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Abstract Recent advancements in large language models (LLMs) have revolutionized artificial intelligence, yet their com-

putational demands pose significant challenges for efficient deployment. A major issue is handling diverse query responses

efficiently, which motivates the need to predict response lengths and optimize the batch processes. In this paper, we thor-

oughly analyze the challenges involved in the LLM response length prediction task and propose a new framework that treats

it as an uncertainty-aware regression problem. We benchmark four uncertainty quantification methods, including both Fre-

quentist and Bayesian approaches, and find that evidential deep learning (EDL) is the most effective and efficient for this

task. Furthermore, our case study demonstrates that our approach averagely reduces inference time by 38.14% and 20.50%

compared with random batching and the state-of-the-art method, respectively, showcasing the potential of uncertainty-aware

response length predictions in optimizing LLM inference.
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1 Introduction

Recent advancements in large language models (LLMs) have revolutionized the field of artificial intel-
ligence (AI), demonstrating exceptional capabilities across a broad spectrum of tasks [1, 2], including
language translation [3], code generation [4], and even agent-based decision-making [5]. Due to the im-
pressive performance, LLMs are widely applied in an expanding range of domains such as education [6],
healthcare [7], and law [8]. However, because of the intensive computational demands of reasoning in
LLMs, significant resources are needed to handle diverse query responses, which poses certain challenges
for its large-scale deployment [9]. Therefore, how to improve the reasoning efficiency of LLMs and provide
users with a good interactive experience has become a key direction for LLM-based AI applications.

In practice, there have been many attempts to improve the efficiency of inference services by designing
different task scheduling and batch processing strategies, such as First Come First Server (FCFS) [10],
Shortest-Job First (SJF) [11], and multi-level feedback queue-based [12] scheduling. However, since
different requests often correspond to different response lengths, sending a batch of inference requests
to the LLMs containing sequences with different response lengths will lead to inefficiencies. As requests
that were completed earlier are forced to wait for longer requests to complete, this can lead to wasted
computation and even cause head-of-line blocking issues [13].

To alleviate this problem, a straightforward solution is to predict the response lengths of given requests.
This way, we can group requests with similar lengths in the same batch, thereby optimizing processing
efficiency. However, predicting the response length of an LLM is a non-trivial problem. First, there is
uncertainty arising from ambiguous training data and input data. For example, the answer to the question
“Describe the city you live in.” will have high aleatoric uncertainty [14] in training data because it is
ambiguous who and when will answer the question. Moreover, LLMs often employ heuristics or sampling
methods during response generation (e.g., temperature settings [15], top-k sampling [15]), introducing
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variability in the output. These stochastic elements can lead to responses of differing lengths even for the
same input. Thus, there is an urgent need for a new framework that enables response predictions while
quantifying the uncertainty of LLMs.

In this paper, we discuss the limitations of several common methods for the perception of LLM re-
sponse length and propose a new paradigm for this task by incorporating uncertainty quantification.
Specifically, instead of relying on traditional deterministic point estimation, we first treat the response
length perception problem as an uncertainty-aware regression task that provides confidence intervals for
the result. We compare two types of uncertainty quantification methods: Frequentist methods, includ-
ing quantile regression and mean interval score regression; and Bayesian methods, including Monte Carlo
dropout, and evidential deep learning (EDL). We analyze the properties of both Frequentist and Bayesian
uncertainty quantification methods as well as their practical performance. We further provide a recipe for
practitioners when tackling uncertainty quantification problems in the LLM response length perception
task. Moreover, we conducted a case study to evaluate whether the predicted response length could guide
the batching strategy and thereby improve the LLM inference efficiency. The results demonstrate the
effectiveness of our proposed uncertainty-aware approaches. Specifically, our method averagely reduces
the inference time by 38.14% compared with random batching and 20.50% compared with the most
up-to-date approaches without uncertainty quantification [16].

Our main contributions are summarized as follows.

• We discuss why uncertainty quantification is important in LLM response length perception tasks
and introduce a new paradigm that incorporates uncertainty quantification ability. This new paradigm
enables the model to acquire confidence intervals for the predictions. To our knowledge, we are the first
to introduce uncertainty quantification in the context of the LLM response length perception task.

• We benchmark four uncertainty quantification methods. Our study reveals that EDL, quantile
regression, and mean interval score regression obtain confidence levels that better cover data variations.
This observation provides a guide for practitioners in quantifying uncertainty in the LLM response length
perception task.

• We conduct a case study, and the result demonstrates that the predicted response length, especially
when incorporating uncertainty quantification, provides better guidance for downstream LLM inference
serving tasks.

