - ,yn) and (g1, ,YN)
respectively. For j =1,---, N, define the perturbation

5’U,j = Uj—’l_Lj, 5yJ = yj_gjv 5Zj = Zj—gj, 5Zij = Zij_gij; 5pj :pj—l_)j, 5\73 = Jj(ui,ﬁ,i)—Jj(ui,u,i).

Defining 5yV) = & Zf\il 6y;, opN) = L Zfil dp;, the variation of the state for A; is given by

N
doy; = — (A(Syi + Bou; + Coy™) — R515p<N>)dt +ondWi(t) + Y SzndWi(t),
k=1,ki

dop; = (ATépi +CTop™) — Qéy, + f15y<N>)dt — HozdWit),
5yZ(T) = O, 5[)1(0) = —Géyl (0) + f25y(N) (0),

and for A;, j # 1,

N
doy; = — (Aayj + Coy ™) — Rglap<N>)dt o AW (1) + D SzpdWi(t),
k=1,k+#j

dop; = (AT5pj +CTap™ — Qoy; + f15y<N>) dt — Héz;dW;(t),
5y;(T) =0, 6p;(0) = —Gdy;(0) + T20y™(0).
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Defining dy_; = ij:w# 0y; and dp_; = ij:w# dp;, thus

N N N
ddy,i:—(A5y,i+(N—1)O5y(N)—(N—I)Rgldp(N))dt+ SO dzdWit)+ Y Y zprdWi(t),
Jj=1,j#1 j=1,j#ik=1,k#j
N
dop_;= (ATap,i+(N—1)cT5p<N>—Qay,ﬁ(zv—nflay(m)dt_ > HozdWi(t),
J=1,j#i
8y—i(T)=0, p—s(0) = —=Gdy—;(0) + (N =1)T26y"(0).

(9)

By some elementary calculations, we can further obtain the variation of the cost functional of A; as
T
0J; = E{/ (<R1’ﬁi, (5ul> + <Q(gz — Flg(N)), 6yi — Fléy(N)> + <H2i, 521> — <R0_1]5(N), 6p(N)>)dt
0

+ (G(#i(0) = Tog™(0)), 65:(0) — T26y™(0)) |

For j # i, the variation of the cost functional of A; is given by
T
50 = E[ [ (1@~ D™, 8y, ~ T0y™) + (13,62) — (Rg 5,5 )
0

+ (G(5;(0) — T25™)(0)), 8;(0) = Loy ™) (0))]

Therefore, the variation of the social cost satisfies

T N N
wo __ - _ (N
6\7500 - IE‘|:/O (<R1ui7 5’U,1> + ;<Q ) Fly ) 5yj - Flay ) + ; HZJ? 523

N
— N(Rg PN, 6p™) ) dt + 3 (G (5;(0) = T2g™)(0)), 85(0) = Doy ™ (0))]

Jj=1

Replacing (), 5™)) in (10) by some mean-field term (i, p) which will be determined later,

T
6T =E| / (R, o) + (@i — T1g™), s = Ta0y™) + 3 (Qw; = T1g™), dy;~Taoy ™)
0 J#i
+(Hzi,82:) +) (Hzj,82)— N (R 'p™, ép N’>)dt +{(G(:(0)~T25'™(0)), 6y:(0) ~ T2y (0)
J#i
+ (G5 (0) ~ T2g™)(0)), 6y;(0) — Tady™)(0))]
s
J . '
= ]E{/O (<R1ﬂi, Sui) + (QFi, i) + (=QT1 =] Q + T{ QT'1)§, 0y:) + N > (Qg;, Néy;)
J#i
+ > ((=QUy =TT Q + T QU1)g, dy;) + (Hzi,02) + > (H,02) — N(Rg'p, op™) )t
J#i J#i
+ (G3i(0),6y:(0)) + ((=GT'y — Ty G 4 T'5 GT)§(0), 6:(0))
+ = Z<Gyj( , N6y;(0)) + Z —GTy —T'y G+ Ty GT2)§(0), 6y,(0 } + Zgl,

N —
J#i J#i

where

T
o =& [ (@ri+TTQ = TTQr) (G - 3™), Noy™)at
0

T
2 —E / (R (p— p™), Nop™) e
0

g3 = E((GTz + Ty G — T GT2)(j(0) — 5™ (0)), Noy ™ (0)).
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Introduce the limit (y**, p**) to replace (dy—;,d0p—;), and for j # 4, introduce the limit (yj,zj, Jk) to
replace (Noy;, Noz;, Noz;1), where

N
dy™ = — [(A +C)y* — Ry'p™ + Coy; — Ralépl} dt + 37 2 dWi(t),
k=1
dp™ = [(A + O)T “+ (0 - Q™ + C"op; + f15yz} dt, a1
N
dy = — {Ay; + Cy** — Ry'p™ + Coy; — Ralépz} dt + z;dW;(t) + Z 25 dWi (1),
k=1,kj

Yy (T) =0, p™(0) = =Gy™(0) + T26y:(0) + Lay™(0), ;(T) =0.

Therefore,

T
6T =E| /0 (R, dui) + (@@, i) + {(—=QT'y =TT Q+TT QL7 dys) + % >_(Q5;, Noy;)
JFi

. _ 1 _ A
+((=QTy —=T{ Q+T{ QT)§,0y ) + (Hz, 62) + N > (Hzj,Nézj) — (Ry'p, opi)

JFi
- Z<R51ﬁ, 5pj)dt + (G7:(0),0yi(0)) + ((—~GTy — 'y G 4+ I'y GT'3)(0), 6y:(0))
JFi
+ % D26 0), Noy (0)) + ((~GT; ~ TG + TIGT2)j(0), 8y +(0))] + Zél
B
T ’ 1
= E[/O (<le, Oui) + (@i 6yi) + (—QT1 =TT Q + T QT1)7, yi) + > Qi)
J#i
1
+{((=QT1 =T Q4T QI)g, y**) + (HZ;, 62) + ¥ > (Hzj,2) — (Ry ', ops)
JFi

- <Ro_1]3=p**>)df + (G7:(0),6y:(0)) + ((—GT2 — 'y G +T'5 GT2)§(0), 5y:(0))

