
SCIENCE CHINA
Information Sciences

November 2025, Vol. 68, Iss. 11, 210202:1–210202:24

https://doi.org/10.1007/s11432-025-4658-5

c© Science China Press 2025 info.scichina.com link.springer.com

. REVIEW .

Special Topic: Mean-Field Game and Control of Large Population Systems: From Theory to Practice

An overview of some extensions of mean field games
beyond perfect homogeneity and anonymity

Mathieu LAURIERE*

NYU-ECNU Institute of Mathematical Sciences, NYU Shanghai, Shanghai 200126, China

Received 13 May 2025/Revised 3 September 2025/Accepted 18 September 2025/Published online 5 November 2025

Abstract The mean field games (MFG) paradigm was introduced to provide tractable approximations of games involving

very large populations. The theory typically rests on two key assumptions: homogeneity, meaning that all players share the

same dynamics and cost functions, and anonymity, meaning that each player interacts with others only through their empirical

distribution. While these assumptions simplify the analysis, they can be restrictive for many applications. Fortunately,

several extensions of the standard MFG framework that relax these assumptions have been developed in the literature. The

purpose of these notes is to offer a pedagogical introduction to such models. In particular, we discuss multi-population

MFGs, graphon MFGs, major-minor MFGs, and Stackelberg MFGs, as well as variants involving cooperative players.
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1 Introduction

1.1 Background

The term mean field games (MFGs) was coined by Lasry and Lions in [1] to describe a paradigm that
provides tractable approximations of finite-player games. The mean-field approximation can be rigorously
justified when the number of players is sufficiently large and the players are homogeneous and anonymous.
Although assuming perfect homogeneity and anonymity is a significant restriction for many applications,
it can be relaxed while preserving many of the advantages of MFG theory. In particular, several extensions
of the “standard” setting have been introduced in the literature.

The purpose of these notes is to offer a pedagogical introduction to several of these extensions. The aim
is to convey the main modeling ideas in an accessible way rather than delve into mathematical details,
which can be found in the references provided at the end of each section. It is our hope that these notes
help stimulate interest in these extensions among a broad community.

The rest of this paper is organized as follows. Section 1.2 introduces useful notations. Section 2
reviews the standard framework of MFGs. Sections 3 and 4 are devoted to multi-population MFGs and
graphon MFGs, respectively. Section 5 discusses models with a more influential player, namely major-
minor MFGs and Stackelberg MFGs. Each of these sections begins with a formulation of the finite-player
game, then presents the asymptotic model, continues with a linear-quadratic example, and concludes
with bibliographic notes. While the previous sections focus on non-cooperative players, Section 6 reviews
several models with cooperative players, including mean field control, mean field-type games, mean field
control games, and models combining cooperative and non-cooperative behaviors.

1.2 Notations

For any integer n, we use the notation [n] = {1, . . . , n}. Let d, ℓ and p denote the dimension of the state,
the action and the noise, respectively. Let A denote the action set, which is assumed to be a subset of Rℓ.
Let P2(R

d) denote the set of probability measures on R having a finite second moment. Let T ∈ [0,+∞)
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be a finite time horizon. For any x ∈ R
d, δx denotes the Dirac mass at x. For a random variable X ,

L(X) denotes the law of X .
Throughout these notes, we prioritize the conceptual framework rather than the generality. For this

reason, we focus on a relatively simple model. It should be mentioned that several variants have been
considered in the literature, while still fitting in the perfectly homogeneous and anonymous framework.
They allow dealing with more complex and more realistic models of dynamics and cost functions, but are
not essentially different as far as the main assumptions of homogeneity and anonymity are concerned.
See the bibliographic notes in Section 2.5 for more details.

2 Mean field games

We start our presentation with a relatively “standard” setup of MFGs. To motivate the problem, we first
present the finite player game.

2.1 Finite population game

We first review the standard setting. The finite-player game is characterized by a tuple:

(µ0, b, σ, f, g,N) , (1)

where,
• µ0 ∈ P2(R

d) is the initial distribution;
• b : Rd ×A× P2(R

d) → R
d is the drift function;

• σ ∈ R
d×p is the diffusion coefficient;

• f : Rd ×A× P2(R
d) → R is the running cost function;

• g : Rd × P2(R
d) → R is the terminal cost function;

• N ∈ N
0 is the number of players.

The state of player i ∈ [N ] at time t ∈ [0, T ] is defined as X i
t ∈ R

d. The empirical distribution at time
t ∈ [0, T ] is

µN
t =

1

N

N
∑

i=1

δXi
t
.

The state of player i ∈ [N ] follows the dynamics

dX i
t = b(X i

t , α
i
t, µ

N
t )dt+ σdW i

t , X i
0 ∼ µ0,

where the initial states X i
0 are independent, and W i, i = 1, . . . , N are independent p-dimensional Brown-

ian motions which are also independent of the initial states. Notice that the dynamics is coupled through
the dependence of b on the empirical distribution.

Given the control profile α−i = (α1, . . . , αi−1, αi+1, . . . , αN ) for the other players, player i ∈ [N ]
chooses αi in a set of admissible controls to minimize

JN (αi, α−i) = E

[

∫ T

0

f(X i
t , α

i
t, µ

N
t )dt+ g(X i

T , µ
N
T )

]

. (2)

The notion of solution is that of Nash equilibrium. Intuitively, it is a configuration in which no player
has any incentive to change her control unilaterally. By doing so, she cannot reduce her cost. Formally,
the definition is as follows.

Definition 1 (Nash equilibrium). A Nash equilibrium is a control profile α̂ = (α̂i)i=1,...,N such that

JN (α̂i, α̂−i) 6 JN (αi, α̂−i), ∀αi, ∀i ∈ [N ].

For most games, explicit analytical solutions are not available, and in general, computing a Nash
equilibrium is a highly challenging problem, as demonstrated by results in complexity theory [2–4]. This
difficulty has motivated researchers to develop approximate models that are more tractable and yield
controls corresponding to approximate Nash equilibria, wherein each player can gain only marginally by
deviating unilaterally. More precisely, we introduce the following definition.
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Definition 2 (Approximate Nash equilibrium). Let ǫ > 0. An ǫ-Nash equilibrium is a control profile
α̂ = (α̂i)i=1,...,N such that

JN (α̂i, α̂−i) 6 JN (αi, α̂−i) + ǫ, ∀αi, ∀i ∈ [N ].

Notice that an ǫ-Nash equilibrium with ǫ = 0 is a Nash equilibrium. In the sequel, we focus on mean
field games, which provide approximate Nash equilibria for finite-player games while being more tractable
than Nash equilibria.

2.2 Key assumptions

The above model is formulated so as to be able to easily pass to the limit when the number of players,
N , goes to infinity. This approach is in the spirit of propagation of chaos in statistical physics [5], which
explains the terminology of mean field games.

To be able to pass to the limit, we started our presentation with a class model that satisfies two
important structural assumptions.

• Homogeneity. All the players have the same form of dynamics and cost: the functions b, f, g and
the constant σ (which could also be a function in general) do not depend on the player’s index (but they
depend on the player’s state).

• Anonymity. Player i does not “know” the index of other players, meaning that she interacts with
other players only through the empirical distribution µN

t .
Interactions through the empirical distribution are sometimes referred to as weak interactions and can

be viewed as a form of symmetry with respect to the other players’ states: instead of viewing b as a
function of (X i

t , α
i
t, µ

N
t ), we can view it as a function of (X i

t , α
i
t, X

1
t , . . . , X

N
t ) which is symmetric with

respect of the lastN inputs: for every permutation τ over [N ], for every x ∈ R
d, a ∈ A, (x1, . . . , xN ) ∈ R

d,
b(x, a, x1, . . . , xN ) = b(x, a, xτ(1), . . . , xτ(N)). The same applies to all the functions involved in the model
(namely, f and g). As a consequence, we can expect that there exists a Nash equilibrium in which all
the players use the same control. This simplifies the search for an equilibrium control.

These assumptions are instrumental to prove that the asymptotic game with infinitely many players
(presented in the next subsection and called the MFG), provides a good approximation of the finite-player
game (presented above). See the end for the next subsection for more details.

2.3 Asymptotic game

When the number of players grows to infinity, we expect, at least informally, a form of propagation of
chaos to hold. As a consequence, each player’s state is less and less affected by the state of a specific
other player. Instead, each player interacts only with the population distribution, also called the mean
field. In the limit N → +∞, we can reasonably assume the players’ dynamics become decoupled, which
should simplify the analysis. This intuition is formalized by the notion of MFG.