2 Motivation and challenges

2.1 Serving LLM applications

Growing demands for LLM applications have made the LLM inference serving engine a critical component
in modern datacenters. End-users or other microservices of LLM applications submit requests to the LLM
inference serving engine, which queues the incoming requests, dispatches jobs to available computing
devices such as GPUs or TPUs, and returns the results to the end-users. Like other scheduling engines
in datacenters, a well-managed inference service should provide low latency and high throughput within
a reasonable amount of cost.

To achieve this goal, existing serving engines such as TensorFlow serving [17] typically batch requests
to increase hardware utilization and system throughput by better exploiting parallel computing units
in hardware accelerators. However, in practice, such batching and scheduling strategies face a serious
challenge due to the significant variation in response lengths for different queries. As demonstrated in
Figure 1, the LLM response lengths of 10k queries in the Alpaca dataset [18] distribute across a wide
range. This problem originates from the autoregressive nature of the LLM: the models are trained to
generate subsequent tokens iteratively, continuing the process until the end of the token sequence. In
other words, unlike traditional deep neural network (DNN) models, such as ResNet [19] or MLP [20],
which have fixed inference costs [21], the total number of iterations and execution time for an LLM are
unknown in advance for a given input query. As a result, when sending a batch of inference requests to an
LLM, the inclusion of sequences with differing response lengths will lead to inefficiencies. Requests that
have been completed earlier are forced to wait for longer ones to complete, resulting in computational
waste and even head-of-line blocking problems [13]. We show an experiment about this problem in
Figure 2, where the time spent waiting for a shorter answer length is wasted computation. Similarly, we
selected 10k queries and packaged them into batches of different sizes, including 4, 8, 16, 32, and 64, for
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Figure 1 (Color online) Distribution of response length. Figure 2 (Color online) Computational waste when long and

short responses are in the same batch.

Figure 3 (Color online) Computational waste vs. batch size. Figure 4 (Color online) Distribution of mean length among

120 times generations on 10k instructions.

the experiment. The results are shown in Figure 3. It can be seen that the waste of computing resources
increases with increasing batch size, reaching nearly 60% at 64. This issue constitutes the motivation
for this study. If we can predict the response length of each request, we can group requests with similar
lengths in the same batch, thereby effectively minimizing computational waste.

• Takeaway 1: Perception of LLM response lengths could help improve LLM inference efficiency.

2.2 Response length perception

2.2.1 The problem of point estimation

Typically, the LLM response length perception task will be formulated as a point estimation task, where
the objective is to predict a specific response length for a given query. However, as discussed in Section
1, the response length to identical queries can differ across various samples. Figure 4 illustrates the
variability in response length, and we sample 10k instructions from the Alpaca dataset [18], prompting
the LLaMA2-7B to answer each query 120 times. The figure plots the range of possible lengths for each
query (from the shortest to the longest response). In the figure, we can see that there is no definitive
‘ground truth’ but rather a range of possible truths for LLM response length perception tasks. Therefore,
the traditional deterministic point estimation framework may feel confused to make a decision, since any
given answer could be both correct and incorrect at the same time. It is urgent to measure the uncertainty
in this setting and thereby provide confidence intervals for the result.

• Takeaway 2: Point estimation is not suitable for the LLM response length perception tasks; instead,
uncertainty quantification is needed.



Shi B, et al. Sci China Inf Sci November 2025, Vol. 68, Iss. 11, 210101:4

Figure 5 (Color online) Examples of four different prompts to predict the length of the responses on LLaMA2-7B. As demonstrated

in the upper right corner, LLaMA2-7B may fail to follow the instructions.

2.2.2 Response length perception by LLM itself

Humans have the ability to estimate the length of an answer based on their understanding of the question.
For example, a question like “What is the capital of China?” typically receives a shorter response than
a question like “Please introduce the landmarks of Beijing”. Since LLMs have undergone reinforcement
learning from human feedback (RLHF), they have, to some extent, been aligned with human under-
standing. Thus, they naturally exhibit the emergent ability [22] of response length perception. In this
subsection, we evaluate how well this ability is developed. Specifically, we directly asked the LLMs to
predict the length of the responses they were about to generate. Note that instead of instructing the
model to output a point estimation, we have it consider the uncertainty and output a range. Furthermore,
we did not consider advanced prompt design techniques such as chain of thought [23], scratchpad [24],
focusing solely on zero-shot and few-shot prompts for testing. The specific settings include:

Non-intrusive manner. This process involves modifying the query to prompt the model to provide
only an estimated range of response lengths. We then compare this estimated length with the actual
response generated using the original prompt. In other words, this approach decouples the prediction
and generation processes.