1 — * T T
+N;<Gyj(0),yj(o (Gl —TTG + TG } Zsl,
VE2

where
T
ea= / (QT1 +TTQ =TT QL1)g y™ — dy_.)dt,

/ ZQyJ7N5yJ y;)dt,

J#l
1
g6 = / ZHZJ,N(SZ]—Z Ydt
J#Z
T
er :E/ (R3p, p™ — Op_s)dt
0
es = E((GT'2 +T'; G — 'y GT'2)§(0), y*™*(0) — dy—4(0)),

o = B (G35 (0), Noy;(0) — (0))).
i
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For j # i, introducing the following adjoint equations (le, T2,q2) to replace (yF,y™", p*"),

da] = oddt + Bldw;(t), 27 (0) = G;(0),
K
dry = andt +»  BEAWL(E), 72(0) = T23(0) + Gg2(0) — Tag2(0), 12)
k=1
K
dgy = yodt + > n5dWi(t), q2(T) = 0.
k=1

Applying 1t6’s formula to (w{,yﬁ, we have

— E(G7;(0),y;(0))

=& [ [(=ATad - ad) + {812 (k) R ™) — (T ) + (R )
Applying 1td’s formula to (2, y**), we have

— E(T2§(0) + Gg2(0) — T'2g2(0), 5**(0))

2

T
:]E/ |:_ <:E27(A+C)y**>+ <x27R0_1p**> - <:E27C§y7,>+ <x27R0_16p7,> a27 +Z ﬁ27 :|
0 k=1

Applying Ito’s formula to (g2, p**), we have

E{g2(0), Gy™*(0) — T20y:(0) — T2y (0))
T

=K ; {(qg, (A+ C)Tp**> + (g2, (T1 = Q)y™) + (g2, CT5pi> + (g2, T18y;) + <72,p**>} dt.

Therefore,
g T T 1
6T = E| / (R, 0ui) + (@@, i) + {(=QTy =TT Q+TT QU1)3:09:) + = > (Q4i-v7)
0 i
~ * ok = 1 = * —1
+{((=QT1 =T Q+T/!Qr)g,y™) + (HZ;, 62) + ~ > (Hzj,27) — (Ry ', ops)

J#i
— (Rg"pp™) )dt + (G5i(0), 6y(0) — (T3 (0),by:(0 N; G0
+ (02300, 0)] - Y B(GT0).550)
i
A B [ (AT )+ 51 5) ~ (T + (R ) — (k)

J#i
+ (Ry "o, 0pi) | dt + E(T2§(0) + Gaa(0) — Ta2(0), 5™ (0))

T
B [ [ oa, (44 Oy + (o R '9) — (a2, COyi) + (o0, Ry 690 + a2, ™)
0

T
3Bt + Elaa(0). =G (0)+ Tad0) + Tay ™" O) +E | [(an, (4+0)77)

Mz

k=1

+ (g2, T1 = Q)y™) + (g2, C " 0ps) + (a2, T10ws) + (32,0 }dt + ZEZ
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T
= E[/O (<R1m, Sus) + (Q%i, 6yi) + (—QT1 = T{ Q + T QT'1)d, yi) + % > (Quj v
J#i

~ skok = 1 = * —1 A
+{(=QP1 = T]Q + T{ QL) y™) + (Hzi, 0z) + 1 D (HZj,2}) — (Ry 5, 0py)
J#i

— (Ry'5p™) ) dt + (G0), 63:(0)) — (F2(0), 643 (0)) + (T242(0), 631 (0))|

1 T S - - -
-=>E / [(—ATad +od,y)) + (8], = (CTad,y™) + (Rg e, p™)
0
) T
—(CTal,0y) + (Rg'w], opi) | dt + E / [ = (@2, (A+ Chy™) + (w2, Ry 'p™) = (w2, Coy)
0
N T B
+ (w2, Ry opi) + (a2, y™™) + Y (85, % }dHE/ [<Q27(A+C)TP**>+<Q27(F1 - Q)y*)
k=1

+ (g2, OTCSPO + (g2, T10y:) + (y2,p }dt + Zal

Let )
al = Qy; + AT,
ay =19 — C Bzl + (A+C) o — (1 — Q)T o,
Bl = Hz;, (13)
By =0,
Yo = Ry'p+ Ry 'Ex} — Ry'twg — (A + O)go,
then

T
AN :]E[/ (<R1ai7 Sui) + (Qi, 0yi) + (—T1§ + CTEay — CTay + Tiqa, 6ys) + (HZ;, 62;)
0
+(—Ry'p — Ry 'Ex} + Ry ‘oo + Cqo, 6pi>)dt +(G7i(0) = T2§(0) + T2g2(0), (0 } + Z 28

where

T
1 ; 1 ;
Elo_E/O <C’T Ex}—NZx{ ,y**>+<RO_1 NZx{—Ex% ,p**> dt,

j#i JFi
r T 1 J 1 -1 1 1 J
11 = E ; C N ;Il — E.Il ,5yz + RO Exl - N ;xl 75p1 dt.

Note that :1:{, j # i are exchangeable. Hence in the above notations we use r{ when we consider the
expectation. Moreover, following (13), the adjoint equation (12) becomes

dwl (Qy; + )dt + Hz;dW;(t), ‘le (0) = Gy;(0),
day = [rlg —C i+ (A+0) Ty — (T — Q)TqQ} dt, 2(0) = L25(0) + Gg2(0) — T2¢2(0),  (14)
dgs = [Ry '+ Ry i1 — Ry s — (A + C)ga . a2(T) =0,

where ¢, p, 1, 2,2 will be determined by the consistency condition in Section 5. Consequently, we
introduce the variation of the decentralized auxiliary cost functional J; as follows:

T
5J; = E{/ ((Rlﬁi, du;) + (QUs, 0yi) + (~T19 + CT#y — CTag + T1go, 6ys) + (HZ;, 62;) (15)
0 15

+ (=R5 ' — Ry a1 + By 'wa + Caz, 0p) ) dt + (Gi(0) — T23(0) + T242(0), 8 (0))]
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Note that in (15), the variation only depends on du; and dz;. Therefore we can construct the corre-
sponding auxiliary control problem, from which decentralized strategies can be derived. Furthermore,
in the above procedures we only ignore the error term ¢;,0 = 1,---,11. The asymptotic optimality can
be guaranteed as long as we can obtain the exact estimations of the error terms, which are provided in
Section 6.