The MFG is defined as follows. Given a mean field µ = (µt)t∈[0,T ], µt ∈ P2(R
d), and a control α, the

dynamics of a representative player’s state when using control α is

dXt = b(Xt, αt, µt)dt+ σdWt, X0 ∼ µ0. (3)

To stress the dependence on the control and the mean field, we will use the notation Xα,µ for the solution
of this SDE.

The objective of such a representative player is to choose α to minimize the cost

J(α, µ) = E

[

∫ T

0

f(Xα
t , αt, µt)dt+ g(Xα

T , µT )

]

. (4)

Note that JN defined in (2) is a function of a control profile, while J is a function of the individual
control and the mean field.

Given a control α and a mean field µ, let µα,µ denote the mean field generated by α with mean field
µ, i.e., µα,µ

t = L(Xα,µ
t ) for all t ∈ [0, T ].

Definition 3 (MFG equilibrium). An MFG equilibrium (or simply mean field equilibrium) is a pair
(α̂, µ̂) such that the following.
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(1) Optimality: α̂ is a best response against µ̂, i.e.,

J(α̂, µ̂) 6 J(α, µ̂), ∀α. (5)

(2) Consistency: The mean field µ̂ is the one generated by α̂, i.e.,

µ̂t = L(X α̂,µ̂
t ), ∀t ∈ [0, T ]. (6)

This definition means that an MFG equilibrium is a fixed point. Alternatively, we can phrase the
problem as follows.

Definition 4 (MFG equilibrium-equivalent definition). α̂ is an MFG equilibrium control if and only if
α̂ is a best response against µα̂, i.e.,

J(α̂, µα̂) 6 J(α, µα̂), ∀α. (7)

Here, every player is interested purely in her own cost function, taking the behavior of the rest of the
population as fixed. If, on the contrary, all the players cooperate to minimize a common cost function,
the solution concept becomes that of a social optimum, which has been studied under the terminology of
mean field (type) control; see Section 6.1.

A natural question is: How is this MFG model related to the finite-player game presented above? Under
suitable conditions, two types of results can be obtained.

• The MFG equilibrium control α̂ provides an ǫ-Nash equilibrium control in the finite-player game in
the sense of Definition 2 (i.e., if all of the N players use α̂, then each player can be at most ǫ-better off by
choosing another control), and ǫ goes to 0 as N → +∞; see the monographs [6, Chapter 5] and [7, Chapter
6] (Theorems 6.7 and 6.13 without and with common noise, respectively);

• The N -player game equilibrium converges to the MFG equilibrium when N → +∞; see e.g. the
monographs [8] and [7, Chapter 6] (Theorems 6.18 and 6.28 for open-loop and closed-loop equilibria,
respectively).

Generally, the second type of result is considered more difficult to obtain and it requires at least the
existence of a Nash equilibrium in the finite-player game, which is not the case for the first type of result.
See also the references provided in Section 2.5 for detailed analyses.

For completeness, we briefly discuss numerical methods. Definition 3 can be interpreted as a fixed-
point problem. This perspective suggests a direct numerical approach to computing the MFG solution
by alternating between two steps: updating the control (by computing the best response to the current
mean field) and updating the mean field (by determining the population distribution flow induced by the
most recent best response). Such fixed-point iterations typically converge when the underlying mapping
is a strict contraction. However, ensuring contractivity can be challenging in many models. Alternative
strategies include averaging over iterations (for instance, through fictitious play or online mirror descent)
or regularizing the best response using an entropic penalty in the cost function. These two steps can be
formulated either in terms of partial differential equations (namely, a Hamilton-Jacobi-Bellman equation
for the value function, from which the best response is derived, and a Kolmogorov-Fokker-Planck equation
for the evolution of the mean field) or in terms of stochastic differential equations, involving a backward
stochastic differential equation for the value function or its derivative; see [9, Section 3.3] and [10],
respectively. Alternatively, one can attempt to directly solve the forward-backward system, as in [11]. The
design of a numerical method typically involves three key components: selecting a model to approximate
the relevant functions (for example, using a tabular representation or a class of function approximators
such as neural networks), choosing a scheme to discretize the continuous equations (for example, a finite-
difference method), and determining an approach to update the model parameters (for example, through
linear algebra operations or stochastic gradient descent). A comprehensive review of numerical methods
for MFGs is beyond the scope of this survey. For more detailed discussion, we refer the reader to [11–14]
and the references therein.

2.4 Example

As an example, let us take a linear-quadratic Gaussian (LQG) model, i.e., a model in which the drift is
linear in the individual state, the individual action and the first moment of the mean field, the running
cost is quadratic in these quantities, the terminal cost is quadratic in the state and the mean, and the
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state distribution is Gaussian at all times. So the interactions are purely through the first moment of
the distribution. The fact that the distribution is Gaussian is not crucial for the characterization of the
optimal control through ordinary differential equations (ODEs) but it helps to compute the optimal value
and the evolution of the distribution, which reduces to the evolution of its mean and its variance in this
case.

We will use the notation µ̄ =
∫

xµ(dx). We borrow the following example from [6, Chapter 6] and for
ease of presentation, we focus on the one-dimensional case, i.e., d = k = p = 1. We take

f(x, µ, α) =
1

2

[

Qx2 + Q̄ (x− Sµ̄)
2
+ Cα2

]

,

g(x, µ) =
1

2

[

QTx
2 + Q̄T (x− ST µ̄)

2
]

,

b(x, µ, α) = Ax+ Āµ̄+Bα ,

where Q,C, Q̄,QT , Q̄T are non-negative constants, and A, Ā, S, ST and B are constants. Let ν = 1
2σ

2.
We consider that the initial distribution is the normal distribution µ0 = N (x̄0, σ

2
0) for some x̄0 ∈ R and

σ0 > 0.

Remark 1. The model defined above can be extended to include more terms (see [15]), but this one
can already capture several interesting features.

• If A = Ā = 0 and B = 1, then the drift is exactly the control, meaning that the agents control in
which direction they move, up to the noise.

• If A = −1 and Ā = −1, then Ax+ Āµ̄ = (µ̄− x), which implies that the drift has a mean-reverting
component, reminiscent of the Ornstein-Uhlenbeck process.

• Likewise, if S = 1 (respectively ST = 1), then the running cost (respectively terminal cost) gives an
incentive to each agent to move towards the mean of the population.

Under suitable conditions on these coefficients, the MFG for the above model has a unique solution
(α̂, µ̂) which satisfies the following. The proof relies on dynamic programming and on a suitable ansatz for
the value function of an infinitesimal player when the population is in the Nash equilibrium; see [6, Chapter
6] for more details. We look for this value function in the form: U(t, x) = 1

2ptx
2+rtx+st. The coefficients

must satisfy the ODE system:

∫

R

ξµ̂(t, ξ)dξ = zt, (8a)

α̂(t, x) = −B(ptx+ rt)/C, (8b)

J(α̂, µ̂) =

∫

R

U(0, ξ)µ0(ξ)dξ =
1

2
p0(σ

2
0 + x̄2

0) + r0x̄0 + s0, (8c)

U(t, x) =
1

2
ptx

2 + rtx+ st, (8d)

where (z, p, r, s) solve the following system of ODEs:

dz

dt
= (A+ Ā− B2pt

C )zt −
B2rt
C , z0 =

∫

R

ξµ0(ξ)dξ, (9a)

−
dp

dt
= 2Apt −

|Bpt|
2

C +Q+ Q̄, pT = QT + Q̄T , (9b)

−
dr

dt
= (A− B2pt

C )rt + (ptĀ− Q̄S)zt, rT = −Q̄TST zT , (9c)

−
ds

dt
= νpt −

1

2
|Brt|

2

C + rtĀzt +
1

2
Q̄|Szt|

2, sT =
1

2
Q̄T |ST zT |

2. (9d)

Here, z is the mean of the population’s distribution whereas r (together with p) characterizes the best
response. The last equation, for s, can be solved explicitly provided z, p and r are known. The second
equation, for p, is a Riccati equation which does not involve the other variables. Under suitable assump-
tions on the coefficients of the problem, it admits a unique positive (symmetric if d > 1) solution. The
most difficult part comes from the first and the third equations, namely for z and r, which form a coupled
forward-backward system. This is a key difficulty which is at the core of MFGs. As mentioned at the
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end of Section 2.3, one approach consists of solving the forward and the backward equations alterna-
tively, possibly with averaging as in fictitious play. Another approach amounts to solving both equations
simultaneously. We refer to [13, Section 2] for more details and numerical experiments.