Intrusive manner. This process involves modifying the query to ask the model to answer the esti-
mated range of response lengths first and then provide the full response.

Figure 5 illustrates examples of four different prompts designed to make LLMs predict the length of the
responses they were about to generate. We applied these modified prompts to both GPT-4 and LLaMA2-
7B and observed how they responded to the instructions. Specifically, we modified 200 queries from the
Alpaca dataset and employed the metric Accuracy to evaluate whether the actual response lengths1) for
these queries accurately fell within the predicted ranges of the different models. In addition, we recorded
the average interval widths of the predicted ranges for each model. The results are shown in Table 1. Bold
and underline in the table indicate the best results within the same group. As shown, regardless of the
type of large model, whether few-shot or zero-shot, the prediction accuracy in a non-intrusive manner is
low. In terms of intrusive manner, we observed that LLaMA2-7B yielded low performance, with instances
where the model failed to follow the prompt instructions. This behavior can be attributed to the limited
capacity of smaller LLMs to handle multiple tasks simultaneously. Additionally, when using few-shot
prompts, the numbers in the examples can be somewhat misleading for LLaMA2-7B’s predictions, as
the model has limited capacity to understand the examples and tends to directly repeat the numbers
mentioned in the prompt. In contrast, larger LLMs like GPT-4 exhibited good performance, particularly

1) In this experiment, the actual response lengths were only sampled once.
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Table 1 Evaluation of response length perception across four different prompts.

Metrics
Zero-shot prompt Few-shot prompt

Interval width Accuracy (%) Interval width Accuracy (%)

Non-intrusive manner

LlaMA2-7B 26.17 26.5 6.21 26.0

GPT-4 39.34 26.5 16.30 35.5

Intrusive manner

LlaMA2-7B 23.50 21.0 1.33 20.5

GPT-4 14.28 58.5 18.00 67.5

Table 2 Evaluation of response length perception under instruction tuning.

Interval width Accuracy (%)

LLaMA2-7B without tuning 26.17 26.5

LLaMA2-7B with tuning 619.6 90.5

when using few-shot prompting, achieving an accuracy of 67.5%. However, the intrusive approach has a
significant drawback, as the model is aware of the anticipated length during the creation of the response.
This awareness can lead the model to interpret the estimated length as a boundary condition, potentially
shaping its output to conform to the predicted length, which can be referred to as a length-constrained
generation process. We analyze the cases and observe a stronger tendency for GPT-4 to tailor its answers
to fit the estimated length.

• Takeaway 3: Directly prompting LLMs to predict the response length without adjusting or fine-
tuning them is not feasible.

2.2.3 Response length perception through instruction-tuning

Based on Takeaway 3, we further investigate the ability of LLMs to predict the length of their responses
through instruction-tuning.

Instruction-tuning manner. This process involves supervised instruction tuning. We modify the
input query and prompt the model to predict the range of the response length instead of generating the
entire response. Specifically, we add “Do not output the response for the following instruction. Instead,
you need to predict word count range of your response. Output two numbers only, for example, 300–500”
in front of the original query. Then, a subset of 10000 queries from the Alpaca dataset [18] was selected
as input, and the labels were set according to the minimum and maximum lengths observed over 120
generations. To minimize the computational resource required during instruction-tuning, we employ the
efficient training method LoRA [25].

Table 2 presents the experimental results, which demonstrate a significant improvement after fine-
tuning. The prediction accuracy increased from 26.5% to 90.5%. Although such results have proven the
effectiveness of instruction tuning, we believe that this approach is not optimal for the following reasons.
(1) Even with the use of LoRA, instruction tuning still requires a significant amount of training resources.
(2) The fine-tuned LLMs make predictions in a generative manner, which may not be ideal for perception
tasks such as length prediction in terms of both accuracy and efficiency [26]. The results analysis also
corroborates this point: we observe that the fine-tuned model tends to predict the minimum length close
to 0, which is not a precise answer.

• Takeaway 4: Supervised instruction-tuning can improve the accuracy of length prediction, but
it comes with significant training and prediction overhead. Given that the output dimension for the
response length prediction task is very low, a lighter model should be sufficient.