4.2 Decentralized strategy

Motivated by (15), introduce the following auxiliary problem.
Problem 3. Minimize J;(u;) over u; € Z/Ifl where

dy;i = — (Ayi + Bu; + Cjj — Rglﬁ) dt + 2 dWi(t),  yi(T) = €,
dp; = (ATpi +CTp— Qyi + fl?}) dt — Hz;dWi(t), pi(0) = —Gy;(0) + T'25(0),

and
1 T
Ji(us) = iE{/o (<R1Uiaui>+<Qyiuyi>+2<®17yi>+<HZiaZi>+2<®2vpi>)dt+<Gyi(0)ayi(0)>+2<®37yi(0)>

with ©1 = —1:‘1@-1- CT,fl — CTLL'Q +f1Q2, Cr= —Ro_lﬁ — Ro_lii'l =+ Ro_lwg + CQQ, O3 = _1:\2@(0) + 1:‘2(]2(0).
The above problem is a stochastic optimal control problem with the state being FBSDE. Similar to
Section 3, we will apply variation analysis to find the optimal control.

Proposition 1 (Decentralized optimality condition). Under Assumptions 1-4, 4; is the optimal control
of Problem 2 if and only if @; satisfies

u; = RT'BTX;,
where the adjoint variables (Xj, p;) are governed by

dX; = (AT X; — Qyi — ©1 + Qpy)dt — Hz;dWi(t), X:(0) = Gp;(0) — G7;(0) — O3,
dp; = —(Api + ©2)dt, pi(T) = 0.

Proof. Let (s, zi, p;) and (yf, zf ,pf) denote the states corresponding to u; and @; + Ou;, respectively,
0. 0_ 5 o_5.
where u; € U and § € R. Let YV; = Y% 7, = 2L Py = Biolithen

dy; = —(AY; + Bui)dt + ZdWi(t),  Yi(T) =0,
dpP; = (ATPi - QYi)dt — HZdWi(t), P,(0) = —GY;(0).

Therefore,
1

=5 [E /OT ((Ruuis ) + (QVi, V) + (HZi, Z2) ) dt + (GYi(0), Yi(0))|6*

T
+ [E/o (<R1@z‘a“i> +{(QY;, 7i) + (01,Y3) + (HZ;, Z;) + (O2, Pi>)dt + (GYi(0),5:(0)) + (O3, Yi(o»}e'

Introducing the following adjoint equation:

dX; = a;dt + B;dWi(t), Xi(0) = Gp;i(0) — Gy:(0) — O3,
dpi = idt, pi(T) =0,

and applying It6’s formula to (X;,Y;) and (P;, p;), we have
1

=5 []E /OT ((Rlui,ui> QYY) + (HZ, Zﬁ)dt + <GYZ-(O),YZ-(O)>}92 + [E /OT ((Rlﬂi — BT Xi,w)

+ (Vi 00 + Qui — AT X; + 01 — Qi) + (Zi, Bi + Hz) + (Api + vi + O3, Pi>)dt}9'



Feng X W, et al. Sci China Inf Sci November 2025, Vol. 68, Iss. 11, 210203:13

Then u; is the optimal control if and only if
T
B[ ((Ruwsyws) + @V, Y0) + (HZ:, Z))de+ (GY:(0),i(0)) > 0
0
and
T

E/ ((Rﬂiz‘ ~ BT X, u)) + Vi, 0+ Qyi — AT X+ 01— Qpi) +(Zi, Bi+ HZ) + (Api +7; + 2, Pi>)dt = 0.

0

Therefore, Rll_l,i — BTXZ = O, o; + ng — ATXl + @1 — Qpl = O,ﬂz + HEZ' = O, Apl + Yi + @2 = 0. Then
the adjoint equation is

dX; = (ATXi —Qpi— O + Qpi)dt — HzdWi(t), Xi(0) = Gpi(0) — G7:(0) — O3,
dp; = —(Api + Gg)dt, pi(T) = 0.

For the optimal control u; = RleTXZ-, the related Hamiltonian system becomes

dij; = — (Agi +BRT'BTX, + O — Ro_lﬁ) dt + zdWi(t), §:(T) = €,

dp; = (AT@- Qi+ CTh+ flgj)dt — HzdWi(t), 5:(0) = —G7;(0) + T23(0), .
dp; = —(Api + @g)dt, pi(T) =0, o)
dX; = (ATXi +Qpi — Qi — @1)dt — HzdWi(t), X;(0) = Gp;(0) — G5i;(0) — O

5 Consistency condition

Note that the optimal decentralized strategy for the auxiliary control problem involves some undetermined
terms. In this section, we will characterize these terms, particularly the frozen state-average limit g,
using some consistency matching scheme or fixed-point principle. Under the standard assumption in the
mean-field framework that all agents are independent and identically distributed (i.i.d.), and governed
by the same dynamics and cost structures, the agents are statistically symmetric and exchangeable, and
therefore the empirical average over the population converges to the expected value of any single agent
as the population size tends to infinity. By combining the consistency condition and law of large number,
we can derive the limiting consistency condition system through identifying § = Ey; and integrating (16)
with (14) [50]. Given that all agents are statistically identical in the distribution sense, we will use a
generic Brownian motion W (-) to represent the consistency condition system in the following analysis.