We refer to [15, Section 3] for more details in an even more general setting with interactions through
the action distribution and common noise.

2.5 Bibliographic notes

As already mentioned, the term mean field games was coined by Lasry and Lions [1, 16, 17]. The idea of
approximate Nash equilibria through an asymptotic model was studied around the same time in [18–20].
The theory has been developed by Lions in his lectures at Collège de France. Since the standard MFG
framework is not the main focus of these notes, we refer the interested reader to the monographs [6,7,9,21],
the surveys [10, 12, 22], and the lecture notes [23, 24]. See [25] for a recent tutorial with applications in
operations research.

For the connection between finite-player games and MFGs, in addition to the monographs [6, Chapter
5] and [7, Chapter 6] mentioned above, see also [26, 27] for convergence results of closed-loop equilibria
without and with common noise, respectively. Beyond asymptotic convergence, finer results have been
established, including a central limit theorem [28] and large deviation principles [29]. Furthermore,
Refs. [30–32] proved the convergence of finite-player Nash equilibria to mean field equilibria for games
with interactions through the distribution of actions.

For more details on the notions of anonymity, see [33, Chapter 2] and [34, Section 2.5.2]. For the notion
of symmetric games, see [23, Section 2.1].

Let us say a few words about variants of the above MFG that have been considered in the literature.
These variants include more complex models, still satisfying homogeneity and anonymity. We focus on
the continuous time, finite horizon problem but other settings include the infinite horizon discounted
setting and the ergodic setting. See [1, Sections 2.1–2.3], [6, Section 7] or [35, Sections 2.4.2 and 2.4.3]
in the discrete time setting; see [36] for a rigorous justification of the connection between finite time
and ergodic MFGs. Furthermore, we focus on interactions through the distribution of states only but
the models could also include interactions through the distribution of actions or the joint distribution of
states and actions; this is sometimes referred to as extended MFGs or MFG of controls; see [37–40]. We
consider that the volatility is constant for simplicity; in general, it could depend on the state, the control
and the mean field. Furthermore, the dynamics could include jumps, which is particularly relevant for
models in which the state or some components of the state evolve in a discrete space. Last, we restrict
our attention to models in the spirit of classical stochastic optimal control problems, but other models
include optimal stopping or impulse control.

3 Multi-population MFGs

We now turn to a first extension of the standard setup, in which the total population comprises several
sub-populations which are homogeneous. To alleviate the presentation we will drop the “sub-” and simply
call them populations. All the players are non-cooperative (whether it is within their population or with
other populations). The standard setup is a special case, when there is just one population.

3.1 Finite player model

We consider K populations of players. The finite-player multi-population game with K populations is
characterized by a tuple:

(µ0,k, bk, σk, fk, gk, Nk)k=1,...,K , (10)

where,
• µ0,k ∈ P2(R

d) is the initial distribution of population k;
• bk : Rd ×A× (P2(R

d))K → R
d is the drift function for population k;

• σk > 0 is the diffusion coefficient for population k;
• fk : Rd ×A× (P2(R

d))K → R is the running cost function;
• gk : Rd × (P2(R

d))K → R is the terminal cost function;
• Nk ∈ N

0 is the number of players in population k.
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The empirical distribution of population k ∈ [K] is defined as

µNk

t =
1

Nk

Nk
∑

i=1

δXk,i
t

.

Player i ∈ [Nk] in population k ∈ [K] follows the dynamics

dXk,i
t = bk(X

k,i
t , αk,i

t , µN1

t , . . . , µNK

t )dt+ σkdW
k,i
t , Xk,i

0 ∼ µ0,k.

We assume that the initial conditions Xk,i
0 , i ∈ [Nk], k ∈ [K] are sampled independently of each other,

and that W k,i, i ∈ [Nk], k ∈ [K] are independent of each other and independent of the initial conditions.
Given the control profile α−(k,i) = (αk′,i′)(k′,i′) 6=(k,i) for other players, player i in population k wants

to choose her control αk,i to minimize the cost

Jk
N1,...,NK

(αk,i, α−(k,i)) = E

[

∫ T

0

fk(X
k,i
t , αk,i

t , µN1

t , . . . , µNK

t )dt+ gk(X
k,i
T , µN1

T , . . . , µNK

T )

]

.

Remark 2. In this model, the homogeneity assumption is broken by the fact that b, σ, f and g can
depend on the player’s population. There is however homogeneity among the players of the same popu-
lation. The anonymity assumption is broken because b, f and g may depend differently on the empirical
distributions of different populations. One could consider multi-population models breaking only one of
the two assumptions.

The solution concept is that of a Nash equilibrium, in which every player cares only about her individual
cost.

Definition 5 (Nash equilibrium). A Nash equilibrium consists of strategies (α̂k,i) such that

Jk
N1,...,NK

(α̂k,i, α̂−i) 6 Jk
N1,...,NK

(αk,i, α̂−i), ∀αk,i.

Remark 3. The (single-population) game presented in Section 2.1 can be viewed as a special case of
the multi-population game when K = 1. Conversely, one can try to recast this multi-population game
as a single population game by letting the population index k be part of the state. In other words, one
can consider [K] × R

d as a state space and write down a dynamics in which the first component does
not evolve. One issue is that we want to have exactly Nk players in population k and this is not easy to
capture using the single population setting. However, this issue will vanish in the mean field limit. See
Remark 4.

3.2 Asymptotic model

In the asymptotic model, there are K populations and population k represents a proportion say pk ∈ [0, 1]

of the total population, with
∑K

k=1 pk = 1. Intuitively, this corresponds to a situation where, in the finite
player game presented above, Nk/N → pk as Nk and N go to infinity. The limiting model is called a
multi-population MFG (MPMFG for short).

Given the vector (µ
t
)t∈[0,T ] = (µ1

t , . . . , µ
K
t )t∈[0,T ] of distribution flows for all the populations, the state

of a representative player in population k who uses control αk has the dynamics

dXk
t = bk(X

k
t , α

k
t , µt

)dt+ σkdW
k
t , Xk

0 ∼ µk
0 . (11)

We assume that the initial conditions Xk
0 , k ∈ [K] are sampled independently of each other, and that

W k, k ∈ [K] are independent of each other and independent of the initial conditions. Since we focus on
one representative player per population, we make use of K different Brownian motions. We will use the
notation Xk,µ,α if we want to stress the dependence on µ and α.

The objective of a player in a population of k is to minimize the cost

Jk(α, µ) = E

[

∫ T

0

fk(X
k,µ,α

t , αk
t , µt

)dt+ gk(X
k,µ,α

T , µ
T
)

]

. (12)
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Remark 4. The issue mentioned in Remark 3 that one faces when trying to recast the multi-population
game as a standard game disappears in the mean field limit. Indeed, in the mean field game, we can view
the MPMFG as a single-population MFG, with state space [K]×R

d and initial distribution µ̃0 such that
the first marginal of µ̃0 gives the proportion pk for each k ∈ [K], and µ̃0(·|k) = µk

0 .

Definition 6 (Multi-population MFG equilibrium). A multi-population MFG equilibrium is a collection
(α̂k, µ̂k)k=1,...,K such that the following.

(1) Optimality: Given the mean field µ̂ = (µ̂1, . . . , µ̂K), for every k, the control α̂k is optimal for a
representative player of type k, meaning

Jk(α̂k, µ̂) 6 Jk(αk, µ̂), ∀αk, ∀k ∈ [K]. (13)

(2) Consistency: For each population, the laws of optimally controlled processes match the mean fields

µ̂k
t = L(Xk,α̂

t ), ∀t ∈ [0, T ], ∀k ∈ [K]. (14)

Here, every agent of every population is interested only in her own cost function, taking the behavior
of all the other agents as fixed. Alternatively, if the players of each population cooperate in order to
minimize a common cost, the solution concept becomes that of a Nash equilibrium between cooperative
groups of mean-field type, which has been studied under the terminology of mean field type games; see
Section 6.2 for more details.