3 Method

In this section, we propose the Uncertainty-aware LLM response length perception framework. As shown
in Figure 6, we froze the LLM and trained a separate model to perform the length prediction task in an
uncertainty-aware manner. During the training (or prediction) phase, we fed the model with the hidden
states, which were selected at the point when the LLM encoded the last token of the input query. This
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Figure 6 (Color online) The overview of uncertainty-aware large language model response length perception.

approach resulted in minimal loss in our experiments, outperforming methods such as average pooling or
concatenating the hidden states of multiple or all tokens. The specific task definition is as follows.

3.1 Problem definition

The prediction of response length naturally fits into the regression framework, where the goal is to predict
a continuous variable. Given a data set D = {xi, yi}Ni=0, where xi is the hidden state embedding of the
last token in the last layer of the ith prompts [27] and yi ∈ R is the corresponding true length label. The
goal is to find a function fθ with deep neural networks:

fθ(xi) = ŷi, (1)

where θ is the function parameter and ŷi denotes the predicted response length.
The function parameter θ is estimated by minimizing the loss between the predicted and real response

length:

S(θ) =
1

N

N∑

i=0

L (yi, ŷi), min
θ

S(θ). (2)

L(·) is the loss function, such as the mean squared error (MSE), the mean absolute error (MAE). In this
study, we choose the MSE function:

L (yi, ŷi) = ‖yi − fθ(xi)‖2. (3)

However, the traditional regression problem mentioned above only considers point estimation and
cannot reflect the uncertainty in the data and model. In reality, due to uncertainty, there are inevitably
multiple different response lengths for the same prompt input. Let Yi = {yi1, yi2, yi3, . . . , yin} denote all
possible response lengths. In this paper, we redefine the task for LLM Response Length Perception that
incorporates uncertainty quantification ability. The objectives are as follows:

min width(Ci)
s.t. P{Yi ∈ Ci} > 1− α,

(4)

where Ci denotes the confidence interval, α is the significance level2). The width(Ci) denotes width of
confidence interval Ci.

Eq. (4) aims to achieve coverage while minimizing the confidence interval width. Coverage: The con-
fidence interval Ci covers the possible response lengths with a confidence level of 1 − α. Width: The
width refers to the range of confidence interval Ci. The former measures how often the true target lies
within the confidence interval, while the latter measures the precision of the provided confidence interval.
Ideally, we aim to achieve high coverage while maintaining minimal width.

Based on the task formulation, we further apply statistical decision theory to integrate Frequentist
and Bayesian methods into a unified framework for better quantifying the uncertainty. We assume that
dataset X and its corresponding labels Y follow the probability distribution p(Y | X ; θ) with parameter
θ, and θ also follows distribution p(θ). The objective of the training process is to minimize the expected
loss function over both the data distribution and the model parameter distribution p(θ). The difference
is, the Frequentist methods assume that the parameter θ is fixed but unknown, interpreting probability

2) In this paper, we employ α to denote the significance level and ρ = 1 − α to denote the confidence level.
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as the frequency of an event occurring over an infinite number of repeated experiments. These methods
use hypothesis testing and confidence intervals to determine Ci. In contrast, Bayesian methods treat
the parameter θ as a random variable and follow a prior distribution. By applying Bayes’ theorem, the
prior distribution is combined with the likelihood function derived from the observed data to obtain the
posterior distribution, from which confidence intervals Ci are derived. Next, we detail how to estimate
confidence intervals for LLM response length perception using these uncertainty quantification methods.

3.2 Frequentist UQ methods

Mean interval score regression (MISR). MISR [28] can be employed to estimate confidence intervals
in a regression problem through a single forward pass. Specifically, given confidence level 1−α, we use the
multi-head MLP to output upper confidence bound u(x), lower confidence bound l(x), and the prediction
f(x). It tends to output narrower confidence intervals and encourages intervals that include the true
target (coverage). We optimize MISR by minimizing the following loss:

LMISR(y, u(x), l(x), f(x); θ, α)

= min
θ

{

E(x,y)∼D

[

(u(x)− l(x)) +
2

α
(y − u(x))I{y > u(x)} + 2

α
(l(x)− y)I{y < l(x)} + |y − f(x)|

]}

,

(5)

where I{·} represents the indicator function, which returns 1 when the condition is true. (x, y) ∼ D

indicates that the random variable (x, y) follows a joint distribution D.