Proposition 2. The parameters in problem 3 can be determined by
(4, D, #1,72,q2) = (EgaEﬁ,E@,iz,%),
where (7, 2,9, X, p, Go, 71, #2) € L%(Q;C ([0, T);R™)) x LZ(0, T;R™ %) x L%(Q; C ([0, T];R™)) x L%(%;
C ([0, T);R™)) x L%(0,T;R") x LE(0,T;R™) x L%(Q: C ([0, T];R™)) x L2(0,T;R") is the solution of the
following mean-field FBSDE:
dy = — (Ag +BR;'B"X + CEy — Ro—llEp) dt + zdW(t), §(T)=E¢,
dp = (ATp — Qi+ CTEp+ flEg) dt — HzdW (1), p(0) = —Gy(0) + D2Ey(0),
dp = — (Ap — Ry'Ep — Ry 'Eiy + Ry 'ag + Oqg)dt, p(T) =0,
dX = (ATX +Qp—Qy+T1Ej—C Eiy +C &g — f‘lzjg)dt — HzdW (t),
diy = (Qy+ AT &)dt + HzdW (t), #1(0) = Gg(0),
DEj—C'Eiy + (A+C) a3y — (T — Q)sz} dt,

(17)

dig =

—

diy = Ry 'Bp + Ry 'Biy — Ry'dy = (A+ C)o)dt, @x(T) =0,
X(0) = Gp(0) — G(0) + T2E(0) — T2G2(0),  #2(0) = T2EH(0) + G2 (0) — T2g2(0).
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In this subsection, we will use the Riccati decoupling method or four-step method to study the well-

posedness of FBSDE. To begin with, we give some new formulation of (17). DefineX = (p', X T

ST T\ T
7x1 ,$2) )

Y=(@"p",0,4 )", Z=(27,0,0,0)T; then the mean-field FBSDE (17) take the following form:

dyY = — [Alx + AEX] + B Y + ]E%lE[Y]} dt + ZdW(t), X(0) = H,Y(0) + HoEY(0),

_ _ (18)
dX = {AQXJFAQ]E[X] +BQY+BQE[Y]}dt+ngdW(t), Y(T) = (£7,0,0,0)7,
where
0 BR;'BT 0 0 ~Ry'0 0 0 A0O0 0 C000
0 0 0R*Y| - —R;Y0-R;'O 0A0 C _ 0000
AIZ 0 7A1: 0 0 7181: 7]Bl: B
0 0 0 0 0 0 0 0 000 O 0000
0 0 0Ry* ~Ry' 0 —R;' O 00CA+C 0000
AT 0 0 0 cCTo 0 0 -Q00 0
0 AT 0 cT _ 0-CT o0 - 0 -T
Ay = Ay = By=| 9 ' :
0 0 AT 0 0 0 0 Q 00 0
0 0 0 (A+0O)T 0-CTo 0 00—-(T1—-Q)"
Ty000 —H000 -G0O0 0 ;000
_ ry000 —H000 ~G GO0 —-T, ;000
]BQZ 7C3: 7H1: 7H2: 5
0000 H 000 G 00 0 0000
Ty000 0 000 0 00G-T, ;000
and 0 denotes the zero vector or zero matrix with suitable dimensions.
Proposition 3. Let
A = Al-i-Al 0 L= Bl-i-Bl 0 _ Hl-i-HlO
0 A/’ 0 B/’ 0 o0/’
Ay +Ay 0 By+By 0 00
Ay =72 A , y=| T , C3= .
0 A, 0 B, 0Cs
Supposing the Ricatti equation
{ &+ B(Ay + HA) + (B + Ay H)® + B[HBy + (A + HADH + Ba]® + Ay =0, (19)
®(T) =0

admits a unique solution ®(-) over [0,7] such that I — ®(C5 — H) is invertible, then the CC system (18)
admits a solution.
Proof. Taking the expectation of (18), we can get

dE[Y] = — [(A1 + A1) E[X] + B, E[Y]] dt, E[X(0)] = (H1 + Ha) E[Y(0)],
dE[X] = [(A2 4+ A2) E[X] + (B: + By) E[Y]] dt, E[Y(T)] = (E[g]T 00 O)T.
From (18) and (20), it follows that

d(Y —E[Y]) = — [Ay (X — E[X]) + B, (Y — E[Y])] dt + ZdW (¢),
d(X - E[X]) = [Ag (X — E[X]) + By (Y — E[Y])] dt + CsZdW (t),

;
0, (Y -EN))(T) = (¢" ~Eg7T0,0,0) .

Let
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Then mean-field FBSDE (18) is equivalent to the following FBSDE:

dY = — [ALX + B1Y)dt + ZdW (t), X(0) = HY(0), (21)
dX = [AoX + BoY] dt + C3ZdW (t), V(T) ==,
where
— 0 = = T T T T
Z_<Z>a ‘—‘_(Eg 70707075 _E§ 707070) .
Defining .
X(t) = X(t) - Hy(t)v te [OvT]a
we have
dX = [(Az +HA)X + (HBy + (As + HANH + Bo)Y]dt + (C3 — H)ZdW (t), X(0) =0, 22)
dY = —[(B1 + LH)Y + A X]dt + ZdW (t), V(T) = =,

which is also a fully-coupled FBSDE while the initial condition is decoupled. We assume that X and Y
are related by

V() =p(t)X(t) +¥(t), te€][0,T], as,

where ¢ : [0,T] — R3"*8" i5 a deterministic matrix-valued function with ¢(7) = 0 and ¥ : [0,7] x  —
R8" satisfies the following BSDE:

{ AV (t) = a(t)dt + Y (t)dW (t), (23)

a
U(T)==2
with the generator a(-) being undetermined. Applying It6’s formula and comparing the diffusions, we get
Z=[-®C3—H)]'T.
It then follows from the drifts that ¢ satisfies (19) and
T+P(Cs-H)Z=2Z.
Then Eq. (23) has the following form:

A = — [31 + Ay H + P(HB + (Az + HANDH + Ba) | Vdt + YdW (t),
U(T) =

(24)

(1

When Eq. (19) admits a unique solution ®(-) such that I —®(C3 —H) is invertible, BSDE (24) admits a
unique adapted solution (¥(-), T(-)). Then the equation of X becomes

dx = { {AQ + HAL + (HB1 + (A2 + HADH + Bz)qﬂ X+ (HBy + (As + HANH + BQ)\If}dt
+(C3 — H)(I — ®(C3 —H)) ' TdW (t),
X(0) =0,

which admits a unique solution X'(-). Furthermore, the second equation in (21) (BSDE) admits a unique
solution (Y(-), Z(-)). Then the existence of X(-) is obtained.
In Proposition 3, we obtain the solution of (17) through Riccati equation (19). Following [51, Theorem