3.3 Example

We revisit the LQG example presented in Section 2.4 in the standard MFG setting, extending it with
multi-population interactions. With the notation µ = (µ1, . . . , µK), we define for k ∈ [K],

fk(x, µ, α) =
1

2



Qkx2 + Q̄k

(

x− Sk
K
∑

ℓ=1

wk,ℓµ̄
ℓ

)2

+ Ckα2



 ,

gk(x, µ) =
1

2



Qk
Tx

2 + Q̄k
T

(

x− Sk
T

K
∑

ℓ=1

wk,ℓµ̄
ℓ

)2


 ,

bk(x, µ, α) = Akx+ Āk
K
∑

ℓ=1

wk,ℓµ̄
ℓ +Bkα,

where the coefficients are generalizations of the ones in Section 2.4 since they can depend on the population
index. Here, wk,ℓ ∈ R+ captures the effect of population ℓ on a player in population k. We consider that
the initial distribution of population k is the normal distribution µk

0 = N (x̄k
0 , (σ

k
0 )

2) for some x̄k
0 ∈ R and

σk
0 > 0.
In line with Remark 1, if for instance Ak = −1 and Āk = 1, then the representative player in population

k is attracted towards the weighted mean
∑K

ℓ=1 wk,ℓµ̄
ℓ of the population, whereas in a standard MFG,

they would be attracted towards the (uniform) mean 1
K

∑K
ℓ=1 µ̄

ℓ.
Under suitable conditions on these coefficients, the MPMFG for the above model has a unique solution

(α̂, µ̂) = ((α̂k)k∈[K], (µ̂
k)k∈[K]) which satisfies the following:

∫

R

ξµ̂k(t, ξ)dξ = zkt , (15a)

α̂k(t, x) = −Bk(pkt x+ rkt )/C
k, (15b)

Jk(α̂k, µ̂) =

∫

R

Uk(0, ξ)µk
0(ξ)dξ =

1

2
pk0((σ

k
0 )

2 + (x̄k
0)

2) + rk0 x̄
k
0 + sk0 , (15c)

Uk(t, x) =
1

2
pkt x

2 + rkt x+ skt , (15d)

where (z, p, r, s) solve the following system of ODEs:

dzk

dt
=

(

Ak −
|Bk|2pk

t

Ck

)

zkt + Āk
K
∑

ℓ=1

wk,ℓz
ℓ
t −

|Bk|2rkt
Ck

, zk0 =

∫

R

ξµk
0(ξ)dξ, (16a)
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−
dpk

dt
= 2Akpkt −

|Bkpk
t |

2

Ck +Qk + Q̄k, pkT = Qk
T + Q̄k

T , (16b)

−
drk

dt
=

(

Ak − |Bk|2pk
t

Ck

)

rkt + (pkt Ā
k − Q̄kSk)

K
∑

ℓ=1

wk,ℓz
ℓ
t , rkT = −Q̄k

TS
k
T

K
∑

ℓ=1

wk,ℓz
ℓ
T , (16c)

−
dsk

dt
= νkpkt −

1

2
|Bkrkt |

2

Ck + rkt Ā
k

K
∑

ℓ=1

wk,ℓz
ℓ
t +

1

2
Q̄k

∣

∣

∣

∣

∣

Sk
K
∑

ℓ=1

wk,ℓz
ℓ
t

∣

∣

∣

∣

∣

2

, skT =
1

2
Q̄k

T

∣

∣

∣

∣

∣

Sk
T

K
∑

ℓ=1

wk,ℓz
ℓ
T

∣

∣

∣

∣

∣

2

.

(16d)

We see that, here again, the equation for pk can be solved first, independently of the other variables.
Then the equations for (zk)k∈[K] and (rk)k∈[K] should be solved together since they are coupled. Finally,

the equation for sk can be solved last.

3.4 Bibliographic notes

We refer to [20, 41–43] for an analytical approach and to [9, Section 7.1.1] and [44] for a probabilistic
formulation. In the context of reinforcement learning, multi-population MFGs have been studied by [45].
For applications, see [46] and [12, Section 6.1] for pedestrian crowds (see also [43, Section 5.2] for a
discussion on the non-cooperative and cooperative models), [47, Sioux Falls example] for traffic routing,
[48] for traffic flow with different types of vehicles, [49] for route planning with collision-avoidance, [50–53]
for urban planning, [54, 55] for opinion dynamics, [56] for a predator-prey model, [57, 58, Section 6] for
price formation, [59] for algorithmic trading with differing beliefs, or [60] for macroeconomic models.
An application of MPMFG to clustering in machine learning has been studied in [61]. A reinforcement
learning method for an LQ model has been studied in [62]. A more general model with heterogeneities
has been considered in [63].

4 Graphon mean field games

Next, we consider a further generalization of multi-population MFGs in which each player can have their
own type and interact with other players in a non-anonymous way. The interactions are encoded by a
graph which, in the infinite-population limit, is replaced by a graphon. Such games have been referred
to as graphon mean field games or simply graphon games.

4.1 Finite player model

The finite-player game is characterized by a tuple:

(µ0, b, σ, f, g,N,w) , (17)

where,
• µi

0 ∈ P2(R
d) is the initial distribution for player i ∈ [N ];

• bi : Rd ×A× P2(R
d) → R

d is the drift function for player i ∈ [N ];
• σi ∈ R

d×p is the diffusion coefficient for player i ∈ [N ];
• f i : Rd ×A× P2(R

d) → R is the running cost function for player i ∈ [N ];
• gi : Rd × P2(R

d) → R is the terminal cost function for player i ∈ [N ];
• N ∈ N

0 is the number of players;
• w ∈ R

N×N is the weight matrix representing the weights of a weighted graph; w(i, j) represents the
strength of interaction between player i and player j.

In line with most of the literature on graphon games, we will assume that w is symmetric, i.e., w(i, j) =
w(j, i). However, this does not mean that the game is symmetric (in the sense introduced above): indeed,
player i may interact in a different way with different players, as we will see below.

Each player perceives an empirical distribution which depends on the graph of interaction. This
distribution can be different for different players. The empirical neighborhood mean field of player
i ∈ [N ] at time t ∈ [0, T ] is

µi,N
t =

1

N

N
∑

j=1

wi,jδXj
t
.
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Notice that this is not a probability distribution in general, without extra conditions on wi,j or a renor-
malization. The state X i of player i ∈ [N ] follows the dynamics

dX i
t = bi(X i

t , α
i
t, µ

i,N
t )dt+ σidW i

t , X i
0 ∼ µi

0,

where, as in the classical case, the initial states X i
0 are independent, and the W i, i = 1, . . . , N are

independent p-dimensional Brownian motions which are also independent of the initial states.
Player i chooses αi in a set of admissible controls to minimize

Jw
N (αi, α−i) = E

[

∫ T

0

f i(X i
t , α

i
t, µ

i,N
t )dt+ gi(X i

T , µ
i,N
T )

]

. (18)

We use the superscript w to stress the dependence on the weight matrix w, which occurs through the
empirical neighborhood distribution µi,N .

Remark 5. In this model, the homogeneity assumption is broken by the fact that b, σ, f and g can
depend on the player’s index. The anonymity assumption is broken because b, f and g may depend
differently on different players, due to the graph of interactions. One could consider models breaking
only one of the two assumptions. For instance, if b is a function of the index but w is constant, then only
the homogeneity assumption is broken; conversely, if b, σ, f and g are constant with respect to the index
but w is non-constant, then only the anonymity assumption is broken.

The notion of Nash equilibrium is defined in the same way as Definition 1, with the new definition of
JN .

4.2 Asymptotic model

To formulate the asymptotic model when the number N of players goes to infinity, we will use the concept
of graphon mean field game (GMFG). Intuitively, this corresponds to situations where the graph is quite
dense in the sense that each node has sufficiently many edges that the “proportion” of nodes that are
neighbors does not vanish when the population size increases.

In the asymptotic formulation, the parameters defining the game are the same as (17) except that the
players are indexed in I = [0, 1] and the weight matrix w is replaced by a graphon, defined as follows.

Definition 7. A graphon is a symmetric Borel-measurable function, W : I × I → [0, 1].

This notion can be extended to other codomains. Formally, a graphon mean field game is defined by
the tuple

(µ0, b, σ, f, g,W) , (19)

where,
• µu

0 , b
u, σu, fu, gu are as before but for u ∈ I;

• W : I × I → [0, 1] is a graphon.
Let Xu

t denote the state of player u ∈ I at time t ∈ [0, T ]. Player u is influenced by the aggregate

µu,W
t =

∫

I

W(u, v)E[δXv
t
]dv. (20)

Note that this is not necessarily a probability measure, unless some extra conditions are imposed on W.
The dynamics of player u is given by

dXu
t = bu(Xu

t , α
u
t , µ

u,W
t )dt+ σudWu

t , Xu
0 ∼ µu

0 ,

where, as in the classical case, the initial states X i
0 are independent, and the Wu, u ∈ I are p-dimensional

Brownian motions such that Wu is independent of Xu
0 . To stress the dependence on αu, W and µ, we

will use the notation Xu,αu,W,µ.