Quantile regression (QR). QR [29] can obtain the corresponding quantile of input value x. Given
a confidence interval (1 − α), by regressing multiple quantile points such as (1 − α

2 ) and α
2 quantiles

simultaneously during one forward propagation process, the corresponding confidence interval upper and
lower bounds with (1− α) confidence interval can be directly obtained,

LQR(y, f(x); θ, τ)

= min
θ

{E(x,y)∼D[(1− τ)|y − f(x)|I{f(x) < y}+ τ |f(x) − y|I{f(x) > y}]}, (6)

where I{·} represents the indicator function, which returns 1 when the condition is true. (x, y) ∼ D

indicates that the random variable (x, y) follows a joint distribution D. The τ is the quantile point, which
varies according to the given confidence level, taking on the values [α2 , 0.5, 1− α

2 ], respectively.

3.3 Bayesian UQ methods

Monte-Carlo Dropout (MC Dropout). MCDropout [30] is widely used to quantify the uncertainty of
neural network models. This method achieves uncertainty quantification by activating the Dropout layer
in the inference phase and performing multiple forward propagations to achieve approximate Bayesian
inference.

In general, MC Dropout can be applied without restrictions, requiring only the dropout layer in the
neural network model. During the training stage, MC Dropout is the same as a regular neural network.
During the test stage, the dropout layer is required to be activated. When MC Dropout is running, each
time a forward propagation is performed, a random Monte Carlo sampling is completed. Based on the
results of multiple forward propagations, we can calculate the prediction mean and variances, and then
estimate the confidence interval. In addition, MC Dropout can be implemented in parallel, and when
there are sufficient computing resources, the time cost is equivalent to one forward propagation.

Evidential deep learning (EDL). EDL [31] represents the learning as an evidence acquisition
process, which does not place the prior on the network weights as in the case of a Bayesian neural
network, but directly places the prior on the likelihood function. By training the neural network to
output hyperparameters for high-order evidence distributions, we can obtain a basic representation of
uncertainty in discrete classification tasks without sampling. In this paper, we mainly introduce the
variants of evidential deep regression (EDR) [32] that are suitable for regression tasks. We assume that
label yi follows a Gaussian distribution with unknown mean and variance (µ, σ2). In order to model this,
we also need to perform prior estimation on them separately. When assuming that the predicted label
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follows a Gaussian distribution, this leads to µ and σ2 satisfying the Gaussian prior and Inverse-Gamma
prior, respectively.

(y1, y2, . . . , yN) ∼ N(µ, σ2), (7)

µ ∼ N(γ, σ2ν−1), σ2 ∼ Γ−1(α, β), (8)

where Γ(·) is Gamma function, m = (γ, ν, α, β), γ ∈ R and ν > 0, α > 1, β > 0.

We aim to calculate the posterior distribution q(µ, σ2) = p(µ, σ2 | y1, y2, . . . , yN ), which can be factor-
ized [33] into q(µ, σ2) = q(µ)q(σ2), so we can use the normal inverse-gamma (NIG) distribution:

p(µ, σ2 | γ, ν, α, β
︸ ︷︷ ︸

m

) =
βα

Γ(α)
√
2πσ2

(
1

α2

)α+1

exp

{

− 2β + ν(γ − µ)2

2σ2

}

. (9)

In order to infer the hyperparameters m of the high-order evidence distribution under a given input,
EDR constructs the learning process into two parts, maximizing the model evidence support the ob-
servations, where the model evidence is defined as the likelihood of yi given the evidence distribution
hyperparameters m:

p(yi | m) =

∫ ∞

σ2=0

∫ ∞

µ=−∞

p(yi | µ, σ2)p(µ, σ2 | m)dµdσ2

= St

(

yi; γ,
β(1 + ν)

να
, 2α

)

, (10)

where St(y;µ, σ2, n) is the the Student-t distribution at y with location µ, scale σ2 and degree of freedom
n.

The model outputs the maximum model evidence by minimizing the negative log marginal likelihood
loss (NLL) for each training pair (xi, yi), LNLL(yi,m) = − log(p(yi | m)), which can be summarized as
the following formula:

min
θ

{LNLL(y,m)}

= min
θ

{

E(x,y)∼D

[
1

2
log

(
π

ν

)

− α log(Ω) +

(

α+
1

2

)

log((y − γ)2ν +Ω) + log

(
Γ(α)

Γ(α+ 1
2 )

)]}

, (11)

where Ω = 2β(1 + ν).