5.3], we can give the existence and uniqueness of the solution to Riccati equation (17).
Proposition 4. For any s € [0,T], let U(-,s) be the solutions of the following ordinary differential
equation (ODE):

%\Ifl(t, S) = A (t)‘I’l(t, S), t e [S, T],

Uy(s,s) =1,
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where
A = Ao () + HAL () HB1(-) + [Aa(-) + HAL ()H + Ba()
1 ~Ai() CBy() + A (] '

Supposing

-1
{ (0 I) Uy (T 1) (?) } € L*(0, T; R8>8y,

then Ricatti equation (19) admits a unique solution ®(-), which is given by

—1

o(t) = — l(o I) UL (T, 1) C)] (0 I) UL (T, 1) <g> . telo,T). (25)

To further verify the existence of solutions for the Riccati equation under specific conditions, we consider
a special case where the matrix A;(-) is assumed to be a constant matrix (denoted as A). Under this
assumption, we obtained the following proposition, which explicitly demonstrates that, under the given
conditions, the solution to (19) can be expressed as follows (see [52]).

Proposition 5. Let A;(-) be constant-valued matrices and A;(t) = A. Suppose Vt € [0,T],
0
det (0 I ) eM <I> > 0 holds. Then Eq. (25) admits a unique solution ®(-), which has the following

representation:

6 Asymptotic optimal

In this section, we assume the following.
Assumption 5. Q =T, =0,(A+C) (T2~ G)+ (T2 - G)(A+C) — (T2 — G)Ry* (T2 — G) > 0. Let
u = (uy,- - ,un) denote the set of decentralized strategies given by

u;(t) = R7'BT Xy,

where
dy; = —(Ayi + BRT' BT X, + CEj — By 'Ep)dt + zdWi(t),  yu(T) = &,

dp; = (ATPi + CTEﬁ) dt — HzdWi(t), pi(0) = —Gy;(0) + [2Ey(0),

dp; = — (Api — Ry'Ep — Ry'E# + Ry 'is + C(jg)dt, pi(T) =0, (26)
dX; = (ATXl- —CTE# + OTirg)dt — HzdWi(t),

Xi(0) = =Gyi(0) + Gpi(0) + ToEg(0) — T22(0),

and the frozen terms (i, p, §2, %, p, X, Z1,a2) is the solution of (17). Correspondingly, the realized decen-
tralized state (y1,p1, -, Un,PN) satisfies

dj; = ~ (4G + BR'BT X, + CF™) — By )dt + ZdWi(e),  5u(T) = &
_ (27)
dp; = (AT@- + OTﬁN>)dt — HZdWi(t), 7:(0) = —G5:(0) + T2 (0)

with gV) = % Zi\il 7; and p(N) = % Zﬁlﬁl Let us consider the case that the agent A; uses an
alternative strategy u; while the other agents Aj;, j # 4 apply the strategy u_;. The realized state with
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the i-th agent’s perturbation is
dy; = — (Ay’i + Bu; + CgN) — RglpW))dt + 4dWi(t),  (T) = &,
dp; = (AT;sZ- + chW))dt — HzdWi(t), p:(0) = —Gyi(0) + Tag™(0),
and for j # 1,
dy; = — (AZJJ' +BR'BTX; + Oy — Ralﬁ(m)dt +4dW;(t), (1) =&,
dp; = (ATP'J‘ + CTﬁ(N))dt — Hz;dW;(t),  p;(0) = —G;(0) + T2y (0)

with g™ = LS g and pOV) = L 527 ;. Define

6’u]‘ =U; — ﬂj,éyj = yj — %,5% = Jj(ui,ﬂ_i) — Jj(ui,u_i).

Similar to Subsection 4.1, we have

T
(Sj;gg = E[/ (<R1’(7i, (5ul) + <CTE5’J1 — CTLZ'Q, 53/1) + <—R61]5 — RalEi'l + Ralj’,'g + C(jg, 5]91')
0

8 (28)
+ (HZ:,62:) ) dt + (GFi(0) — T2Ej(0) + Tada(0), di(0))] + e
=1
where
T
e=E / N (R ' (Ep — p™)), ap™))dt,
0
e2 = E((GT + 'y G = T3 GT2) (E5(0) — 5(0)), Noy™(0)),
T
1
£ = ]E/ ~ > (HZj,Nbzj — z3)dt,
0 i
T
€4 = IE/ (Ry "Ep, p™ — dp_;)dt,
0
T
o =B [ {(GL2+ T]G ~ T Gra)Ei(0),7 (0) - 6y-:(0), (29)
0
1 .
=B [ 5 S (GH0).N5y;(0) - 55 0),
0 7 g
c E/T (CT(E 1 1 Z j) **>+<R—1(1 Z I _R 1) **>)dt
7= L1 — 77 €7 ), T €Ty — LTy ), )
o 1Ty 2 Y 0o \y 2" 1P
J#i Ve
! j 1 P J
es=E ((C (N le — Ex7),0y:) + (Ry ~ (Exy — N le),épi))dt.
0 G#i J#
Let a* = sup Amax(—3(A(s) + A(s) ")), where Apax(M) is the largest eigenvalue of the matrix M. In

0<s<T
order to verify the asymptotic optimality, first we need to give some estimations on the error terms in
(29). In the proofs, K will denote a constant whose value may change from line to line. It follows from
Proposition 3 that Eq. (17) has a solution. Therefore, there exists a constant K independent of N such
that

T
B sup [0 + BOF +[50F +XOF + | 0F +220)F +1@F] +E [ |20Pa < K. (30)
Lemma 1. Under Assumptions 1-5, let a* < 0. There exists some § > 0 depending on a* such that

when || B]l, |G, BT [I, 1 H]| € [0,6),

sup B sup [[Ti(6)* + 5:(0)* + |6 (1) + ()] < K. (31)
1SN 0<t<T
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Proof. For simplicity, let
O, = CEy — Ry'Ep, O3 = —C " Ei; + O &2, O3 = Gp;(0) + T2Eg(0) — Tag2(0).