Remark 6. Intuitively, it might be more natural to replace the definition of µu,W in (20) by

µu,W
t =

∫

I

W(u, v)δXv
t
dv, (21)

since player u is expected to interact with player v and not with the law of player v. However, this would
require Xv to be measurable with respect to v. As explained in [9, Section 3.7], it is not possible to



Lauriere M Sci China Inf Sci November 2025, Vol. 68, Iss. 11, 210202:11

have at the same time that the Brownian motions (Wu)u∈I are independent and Lebesgue-measurable
with respect to u. It is possible to have measurability and a weaker form of independence called essen-
tially pairwise independence provided one is willing to work with a different probability space, using the
framework of Fubini extensions [64]. Then, with a form of the law of large numbers called the exact
law of large numbers [65], one can show that Eq. (21) is equivalent to (20). This approach has been
used in [66–68]. However, although perhaps less intuitive, the definition (20) of the aggregate µu,W also
leads to an asymptotic game which can be shown to provide an approximate Nash equilibrium of the
finite-player game with graph-based interactions. This can be viewed as a consequence of the propagation
of chaos-like results showing that, in the limit, individual noises average out. This viewpoint has been
used in [69] for graphon games, [70, 71] for graphon dynamics, including forward-backward SDEs, which
can be used to characterize graphon game equilibria.

Given the distribution flows of all other players, represented by µ = (µv)v∈I , player u ∈ I chooses αu

in a set of admissible controls to minimize

Ju,W(αu, µ) = E

[

∫ T

0

fu(Xu
t , α

u
t , µ

u,W
t )dt+ gu(Xu

T , µ
u,W
T )

]

. (22)

Definition 8 (Graphon mean field game equilibrium). A graphon mean field game (GMFG) equilibrium
is a pair (α̂, µ̂) = ((α̂u)u∈I , (µ̂

u)u∈I) such that the following.
(1) Optimality: α̂u is a best response against µ̂, i.e.,

Ju,W(α̂u, µ̂) 6 Ju,W(α, µ̂), ∀α. (23)

(2) Consistency: The mean field µ̂ is the one generated by α̂, i.e.,

µ̂u
t = L(X

u,α̂u,W,µ̂

t ), ∀t ∈ [0, T ], u ∈ I. (24)

Remark 7. MPMFG can be viewed as a special case of GMFG. Let us take w as in the multi-population
model of Section 3.3 and define W(u, v) = Kwk,ℓ for every u, v ∈ I and k, ℓ ∈ [K] such that (u, v) ∈
[

k−1
K , k

K

)

×
[

ℓ−1
K , ℓ

K

)

. Then,

µu,W
t =

∫

I

W(u, v)E[δXv
t
]dv =

∑

ℓ∈[K]

∫

[

ℓ−1
K ,

ℓ
K

) W(u, v)E[δXv
t
]dv =

∑

ℓ∈[K]

wk,ℓK

∫

[

ℓ−1
K ,

ℓ
K

) E[δXv
t
]dv.

So the interactions are only through the aggregates
∫

[(ℓ−1)/K,ℓ/K)
E[δXv

t
]dv, ℓ ∈ [K]. Hence we can expect

that the equilibrium controls and mean fields are constant with respect to u ∈ I on each sub-interval of
the form [(ℓ − 1)/K, ℓ/K). We then recover the multi-population model of Section 3.

Remark 8. In line with Remark 4, one can reformulate the GMFG as a standard MFG via a state-label
formulation. The new state of a representative player at time t comprises Xu

t and the label u. See [72,73].
However, doing so might impose more restrictions on the regularity of the coefficients with respect to the
label than what is necessary if the label is treated in an ad-hoc way, separately from Xu

t .

4.3 Example

We revisit the LQG example presented in Section 3.3 in the multi-population MFG setting, extending it
with graphon interactions. With the notation µ = (µu)u∈I and µ̄u =

∫

R
xµu(dx), we define for u ∈ I,

fu(x, µ, α) =
1

2

[

Qux2 + Q̄u

(

x−

∫

I

Su
W(u, v)µ̄vdv

)2

+ Cuα2

]

,

gu(x, µ) =
1

2

[

Qu
Tx

2 + Q̄u
T

(

x−

∫

I

Su
TW(u, v)µ̄vdv

)2
]

,

bu(x, µ, α) = Aux+

∫

I

Āu
W(u, v)µ̄vdv +Buα,

where the coefficients are generalizations of the ones in Section 3.3 since they depend on an index u ∈ I
taking continuous values. We consider that the initial distribution of player u is the normal distribution
µu
0 = N (x̄u

0 , (σ
u
0 )

2) for some x̄u
0 ∈ R and σu

0 > 0.
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Remark 9. Here, we observe that the multi-population MFG example given in Section 3.3 is a special
case of this one, obtained if wk,ℓ = wℓ,k and W is piecewise constant, taking values Ck,ℓ, k, ℓ ∈ [K], on
sub-intervals of I = [0, 1]. We come back to this point below, in the LQ example.

Under suitable conditions on these coefficients, the GMFG for the above model has a unique solution
(α̂, µ̂) = ((α̂u)u∈I , (µ̂

u)u∈I) which satisfies the following:

∫

R

ξµ̂u(t, ξ)dξ = zut , (25a)

α̂u(t, x) = −Bu(put x+ rut )/C
u, (25b)

Ju(α̂u, µ̂) =

∫

R

Uu(0, ξ)µu
0 (ξ)dξ =

1

2
pu0 ((σ

u
0 )

2 + (x̄u
0 )

2) + ru0 x̄
u
0 + su0 , (25c)

Uu(t, x) =
1

2
put x

2 + rut x+ sut , (25d)

where (z, p, r, s) solve the following system of ODEs:

dzu

dt
= (Au − |Bu|2pu

t

Cu )zut + Āu[Wzt]u −
|Bu|2rut

Cu
, zu0 =

∫

R

ξµu
0 (ξ)dξ, (26a)

−
dpu

dt
= 2Auput −

|Bupu
t |

2

Cu +Qu + Q̄u, puT = Qu
T + Q̄u

T , (26b)

−
dru

dt
= (Au −

|Bu|2pu
t

Cu )rut + (put Ā
u − Q̄uSu)[Wzt]u, ruT = −Q̄u

TS
u
T [WzT ]u, (26c)

−
dsu

dt
= νuput −

1

2
|Burut |

2

Cu + rut Ā
u[Wzt]u +

1

2
Q̄u |Su[Wzt]u|

2
, suT =

1

2
Q̄u

T |Su
T [WzT ]u|

2
(26d)

with [Wzt]u =
∫

I W(u, v)zvt dv for brevity. We see that, here again, the equations for pu can be solved
first, then the equations for zu and ru are coupled, and finally the equations for su can be solved.

Taking W as in Remark 7, one can check that the solutions to the above ODEs are constant (with
respect to u ∈ I) on each sub-interval of the form [(ℓ− 1)/K, ℓ/K). We then recover the multi-population
ODE system of Section 3.3.

4.4 Bibliographic notes

Delarue studied in [74] a finite-player game with Erdös-Renyi graph, which converges to a standard mean
field game. The term graphon game was coined by Parise and Ozdaglar in [75, 76]. The framework has
attracted a lot of interest in the engineering community, e.g., [77–83]. For the connection between finite-
player game and graphon game using Fubini extensions, see [66,67]. For the convergence of finite-particle
systems towards graphon systems, see [70,71,84]. Graphon dynamics and graphon games with jumps have
been studied in [85, 86]. For applications, see [87] in finance, [68] for epidemic management, or [88] for
rumor propagation. An LQ graphon game with common noise has been studied in [89]. On the numerical
side, see [68, 90] for deep learning methods in which neural networks are used to learn functions of the
index, without discretizing the interval I = [0, 1]. Learning and reinforcement learning methods have
been studied in [72, 91–93]. As mentioned above, graphon games correspond to finite-player games with
graph-based interactions when the graph is relatively dense. Extensions include hypergraphon games [94],
directed graphon games [95], or games with sparser interaction graphs, e.g., [96–99].