When the model makes incorrect predictions, an incorrect evidence penalty is used to regulate the
training process to minimize the evidence of incorrect predictions:

min
θ

{LR(y,m)} = min
θ

{E(x,y)∼D[|y − E(µ)| · Φ]} = min
θ

{E(x,y)∼D[|y − γ| · (2ν + α)]}. (12)

According to the high-order evidence parametersm = {γ, ν, α, β} output by the EDR model, the model
prediction E[µ], aleatoric uncertainty E[σ2], and epistemic uncertainty Var[µ] can be calculated by the
following formula:

E[µ] = γ, E[σ2] =
β

α− 1
, Var[µ] =

β

ν(α− 1)
. (13)

3.4 Implementation details

We implement these models using PyTorch. All models consist of two fully connected layers and one
output layer, with an activation function applied after each layer. The number of hidden units in each
layer is set to 60. Additionally, we use a dropout layer to prevent overfitting, with a dropout rate of
0.1. The parameter counts for each layer are as follows. Layer 1: P1 = dinput × 60 + 60. Layer 2:
P2 = 60 × 60 + 60. Output: P3 = 60 × doutput + doutput. We use the Adam optimizer, set the learning
rate to 1× 10−7, and train for 50 epochs with a batch size of 32.
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4 Experiments

4.1 Experimental setting

Two datasets, the Alpaca dataset [18] and the Instruction-in-Wild dataset [34], are included in our
experiment. The first one contains 52k query instructions generated based on the self-instruction frame-
work, from which we randomly select 10k instructions for our experiment. The second one contains 429
real-world collected query instructions, and we use them all.

In all experiments, we consistently employed two base models, LLaMA2-7B [35] and Qwen2.5-14B-
Instruct [36], to generate hidden state embeddings. For each query, both models were run 120 times
to obtain a tuple of response length as the prediction label. The set temperature is 0.6, top p = 0.9,
and max seq len = 1024. During the training process, separate training processes were conducted
for both LLaMA2-7B and Qwen2.5-14B-Instruct. The training dataset, validation dataset, and test
dataset are divided into 8:1:1. We choose the epoch with the smallest MAE loss as the optimal model
and the 95% confidence interval as the default value for calculation. For ECE, the confidence interval
ρi = {0.1, 0.2, . . . , 0.9}. For QR, we set the quantile to { ρ

2 , 0.5, (1−
ρ
2 )} and can obtain the mean value,

upper, and lower bounds in one propagation. For MC Dropout, we sample 100 times, with a dropout
rate of 10%. The setting of EDL is the same as that in [37]. For instruction tuning, we also tuned the
LLM to predict the response length in a point estimation manner.

4.2 Evaluation metrics

For point estimation in regression tasks, the mean absolute error (MAE) is a commonly used metric.
However, when dealing with predictions with uncertainty, MAE cannot fully represent the quality of the
prediction interval. Therefore, we discuss several alternative metrics.

Mean interval score (MIS). MIS is used to measure the prediction interval, also known as the
Winkler loss [38]. It encourages minimizing the prediction interval and rewards intervals that cover the
true label. For a given input value x and the corresponding confidence interval (1− α), if the upper and
lower bounds of the interval are u and l, then the calculation of MIS is as follows:

MISN(u, l;α) =
1

N

N∑

i=0

{

(ui − li) +
2

α
(yi − ui)I{yi > ui}+

2

α
(li − yi)I{yi < li}

}

. (14)

Interval score (IS). IS [39] measures the average size of the prediction confidence intervals. Given
confidence interval ρ, IS is calculated based on the corresponding upper and lower bounds, u and l. The
detailed definition is as follows:

ISN (u, l; ρ) =
1

N

N∑

i=0

(ui − li). (15)

Expected calibration error (ECE). ECE [37,40,41] measures how well the predicted probabilities
(or confidence intervals) of a model align with the actual observed frequencies of the true target:

ECE =
1

N

N∑

i=0

|acc(ρi)− ρi|, (16)

where ρi denotes the confidence interval, acc(ρi) represents the proportion of true labels that fall within
the corresponding confidence interval [ρi

2 , 1 − ρi

2 ]. In this paper, we use ρ[0:N ] = [0.01, 0.02, . . . , 1.00]
enumerably, where N = 100.

Coverage rate. Coverage rate measures the average proportion of actual response lengths (true
labels) that accurately fall within the predicted ranges. Since we sampled 120 response lengths for each
query, we represent this value as x/120, where x denotes the average number of predicted response lengths
that fall within the corresponding confidence interval.
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Figure 7 (Color online) Case visualization on Alpaca. Figure 8 (Color online) Case visualization on Instruction-in-

Wild.