First, for some A € R, applying It6’s formula to e~*| X;(#)|?, we have

t

t
Bl MPXG(OP] + ME [ e IX(s)ds < K+ 2IGIPEL O + |HIPE | e V]as(o) s,
0 0
where A\; = A — 2a* — k—ll for some ky > 0. Similarly, applying It6’s formula to e’xl(t’s)*)‘5|Xi(s)|2,

- - t
E [e™MX(0)]7] < Ke™™ +2|G[y: (0) e~ + IIHII2E/ e OIS
0

e~ (T—9) < l=e”

" < I\;IT for s € [0, 7], we obtain

Integrating on [0, 7] and noting 1=

T 1—e™MT ] _eMT 1 —e M7 T
E / X dr < KA L I a2 + L e / e[z (b)|2dt.
0 /\1 )\1 /\1 0

Especially, if A; > 0, we have

T 2
K  2||G
IE/ e MX; ()Pt < — + ]
0

o PG 17
o SO+ RE [ e (32
1 1 0

At

Next, for some A € R, applying Ito’s formula to e=*|y;(t)|?, we have

T T
=5 5:(s)|2ds < K + kQHBR;lBTH]E/ =51 X,(s)|2ds,
t

(33)

T
Bl +3aE [ e ui(s)as+E [
t t

Y BR;'BT
Where )\2 = —)\ — 2@* _ ”}97“ _

e~ M(s=)=M| X, (5)|2 and integrating on [0, 7], we have

kla for some kg, k3 > 0. Similarly, applying It6’s formula to

1 —>\2T

- _ T
IE/ e |yi(s)[2ds < 27 K+k2|\BRleT||E/ e Xy (s) P ds .
0 2 K

Especially, if Ay > 0, letting ¢ = 0 in (33), we have

T T
i (0)]? + IE/ e M zi(s)|?ds < K + kQHBR;lBTHE/ e X, (s) [ ds. (34)
t t

Since a* < 0, we can choose sufficiently large k1, ko, k3 such that

1 |[BR{'BT| 1

4 *
“th ks ks

< 0.

Therefore, there exists A € R such A\, Ay > 0. Combining (32) and (34),

2k |G| BRL BT

+ kN
)\1

O a

T
IE/ e*®|zi(s)|ds.
t

Note that there exists § > 0 depending on a* such that when || B||, |G||, | Ry, | H] € [0,4),

T
i (0) P+ E / e |zi(s)Pds < K +
t

2ko||GIPIBRBT| | ke HIPIBR BT _
)\1 )\1 '

Therefore,

T
() +E / ez (0)2dt < K.
0
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It then follows from Burkholder-Davis-Gundy inequality that

E sup |X;(t)* < K.
0<t<T

Consequently,

1
E sup [XM(1)]P < —E sup |X;(t)]* < K. (35)
0<t<T o<t<T

Finally, it follows from (27) that

N
~ ) 1oL
A ™ = —[(A+ )™ + BR7'BTX™) — Ry 1@<N>}dt+ﬁ§ Zd W (1),
j=1
N
0
dp™) = (A+C)Tp M dt — ~ > Zdw; (), (36)
=1

N
I = 56 50 = - io)

Defining pV) = p(™) — (T'y — G)gN), then

N
H _ ~ _ _
dp™N) =(A+0)TpMat — ~ > ZdW;(t) + (T2 — G) [(A + )™ + BR'BTX™) — R; 1;3““} dt
j=1

N
— Ty -G Z

=[(A+O)TFN + (T2 = G)(A+ O™ + (02 - G)BR; BT XM — (0 — G) Ry 5™t

N

- Z [ 4 (T — )le}zjdwj(t)

= [(A + OV PN L (A+C)T (T — Gy + (T — G) A+ O™ + (T3 — G)BR; ' BT X V)
N

_ _ _ H r
— (T — G)Ry 'p™) — (T3 — G)Ry 1 (T2 — G) N>]dt 2tla-b Z;dW;(t).
Jj=1
Let 7(V) = ®p(N) + ¢, where
) N 1 N
dé = bdt 9 dW; T)= — -
o= +Z:j W5, () N;@,

then

A7) —pMdt + @ [(A +C) M + (A+0)T (T2 - G)g™ + (T2 - G)(A + C)F™)

+ (02— G)BRy'BTXN) — (Ty — G)Ry ' p™) — (Ty — G)Ry (T2 — Gy | dt + gt
N _
H+Ty—-G.
—+ J; (’l% — (I)sz)dwj(t)
—opMNdt + @ [(A +O)T PN+ (A+0) (T2 — G)Pp™N) + (A+C)T (T2 - G)¢

+ (T = G)(A+ C)@pN) 4 (T3 = G)(A+ C)g + (T — G)BR; ' BT X )
— Dy = G)Ry'p™) — (T2 — G)Ry ' (T2 — G)2p™) — (Dy — G)Ry M (T2 — G) + sﬂ dt
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N _
+3° (ﬁj - @%ﬂ;gj)de(t).

j=1

Therefore,

dpM) 4 A+ C) TP 4+ B(A+ )T (T — Q)N + ®(A+C) (T — G)o

+ (T2 — G)(A+C)p™N) + ®(Ty — G)(A+C)¢p + (T2 — G)BR; I BT X

— @[y — Q)R 'p™) — Ty — G)Ry 1 (T — G)0p™N) — &(Ty — G)Ry (T2 — Q) + ¢
+ [(A+C)op™ 4+ (A+ C)p+ BR'BT XN — R p(N) — YTy — G)dptY)

— Ry' (T2 — Q)| =0,

H+Ty-G_. 1

’l9j—q) N Zj—sz:()

and

P+ PA+O) +PA+0O) (T — @)D+ DTy — G)A+C)®

—®(Ty — G)Ry' —®(T2 — G)Ry' (T2 —G)® + (A+C)® — Ry' — Ry H(T2 — G)® =0,

D(A+C) Ty —G@)p+ BTy — G)A+C)p+ (Ty — G)BR;*BT X

— (T — )Ry (Ta — Q)+ b+ (A+C)p+ BR;'BT X — RNy — G)gp = 0,
H+Ty—G_ 1

19]‘ = ‘I)TZJ + NEJ

Therefore, the Riccati equation and BSDE take the following forms:

& +[(A+0)T — (T2 - G)Ry'| + [(A4+C) — By (T2 - G) | @
+ @[(A +C) Py — G) + Ty — G)(A+C) — (Ty — G)RG (T — G)] ®-Ry'=0, (7
o(T) =0

and

dp = — [<I>(A +0) (T2 = G)p+ @(T2 — G)A+ )+ (Ts — G)BR;'BT XV

N
~®(Ty — G)Ry' (T2 — G)p+ (A+C)p+ BR'BT XN — RyH (T — G)qs} dt + > 0;dW;,

j=1

(38)

LN
o(T) = N ij-
j=1

Under Assumption 4, Riccati equation (37) admits a unique solution. Then BSDE (38) admits a unique
solution. Recalling (35), it follows from the standard estimation of BSDE and SDE that

E sup [N (@) +E sup [N (1) < K.
<t< 0<t<T

Consequently,

E sup [7™M @) +E sup [pNV(#)] < K.
0<t<T 0<t<T

Finally, it follows from the equation of y; and p; that
E sup |7:(t)*+E sup [p;(t)]* < K.
0<t<T 0<t<T
Similarly, we have
, 2 . 2
E sup |¢:(t)]°+E sup |p:(t)]° < K.
0<t<T 0<t<T

In the following, we will assume the conditions in Lemma 1 hold.
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Lemma 2. Under Assumptions 1-5, there exists a constant K independent of N such that

K
E sup [10p™M @) + 8y (0)F] < 15 (1+E / bufds ). (39)

0<t<T
Proof. Tt follows from (8) and (9) that

N
1
dsp™) = (A + C)TopMat — = Zﬂazjdwj (1),
7j=1
N

N
B
doy™ = —[(A+ C)oy™ — Ry 1op™ + N(Sul}dt—i- ZészW Z Z 32k dWi(1)

op™(0) = (T2 — G)oy™(0),  sy"™(T) = 0.

Similar to (36), we can decompose the above FBSDE. Therefore, it follows from the standard estimation
of BSDE and SDE that

T
E sup [sy™M@))2+E sup |6p™(1)% < 3(1 +E/ |5ui|2ds).

0<t<T 0<t<T N2 0
Remark 2. In Lemma 1, in order to decouple FBSDE (36), first we do some linear transformation
such that the transformed FBSDE is not coupled at the initial time 0. Similarly, we can do this linear
transformation, decouple the transformed FBSDE and then obtain the required estimations (39). Actually
we can also decouple FBSDE directly without the transformation. For this, letting g(N) = ;Iv)f?(N ) + 5,
applying It6’s formula and comparing the coefficients, we have

B+ PA+O) +(A+0)d— Ry =0, $(T) =0 (40)
and
d&:-[(AJFC)% 6ul]dt+26‘ aw;, & NZ@ (41)
7j=1

Note that the above equation (40) admits a unique solution, so does (41). Therefore, if I — (y — G)® is
invertible, from the initial condition dp™)(0) = (T'y — G)sy™)(0) we get that spN)(0) = (Ty — G)[I —
(T — G)®]~1¢(0). Then from the standard estimations of SDE and BSDE, we can also get (39).
Lemma 3. Under Assumptions 1-5, there exists a constant K independent of N such that

K

E sup [5(t) —Eg(t)]* +E sup [p () —Ep(t)* < -
0<t<T 0<t<T

Proof. First, similar to Lemma 1, we have y;(0) = ¢(0). Therefore, it follows from (26) and (17) that

N
d(XWN) — AT(XWN) —EX)dt — — Y Hz;dW,
( EX)=AT(X ) ; 54V (®), (42)
(XM —EX)(0) =
It follows from the equation of X ) () — EX(t) that
E sup [XM() —EX()]? < 2.
0<t<T N
Note that
AN~ Eg) = [(A+ )™ ~ Bg) + BRT' BT (XN~ EX) By 6™ ~Ep)|de + ZzﬂdW ’
A - Ep) = (A+ )T (™) — Ep)dt — H— ZszW t),
g 1
N —
G Ry Z —E&, (PN —Ep)(0) = (T2 — &)™) — Eg)(0).
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Similar to (36), we have

E sup [g™M(t) —Egt)]? +E sup [pN)(t) — Ep(t)[?
0<t<T 0<t<T

z| =

By Lemma 3, it is easy to see that
~ 2 ~ 2 K
sup B sup |y;(t) —g;(8)I" + sup E sup |p;(t) —p;(t)|° < -

IGEN  0<e<T IGEN  0<i<T
Lemma 4. Under Assumptions 1-5, there exists a constant K independent of N such that
K T
E sup [y-i(t) =y ()2 +E sup [op-i(t) —p" () < 15 (1+E / (dui[2ds).
0<t<T 0<t<T

Proof. Tt follows from (9) and (11) that

d(6y_; —y*™) = — [(A +C)Y0y—i —v*) + Ry (Op_i — p™*) — Coy™) — R—15p<N>] dt

+ Z 5z;dW;(t Z Z 82z, dWi (t) Zz**dW

J=1,j#1 J=Llj#i k=1,k#j
d(6p_i —p™) = [(A +C) (6p—i — p**) — CTop™N) — 1_“15y(N)} dt— Y HozdW(t),
j=1.#i
(6y—i —y™)NT) =0, (6p—i —p™)(0) = (T2 = G)(6y—i —y™) — T20y™(0).
Similar to (36), we can get (44).
Lemma 5. Under Assumptions 1-5, there exists a constant K independent of N such that

g K oy
E sup |Ndy;(t) —y;‘(t)|2+IE/O |N6z;(t) — 25 (t)Pdt < N2 (l—i-E/ |5ui|2ds), Jj#i.