5 More influential players: Major-Minor and Stackelberg MFG

Recall that in MFGs (as well as in MPMFGs and GMFGs), every player is infinitesimal and has no
influence on the mean field: they perform their optimization taking the mean field as given. In this
section, we present an extension of MFGs in which there is a player whose influence on the rest of the
population is not negligible.

We will describe the general structure of the dynamics and the cost functions. Then we will distinguish
between two notions of solutions: Nash equilibrium (i.e., major-minor MFG) and Stackelberg equilibrium
(i.e., Stackelberg MFG).
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Remark 10. To alleviate the presentation, we will consider the population of infinitesimal players to be
homogeneous and anonymous, as in a standard MFG of Section 2.1; but one could combine the presence
of an influential player with GMFGs. Also, for the sake of simplicity, our presentation will stick to the
case of a single influential player, but the models could include several such influential players, with a
suitable notion of solution (e.g., Nash equilibrium) between them.

5.1 Finite player model

We consider a system with N identical players and one influential player. We will often use superscript
0 to define quantities related to this player. The model is characterized by a tuple

(

µ0, b, σ, f, g,N, µ0
0, b

0, σ0, f0, g0
)

, (27)

where the first 6 components are for the population and the last 5 are for the influential player:

• µ0 ∈ P2(R
d) is the initial distribution;

• b : Rd ×A× P2(R
d)× R

d0

×A0 → R
d is the drift function;

• σ ∈ R
d×p is the diffusion coefficient;

• f : Rd ×A× P2(R
d)× R

d0

×A0 → R is the running cost function;

• g : Rd × P2(R
d)× R

d0

×A0 → R is the terminal cost function;

• N ∈ N
0 is the number of players;

• µ0
0 ∈ P2(R

d0

) is the influential player’s initial distribution;

• b0 : Rd0

×A0 × P2(R
d) → R

d is the influential player’s drift function;

• σ0 ∈ R
d0×p0

is the influential player’s diffusion coefficient;

• f0 : Rd0

×A0 × P2(R
d) → R is the influential player’s running cost function;

• g0 : Rd0

× P2(R
d)×A0 → R is the influential player’s terminal cost function.

The state of player i ∈ [N ] at time t ∈ [0, T ] is defined as X i
t ∈ R

d, and the state of the influential

player at time t ∈ [0, T ] is defined as X0
t ∈ R

d0

. The empirical distribution at time t ∈ [0, T ] is

µN
t =

1

N

N
∑

i=1

δXi
t
.

The state of player i ∈ [N ] follows the dynamics

dX i
t = b(X i

t , α
i
t, µ

N
t , X0

t , α
0
t )dt+ σdW i

t , X i
0 ∼ µ0,

and the state of the influential player follows the dynamics

dX0
t = b0(X0

t , α
0
t , µ

N
t )dt+ σ0dW 0

t , X0
0 ∼ µ0

0,

where the initial states (X i
0)0,1,...,N are independent, W 0 is a p0-dimensional Brownian motion, and the

W i, i = 1, . . . , N are p-dimensional Brownian motions; W 0,W 1, . . . ,WN are assumed to be independent
and independent of the initial states. Notice that the influential player’s dynamics depends on the N -
player population only through its empirical distribution µN .

Given the control profile α−i = (α1, . . . , αi−1, αi+1, . . . , αN ) for the other players and the control α0

of the major player, player i ∈ [N ] chooses αi in a set of admissible controls to minimize

JN (αi, α−i, α0) = E

[

∫ T

0

f(X i
t , α

i
t, µ

N
t , X0

t , α
0
t )dt+ g(X i

T , µ
N
T , X0

T , α
0
T )

]

, (28)

and given the control profile α = (αi)i∈[N ] for the players, the influential player chooses α0 to minimize

J0
N (α0, α) = E

[

∫ T

0

f0(X0
t , α

0
t , µ

N
t )dt+ g0(X0

T , µ
N
T , α0

T )

]

. (29)
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Remark 11. In this model, the homogeneity assumption is broken by the fact that b, σ, f and g can
depend on the player’s index because they are different for the influential player (with index 0 in our
notations). The anonymity assumption is broken because b, f and g may depend differently on this
influential player. However, all the players in the population are treated in the same way. If we remove
the influential player, then we obtain the MFG of Section 2.1. Instead of a homogeneous and anonymous
game, one could also consider multi-population or graphon games discussed above and add an influential
player.

We will consider two types of solution concepts. Before that, let us introduce the corresponding mean
field model.

5.2 Asymptotic model

The asymptotic model is defined by the same tuple (27) except that N is not needed anymore. In contrast
with standard MFG, see Section 2.3, we cannot fix a mean field and define the influential player’s cost,
because this player will have an influence on the population: when the influential player optimizes her
control, she wants to take into account the impact it will have on the population. As a consequence, we
will define the cost functions as functions of controls.

Consider a control α for a representative player of the population, a control αMF used by the pop-
ulation, and a control α0 used by the influential player. Then, we consider the following dynamics,
where X,XMF and X0 represent the state of the representative player using control α, the state of a
representative player in the population using control αMF , and the state of the influential player:











dXt = b(Xt, αt, µt, X
0
t , α

0
t )dt+ σdWt, X0 ∼ µ0,

dXMF
t = b(XMF

t , αMF
t , µt, X

0
t , α

0
t )dt+ σdWt, XMF

0 ∼ µ0,

dX0
t = b0(X0

t , α
0
t , µt)dt+ σ0dW 0

t , X0
0 ∼ µ0

0,

(30)

where µt = L(XMF
t |W 0), which is the conditional law of the state XMF given the noise W 0 affecting

the influential player. Notice that the three dynamics involve µt. Moreover the dynamics of X depends
on µt and X0, but the converse is not true: one can solve for (XMF , X0) first and then find X . To stress

the dependence on the controls used in the dynamics, we will use the notation: Xα,αMF ,α0

, XMF,αMF ,α0

,

and X0,αMF ,α0

. We will also define µαMF ,α0

t = L(XMF,αMF ,α0

t |W 0).
Given controls αMF and α0 for the population and the influential player, respectively, the objective of

a representative player in the population is to choose α to minimize the cost

J(α, αMF , α0) = E

[

∫ T

0

f(Xα,αMF ,α0

t , αt, µ
αMF ,α0

t , X0,αMF ,α0

t , α0
t )dt (31)

+ g(Xα,αMF ,α0

T , µαMF ,α0

T , X0,αMF ,α0

T , α0
T )
]

. (32)

Given a control αMF for the population, the objective of the influential player is to choose α0 to minimize
the cost

J0(α0, αMF ) = E

[

∫ T

0

f0(X0,αMF ,α0

t , α0
t , µ

αMF ,α0

t )dt+ g0(X0,αMF ,α0

T , µαMF ,α0

T , α0
T )

]

. (33)

As mentioned above, the fact that we define the influential player’s cost as a function of αMF and not
as a function of the mean field directly is not insignificant: it implies that if α0 changes while αMF is
fixed, the mean field might still change. Notice that this would still be true if only X0 and not α0 were
appearing in the drift b of the population.

5.3 Solution concepts

Now that we have defined the dynamics and the cost functions for the population of players and for the
influential player, there are several notions of solutions that can be studied. Here we will focus on two
notions. Each notion can be relevant in different applications. In the first two subsections, we proceed
formally without discussing precisely the class of controls. Different types of information structures are
discussed in Subsection 5.4.
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5.3.1 Major-minor MFG

One possibility is to consider that the influential player and all the players in the mean field population
are playing a Nash equilibrium. In this case, the influential player is often referred to as a major player
and the other players are referred to as minor players.

The solution concept is defined as follows in the finite-player model.

Definition 9. A Nash equilibrium for the finite-player major-minor game is a control profile α̂ =
(α̂i)i=1,...,N for the minor players and a control α̂0 for the major player such that

JN (α̂i, α̂−i, α̂0) 6 JN (αi, α̂−i, α̂0), ∀αi, ∀i ∈ [N ],

and

J0
N (α̂0, α̂) 6 J0

N (α0, α̂), ∀α0.

In the asymptotic model, the notion of Nash equilibrium is defined as follows, which is closer to
Definition 4 than Definition 3, except for the fact that the costs are defined in terms of the population’s
control instead of the mean field, for reasons discussed above.