4.3 Performances and analysis

Table 3 shows the main results obtained from testing on two different datasets using both LLaMA2-7B and
Qwen2.5-14B-Instructmodels. First, we can see that the Instruction Tuning method generally shows lower
performance than uncertainty quantification methods across all metrics, particularly in terms of inference
and training times. As for uncertainty quantification methods, the QR and EDL methods exhibit fine
predictive performance in the MAE metric, even better than simple point estimation prediction methods.
In addition, MISR, QR, and EDL methods have similar performance scores in the MIS, IS, and ECE
metrics. For the MIS score, MISR directly minimizes the MIS score function but only achieves the best
performance on the Alpaca dataset when using LLaMA2-7B, while EDL performs best on the remaining
settings. Furthermore, the EDL method also achieves optimal performance on both two datasets in the
ECE metric for both models, indicating that the EDL has the optimal uncertainty quantification ability
and its predictions align more closely with the true distribution of the data. In comparison, MC Dropout
may struggle to fully capture the diversity of the data and tends to produce narrower confidence intervals
than desired, which is expected since MC Dropout is designed to measure epistemic uncertainty, while
the context here is dominated by aleatoric uncertainty. In terms of efficiency, MISR, QR, and EDL have
negligible additional time costs compared with simple point estimation. Although MC Dropout has a
similar time cost to point estimation during the training process, it significantly increases the overhead
during the testing process due to the need for multiple samples. In conclusion, we consider EDL to be
the best choice in terms of effectiveness and efficiency.

4.4 Visualization

To illustrate the necessity of introducing uncertainty quantification into LLM response length perception,
we conduct a case study visualization in two datasets, respectively, see in Figures 7 and 8. We randomly
select 30 results from each dataset on the LLaMA2-7B model, where the points are the true response
length distribution for different queries, the green lines represent point estimation results, and the shades
represent the estimated confidence interval 95%. We also use the same color to mark those true response
length points that fall within the confidence intervals. As can be seen from the two figures, the simple
point estimation method can only obtain the average value of the true distribution and is easily affected by
extreme values (too large or too small). In contrast, the uncertainty quantification method we introduce
can better capture the uncertainty in the dataset and the way LLM itself generates by giving a confidence
interval, which is more suitable for the response length perception task of LLM.

4.5 Interesting findings

During our investigation into the length of LLM responses, we made some interesting observations re-
garding what types of prompts are more likely to generate longer responses.

(1) Long responses with low variability.
(i) List or enumeration tasks (e.g., “Generate a 10-item annotated bibliography given the informa-

tion below.”) consistently produced the longest responses. This is mainly because list-based tasks require
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Table 3 We compare point estimation, instruction tuning, and four uncertainty quantification methods across four metrics: MAE,

MIS, IS, and ECE. Additionally, we also compare the training and testing time required for each method.

Alpaca dataset

MAE MIS IS ECE Coverage rate Train time (s) Test time (s)

LLaMA2-7B

Point estimation 121.2751 – – – – 45.4446 3.6216

Instruction tuning 137.3568 1022.8373 619.6240 – 109.07/120 3305.4856 112.2594

Frequentist methods

MISR 130.7789 590.4245 435.8109 0.0706 112.81/120 104.8951 3.8201

QR 121.3691 611.5578 400.6010 0.0681 112.12/120 119.8766 5.6572

Bayesian methods

MC Dropout 125.3334 1518.5341 151.1300 0.1515 53.40/120 40.44456 55.0553

EDL 119.2315 602.7090 420.0773 0.0610 114.57/120 155.8865 3.3970

Qwen2.5-14B

Point estimation 113.8544 – – – – 49.1924 3.2231

Instruction tuning 130.1769 984.6346 591.4495 – 111.83/120 11881.1375 314.8146

Frequentist methods

MISR 126.4136 568.7523 412.3513 0.0723 114.90/120 129.9201 4.6501

QR 115.2269 588.3482 381.9124 0.0698 114.05/120 136.2043 4.2023

Bayesian methods

MC Dropout 122.1772 1459.2896 138.7250 0.1571 56.33/120 79.1925 52.6465

EDL 113.5837 581.0357 405.1995 0.0635 115.42/120 160.8388 2.9110

Metrics
Instruction-in-Wild dataset

MAE MIS IS ECE Coverage rate Train time (s) Test time (s)