0<t<T
Proof. Note that
d(Néy; —yj) = — [A(N&/j —y;) + C(6y—i —y™) — Ry ' (6p—i — p**)} dt + (Nozj — z5)dW;(t)
N

+ ) (Nozj — 2,)dWi(t),
k=1,k#j

(Noy; —y;)(T) = 0.

Applying Ité’s formula to |[Ndy; — y7|*, we have

|2
T
E|Ndy;(t) —y;-‘(t)|2 +IE/ |Ndz; —z;-‘|2ds
t
T T T
< @A+ 1+ B E [ [N6y; —jPds +E [ 16y~ yPds + B [ [pi - p P,
t t t

Therefore, the result follows from Gronwall inequality with (44).
Lemma 6. Under Assumption 1-5, there exists a constant K independent of N such that

K
E sup |— T —.
O<t£)T| Z L N
Proof. First, note that
1 1 —Ry'Ep — Ry 'Edq + Ry ‘@2 + Co
d N%:pj—pl = - A(N%:pj—m)ﬂL ¥ dt,
J7F J7

=35 (T) — p(T) =0

J#
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We have
1 K
su — i(t) — < —.
ogth N ;pj( ) N
Therefore,
1 - 1 o1 CEy— Ry 'Ep
d|+ Zyj—Eyl =— A<NZ yj—Ey1> +BR;'B <NZX]»—EX1> |t
JFi JA J#i
1
N Zza dW;(t)
J#
1 +(1 [WEy— CTEiy +CTiy —Tigo
d(NZXj —IEX1>: (NZXJ» —EX1>— ¥ dt
J#A J#i
1
N > HzdWy(t),
J#i
1 1
N v~ B | (D=5 & —EE,
i i
Gy1(0) + ToEg(0) — ToEg (0) — Taga(0)
( > X, —IEX1> < > p(0) = Epa( ))— ~ .
J7#i j#i
By (45), it follows from the equation of 3; >z Xj — EXy that
K
E su X;(t) —EXy( —
ogth N Z 1) < N’
Then, from the equation of + 22 Yi(t) — Eu(t),
K
E su —E —.
ogth Z yj it N
Therefore, combining (43) and the above inequality,
1 1 ’ 1 ’
E NZ% —Ey| <3E NZ@;‘ —y;)| +3E Nzyj —Ey1| +3[Eyi —Egi[°
J#i J#i G0
2
N _ K
<3 gﬂﬂ U —yi)|? +3E| = ;yg Ey1 +3|Ey1—Ey1|2<N.
JF e

Finally, note that

T a1\ ,f1
J7F

Sci China Inf Sci
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: 1 ~
> - ]Ex}> dt+ > HZdW(t),

J#i

J#i

(g so-e{ige )

JFi
Therefore, by the standard

J#i

estimation of SDE,

E sup
0<t<T

2
1 .
N Z arjl — Ex}
J#i

K
< —.
N
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Since the representation of the social cost is very complicated, we will rewrite the social cost with an
abstract operator. Note that the main purpose of the new representation is just to simplify the proof of
the asymptotic optimality. We will only give the following formulation without the explicit form of the
operators:

2Jge(u()) = (Mau(-), u(-)) + 2(Ma, u(")) + Mo, (46)

where My is an L? bounded self-adjoint linear operator, M; is an L? bounded operator and My € R.
Please refer to [24,53] for more information. The main result of this section is the following asymptotic
optimality result.

Theorem 1. Let Assumptions 1-5 hold. Then @ = (a1, -+ ,uy) is a (L)—optimal strategy for the

VN
agents.
Proof. In order to prove asymptotic optimality, it suffices to consider the perturbations u; € U such
that J2%(uy, -+ ,un) < T2y, - ,un). It is easy to check that

j;gg(ﬂlu"' 7:11]\7) <KN7

where K is a constant independent of N. Therefore, in the following we only consider the perturbations
u; € Uf satistying

N T
ZE/ lu;|?dt < KN. (47)
i=1 0

Now consider a perturbation u = @ + (duy,--- ,0uy) = U + du, where du; = w; — w;. Therefore, by

Lemma 2 and (47), there exists a constant K independent of N such that

K
sup lIE sup |5yj(t)|2+E sup |6pj(t)|2 < N
IGEN j#i | 0<t<T 0<I<T

Furthermore, by (46), we have

2T (T + du) = (M (i + Su), @ + ou) + 2(My, U + u) + Mo
N
= 27250(0) + 2> (Mt + My, dus) + (Madu, du),
i=1

where (Mat + My, -) is the Fréchet differential of J2¢ with @. Moreover, by (28) we know that

soc

T
<M2’(7 + Ml, 5U1> =E / (<R1’(7i, 5U1> + <CTE5’J1 — CTLZ'Q, 6y1> + <HEZ', 6ZZ>
0

+ (=Rg'p+ Ry 'Eay — Ry a2 + CT g, 6pi>)dt (48)

+ZEZ

+ (G7i(0) — T2Eg(0) + T2G2(0), 63 (0

Applying the Cauchy-Schwarz inequality, we obtain that

TL0(U 4 du) — TL() > Z|M2u+Ml|2Z|6ul|2 Mgéu ou) > —| Myl + My|O(N).

7 Conclusion

This study investigates robust control in large-population systems through LQ mean-field teams under
drift uncertainty, where agent dynamics is modeled by BSDEs. Unlike forward SDE frameworks, our
BSDE-based formulation yields a coupled forward-backward Hamiltonian system with distinctive fea-
tures. The BSDE approach incorporates terminal constraints and adapted processes (y(+), z(+)), making
it suitable for problems with predefined terminal targets. To address drift uncertainty, we introduce a
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negative quadratic penalty on the adversarial disturbance f in the cost function and derive the worst-
case scenario. By applying the person-by-person optimality principle in a forward-backward Hamiltonian
system, we derive a robust decentralized strategy and establish the well-posedness of the consistency
condition system via Riccati decoupling. The distinct formulation of the adjoint equations leads to an
alternative convergence analysis for establishing asymptotic optimality. Theoretical contributions include
an extension of mean-field team theory to backward stochastic frameworks and a general robust control
structure for cooperative large population systems.
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