Definition 10 (MMMFG equilibrium). A major-minor MFG (MMMFG or M3FG) equilibrium is a
pair (α̂, α̂0) such that the following.

(1) Minor player optimality: α̂ is a best response for the representative minor player against (α̂, α̂0),
i.e.,

J(α̂, α̂, α̂0) 6 J(α, α̂, α̂0), ∀α. (34)

(2) Major player optimality: α̂0 is a best response for the major player against α̂, i.e.,

J0(α̂0, α̂) 6 J0(α0, α̂), ∀α0. (35)

5.3.2 Stackelberg MFG

A different point of view consists in interpreting the influential player as a leader who can choose a
control first and, conditioned on this, the population reacts and plays a Nash equilibrium. We will call
the influential player the leader and the players in the population the followers.

In the finite-player game, the solution is defined as follows. It will be convenient to use the following
notation: for a control α0 for the leader, NEN (α0) denotes the set of N -player Nash equilibria for the
followers, i.e., control profiles α̂ = (α̂i)i=1,...,N such that

JN (α̂i, α̂−i, α0) 6 JN (αi, α̂−i, α0), ∀αi, ∀i ∈ [N ].

Definition 11. A Stackelberg equilibrium (or leader-follower equilibrium) for the finite-player game
is a control α∗,0 for the major player and a profile α̂ = (α̂i)i=1,...,N for the population such that the
following.

• Optimality for the leader: α∗,0 is optimal for her when the population reacts by playing a Nash
equilibrium:

min
α̂∈NEN (α∗,0)

J0
N (α∗,0, α̂) 6 min

α̂∈NEN (α0)
J0
N (α0, α̂), ∀α0.

• Nash equilibrium for the followers: α̂ ∈ argminα̂∈NEN (α∗,0)J
0
N (α∗,0, α̂).

Note that, above, the leader’s goal is optimistic in the sense that she tries to optimize her control as-
suming that the population will play the best possible Nash equilibrium from her point of view (i.e., the
one with the minimal cost). It would be possible to consider other definitions, such as a pessimistic view-
point, in which the leader tries to optimize her cost with respect to the worst possible Nash equilibrium
(this amounts to replacing the min by a max in the definition).

The asymptotic game is sometimes referred to as Stackelberg MFG (SMFG) or leader-follower MFG.
To define it, we first introduce the notation: for a control α0 for the leader, NE(α0) denotes the set of
MFG equilibria for the followers, i.e., controls α̂ such that

J(α̂, α̂, α̂0) 6 J(α, α̂, α̂0), ∀α.

Now, we introduce the SMFG solution concept.
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Definition 12. A Stackelberg MFG equilibrium (or leader-follower MFG equilibrium) for the asymp-
totic game is a control α∗,0 for the major player and a control α̂ for the followers.

• Optimality for the leader: α∗,0 is optimal for her when the population reacts by playing a Nash
equilibrium:

min
α̂∈NE(α∗,0)

J0(α∗,0, α̂) 6 min
α̂∈NE(α0)

J0(α0, α̂), ∀α0.

• Nash equilibrium for the followers: α̂ ∈ argminα̂∈NE(α∗,0)J
0(α∗,0, α̂).

5.4 Information structure

In contrast with standard MFGs, where open-loop and closed-loop (Markovian) controls are usually
equivalent in the sense that they lead to the same equilibria, the presence of a more influential player
raises questions about the information available to each player.

Let us start with major-minor MFGs. One may consider, for instance, an open-loop control setting
where the representative minor player’s control (denoted by α) depends on the filtration generated by her
own noise process (W ) as well as the major player’s noise process (W 0), while the major player’s control
(α0) depends only on the filtration generated by her own noise process (and not on the minor player’s
noise, as it is negligible in the mean-field limit). This is, for example, the approach followed in [100] and [7,
Section 7.1]. Ref. [101] defined major-minor equilibria as a fixed-point problem in the space of controls
and, by searching for controls of the form αt = α(t,W[0,T ],W

0
[0,T ]) and α0

t = α0(t,W 0
[0,T ]), recovered, in

an LQ model, the Nash equilibrium found in [100]. Alternatively, one could consider “Markovian” closed-
loop controls where, for instance, the representative minor player’s control is a function of her individual
state, the major player’s state, and the (stochastic) mean field, while the major player’s control is a
function of her individual state and the mean field, i.e., αt = α(t,Xt, X

0
t , µt) and α0

t = α0(t,X0
t , µt).

This approach is adopted, for example, in [101, Section 2.3] and [102]. More generally, the controls could
depend on the full state trajectories, i.e., αt = α(t,X[0,t], X

0
[0,t], µt) and α0

t = α0(t,X0
[0,t], µt), as in the

general formulation proposed in [101, Section 2.2]. It should be noted that solving major-minor MFG
models is much more involved than solving standard MFGs, even in LQ settings; see [7, Section 7.1.6]
for a specific case and its resolution via a forward-backward system of SDEs and ODEs. Regarding
numerical methods, Ref. [101] computed the solution to an LQ model by solving the associated system
of ODEs. In discrete-time, finite-state settings, Ref. [103] proposed an algorithm based on an adaptation
of fictitious play. To the best of our knowledge, there is still no numerical method available for general
continuous-time, continuous-space major-minor MFGs.

For Stackelberg MFGs, following [104], which draws inspiration from the literature on contract theory,
part of the literature has focused on situations where the leader has no state and her control appears only
in the terminal cost of the followers, that is, only α0

T plays a role (in other words, the drift and running
cost of the followers are constant with respect to α0

t ). In such cases, the terminal action is interpreted as
a terminal payment given to the agent based on her trajectory, i.e., α0

T = α0(X[0,T ]). A generalization
allows the leader to influence the followers at any time, meaning that α0

t affects the followers’ drift and
running cost; see [105], which also proposes a deep learning method for such problems. In a specific
class of models where the followers’ terminal cost coincides with the leader’s terminal payment, Ref. [104]
showed that the Stackelberg equilibrium reduces to a mean field control problem (see Section 6.1 below
for more background on this class of problems). The authors also provide several examples with explicit
or semi-explicit solutions. However, in general, formulating optimality conditions for Stackelberg MFGs
is much more challenging than for standard MFGs, and further research is needed to develop numerical
methods and establish their convergence properties.

5.5 Bibliographic notes

For more background on MFGs with major and minor players, see [9, Section 7.1]. Such models have been
considered, by [106–111] for LQG systems, by [112,113] in non-linear and partially observed settings, and
more recently by [100–102,114]. The continuous-time, finite-state setting has been studied in [115]. Ex-
tensions include risk-sensitive models [116,117], unobserved latent processes [118], recursive utilities [119]
and impulse control [120]. Ref. [103] has proposed a learning algorithm based on fictitious play. For ap-
plications, see [121] in finance, [122] in electricity markets, [123] in electricity production, [124] in electric
vehicles charging. Recently, Ref. [125] has shown that adding a form of common noise helps to ensure
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the existence, uniqueness and stability of Nash equilibria in major-minor MFGs. A model combining
leader-follower and major-minor structures has been proposed in [126].

In the spirit of contract theory, MFG models involving a leader and a large population of players have
been studied in [104, 127], respectively in continuous state space and finite state space. In the language
of contract theory, the leader is called the principal and the players are called agents. In the continu-
ous space setting, several studies have focused on LQ models; see [128–137]. Several extensions of the
framework discussed in these notes have also been considered, such as partial observability [138, 139],
leader with backward dynamics [140,141], delays [129], terminal state constraint [142], and informational
uncertainties [143]. Different game structures have also been considered. For instance, Ref. [144] con-
sidered a model with a single agent and a mean field of principals, Ref. [133] studied several layers of
leader-follower structures, and Ref. [145] considered a Stackelberg game between two infinite populations
of non-cooperative players. Various applications of Stackelberg MFG have been considered in the lit-
erature. In particular, let us mention advertisement [146–149], epidemic control [150], energy demand
response [151, 152], renewable energy certificate markets [153], carbon taxes [154, 155], heating, ventila-
tion, and air conditioning [156], and macro-economic models [157, 158]. As in classical MFG, one can
expect that the mean field model is close to the corresponding finite-player model (with one leader and
a finite but large population of players); this connection has been studied rigorously in [159–161] using
respective analytical and probabilistic techniques. Ref. [162] proposed an optimization viewpoint for
Stackelberg MFG in finite spaces. To the best of our knowledge, there are very few studies on numerical
methods for Stackelberg MFGs; we refer to [163] for a machine learning method in a specific setting, and
to [105] for a deep learning approach tackling more general models.

6 Cooperative models

In this section, we review how the aforementioned models can be adapted to include cooperative inter-
actions. We follow the structure adopted in the previous sections and we briefly mention each model
without going into much details.

6.1 From MFG to mean field control

The standard MFG model described in Section 2. The finite-player model is still described by the same
tuple (1), whose components have the same interpretation. What changes is the notion of solution:
Instead of a Nash equilibrium (Definition 1), we consider a social optimum. To this end, we introduce
the average cost over the population:

JSO
N (α) =

1

N

N
∑

i=1

JN (αi, α−i).

Definition 13 (Social optimum). A social optimum is a control profile α∗ = (α∗i)i=1,...,N such that

JSO
N (α∗) 6 JSO

N (α), ∀α = (αi)i=1,...,N .

In other words, a control profile is a social optimum if it is optimal for the whole population, compared
with any other control profile (not just the ones obtained with unilateral deviations).

Letting the number of players go to infinity, we obtain a mean field problem which has been called
mean field type control, mean field control (MFC), or control of McKean-Vlasov dynamics. We recall
that J is defined in (4) as a function of one player’s control and the mean field. In MFC, all the players
are assumed to use the same control. So we now introduce the following cost, which is a function of the
control only:

JSO(α) = J(α, µα) = E

[

∫ T

0

f(Xα
t , αt, µ

α
t )dt+ g(Xα

T , µ
α
T )

]

, (36)

where µα is the mean field obtained when all the players use the control α, i.e., µα
t = L(Xα

t ), where Xα

solves

dXt = b(Xt, αt, µ
α
t )dt+ σdWt, X0 ∼ µ0. (37)
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Note that, differently from the SDE used in MFG, namely, (3), here the mean field is not fixed: it
is determined endogenously since it depends on the law of the SDE solution itself. This is hence a
McKean-Vlasov (MKV) equation.

The MFC problem is then defined as follows.

Definition 14 (MFC optimum). An MFC optimum is a control α∗ which is optimal for JSO.

Under suitable conditions, it can be shown that the MFC optimal control provides an approximately
optimal control for the finite-player cooperative problem.

The ratio of the cost obtained by an average player in MFG versus MFC is called the price of anarchy,
by analogy with the literature on classical games [164]; see [165] in the context of MFGs. The comparison
between MFG and MFC has been highlighted in several other studies, including [166,167] using the notion
of inefficiency, and [168] for a model of production output control with sticky prices. Ref. [169] studied
how selfish players can be incentivized to behave as in a mean-field social optimum, and how, in the
absence of such incentives, they deviate from a social optimum to adopt a Nash equilibrium.

For more background on MFC, see the monographs [6, Chapter 4], [9, Chapter 6]. For numerical
aspects, see [12,13]. In particular, for numerical illustrations of the price of anarchy, see [13, Sections 2.6
and 4.4], in an LQ model and a model of crowd motion.

6.2 From multi-population MFG to mean field type games and mixed population models

Next, we turn to models with several sub-groups. We present three different solution concepts.
(1) Just as we did for multi-population MFG in Section 3, it is of course possible to consider an MFC

problem with several populations. In this case, there are several groups defined by the same tuple as (10)
but the solution concept is that of a global social optimum, in which all the players of all the populations
cooperate to minimize a common average cost. See [170, 171] in LQ models, [43, Section 2] for a PDE
approach and [44] for a probabilistic approach.

(2) Alternatively, we can consider that the players inside each group are cooperative with each other
and try to minimize the average cost of the group, but the groups do not cooperate with each other. This
leads to the notion of mean field type games (MFTGs) studied in [172]. In the asymptotic model where
each group has infinitely many players (but there is a finite number of groups), it means that each group
solves an MFC problem but between the groups one looks for a Nash equilibrium. Applications include
blockchain token economics [173], risk-sensitive control [174] or, more generally, engineering [175, 176].
Similar problems have also been called mean field games among teams [177], team-against-teammean field
problems [178,179], and teamwise mean field competitions [180]. The case of zero-sumMFTG has received
special interest; see [43,181–183] for the theoretical foundations and [184–186] for numerical aspects using
policy gradient. A connection between robust MFC and zero-sum MFTGs has been presented in [187];
see also [188] for robust MFC. But the framework of MFTGs also covers general sum games with more
than two (mean-field) coalitions; see [189] for finite-state models and reinforcement learning methods.
The above models are for a finite number of groups. In the limit where the number of groups goes to
infinity, MFTGs lead to an MFG model with infinitely many players where each player solves an MFC
problem. Such models have been studied under the terminology of (mixed) mean field control games
in [190–192], motivated by multi-scale reinforcement learning algorithms. Similar games have also been
studied in [193], in [169, Section 3.2.2] in a special case corresponding to an interpolation between MFG
and MFC, and in [194, 195] under the terminology of mixed individual mean field model.

(3) Last, we can also imagine a mixed model in which some groups are composed of cooperative players
and some groups are non-cooperative. This has been studied under the terminology of mixed-population
mean field model in [194, 195], with applications to the tragedy of the commons.

6.3 From graphon MFG to graphon mean field control

Next, the graphon-based model discussed in Section 4 can also be studied from the point of view of a
cooperative solution concept, i.e., a social optimum. In this case, the goal is to find a control profile
α∗ = (α∗u)u∈I which minimizes the following social cost, integrated over the population:

JSO,W(α) =

∫

I

Ju,W(αu, µα)du, (38)

where µα is the mean field generated by the control profile α, and we recall that Ju,W is defined in (22),
as a function of one player’s control and the mean field.
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To the best of our knowledge, social optimum problems in graphon-type interactions have received
much less attention than Nash equilibria in graphon games. Such problems have been studied under the
terminology of graphon mean field control (GMFC), or optimal control for non-exchangeable systems.

In the LQ setting, see [196–201]. Ref. [202] considered a different model than the one described in
these notes, with a Q-noise. GMFC problems were studied in [203] in discrete time and finite state
spaces. Ref. [204] studied GMFC problems via PDE methods, analyzing the associated Bellman dynamic
programming equations, while Ref. [205] developed the probabilistic analysis of GMFC and a Pontryagin
maximum principle, as well as a propagation-of-chaos type result.

6.4 Influential player with MFC population

Last, the models of Section 5 with more influential players can also be adapted to the case with a
cooperative mean-field population.

Major-minor MFC models have been considered in [206]. Stackelberg equilibria with an MFC popu-
lation have been studied for instance in [207] for epidemic management, in [208–210] and [211, Section
5.1] for LQ models. Several extensions have been considered; see [212] with regime switching, [213] in
the context of H∞ control, and [214] with partial observation.

7 Conclusion

In these notes, we have presented an overview of several extensions of the standard MFG and MFC
frameworks that move beyond the assumptions of perfect homogeneity and anonymity. The references
listed at the end of each section, while not exhaustive, illustrate the significant progress achieved in each
of these directions.

Several avenues remain open for future research. First, the theoretical foundations are still incomplete
for certain extensions, such as major-minor MFGs and Stackelberg MFGs in general settings. Second,
numerical methods for these models have received less attention compared to those for standard MFGs
and MFCs; major-minor and Stackelberg formulations, in particular, present substantial computational
challenges. Third, these extensions are primarily motivated by practical applications: relaxing the as-
sumptions of the classical mean-field framework offers the potential to construct more realistic models.
Although some applications have already appeared in the literature, developing more sophisticated models
and applying them to real-world problems remains an exciting direction for future work.
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122 Féron O, Tankov P, Tinsi L. Price formation and optimal trading in intraday electricity markets with a major player. Risks,

2020, 8: 133

123 Dayanıklı G, Lauriere M. Multi-population mean field games with multiple major players: application to carbon emission

regulations. In: Proceedings of 2024 American Control Conference (ACC), 2024. 5075–5081

124 Lin R, Xu Z, Huang X, et al. Optimal scheduling management of the parking lot and decentralized charging of electric

vehicles based on mean field game. Appl Energy, 2022, 328: 120198

125 Delarue F, Mou C. Major-minor mean field games: common noise helps. 2025. ArXiv:2501.02627
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145 Möller L, Gentile B, Parise F, et al. Constrained deterministic leader-follower mean field control. In: Proceedings of 2016

American Control Conference (ACC), 2016. 4687–4692
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