LLaMA2-7B

Point estimation 172.0837 – – – – 2.7644 0.2329

Instruction tuning 189.2764 1176.5384 683.4197 – 105.84/120 96.7815 14.3547

Frequentist methods

MISR 195.9512 954.3300 591.3186 0.0601 105.77/120 6.2523 1.3882

QR 171.4666 819.5064 652.7430 0.0566 107.38/120 3.7398 0.3775

Bayesian methods

MC Dropout 186.4899 1878.9079 317.8341 0.0812 76.97/120 2.3403 4.7700

EDL 163.1294 709.2047 560.6721 0.0420 110.04/120 6.7090 0.2711

Qwen2.5-14B

Point estimation 164.5589 – – – – 3.1265 0.2952

Instruction tuning 171.4472 1083.6251 634.3585 – 107.92/120 680.6921 108.4473

Frequentist methods

MISR 178.6653 691.3849 547.3265 0.0612 110.35/120 6.4521 1.0128

QR 165.3274 723.2189 515.3265 0.0573 111.84/120 2.9065 0.4297

Bayesian methods

MC Dropout 175.9921 1572.4385 275.3265 0.898 58.71/120 2.9110 4.3453

EDL 159.4376 635.2189 532.6532 0.0487 112.93/120 6.9973 0.3067

the model to enumerate and explain each item individually, resulting in long but structurally consistent
outputs.

(ii) Multi-part tasks (e.g., “Look up the definition of the Latin phrase ‘lexicalis’, and explain it in
your own words.”) generated predictably long responses. In these tasks, the sequential steps or required
components are explicitly defined. The fixed substructure constrained the length variation while making
the response longer.

(2) Long responses with high variability.

(i) Open-ended prompts (e.g., “Explain a common misconception about your topic.”) generated
responses that were both long and highly variable. These prompts require the model to synthesize broader
knowledge, elaborate abstract ideas, and sometimes include optional examples. For example, responses
to such prompts were on average 2.3 times longer than those to factual Q&A (e.g., “What is the capital
of France?”), but exhibited 25%–40% variation in length depending on how expansively the model chose
to elaborate.

(ii) Creative generation prompts (e.g., “Create a story for a children’s book about a crocodile.”)
showed the highest length variability among all categories. The open-ended nature of creative writing,
coupled with the need for narrative development—such as plot, character, and setting—resulted in out-
puts that were often lengthy, but with highly inconsistent lengths depending on the narrative scope the
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Table 4 Comparison of throughput across different scheduling strategies.

LLaMA2-7B Qwen2.5-14B

Throughput (samples/s) Improvement (%) Throughput (samples/s) Improvement (%)

Vanilla 0.413 0 0.174 0

Zheng2024 0.454 9.93 0.209 20.11

EDL+Upper 0.579 40.19 0.231 32.76

EDL+Lower 0.557 34.87 0.215 23.56

EDL+Expected 0.562 36.08 0.222 27.59

EDL+Cluster 0.588 42.37 0.233 33.91

model chose to develop.
These findings highlight that response length is highly sensitive to prompt specificity. At the same

time, they underscore the importance of predicting response lengths when serving LLM applications.

5 Case study: improve LLM inference efficiency

After developing a precise response length perception module, this section presents case studies to demon-
strate how uncertainty-aware length prediction improves the efficiency of LLM inference. To enable
efficient sequence scheduling, we assume that the group size (i.e., the number of queries that need to
be processed) is larger than the batch size for a single GPU. This assumption aligns with the common
scenario of LLMs. As shown in Figure 2, batching queries with vastly different response lengths leads
to redundant computations, reducing inference throughput. By grouping queries with similar response
lengths, we can significantly accelerate the inference process. However, based on the analysis in this
paper, the response lengths are uncertain and cannot be precisely determined, so it is challenging to
group them in advance.

Case setting. In our setting, the predicted response length includes an upper bound u, a lower
bound l, and an expected value ŷi. Therefore, we adopt 3 basic grouping strategies: (1) sorting the
queries according to their predicted upper bound (EDL+Upper), lower bound (EDL+Lower), and ex-
pected value (EDL+Expected), respectively; (2) sequentially dividing them into batches for process-
ing. In addition, we also propose the use of clustering methods to achieve more effective grouping
(EDL+Cluster). The clustering parameters are set as [u+l

2 , u− l], and the clustering algorithm used is K-
means [42]. The baseline of our experiment is (1) Vanilla: the queries are randomly batched for inference;
(2) Zheng2024 [16]: using instruction tuning for maximum response length prediction and then batching
queries by the predictions. In the evaluation, we randomly selected samples from the Alpaca dataset.
We defined the query group size as 256 and the batch size as 16. The inference is performed on both the
LlaMA2-7B and the Qwen2.5-14B model using an 80GB A100 GPU.

Overhead of length prediction. Given that the proposed method requires computing the contextual
embeddings for all queries before generating their responses, there is an inherent overhead associated with
response length prediction. This overhead primarily involves calculating the key-value (KV) cache for
the instruction tokens (referred to as pre-filling). However, this overhead is actually minimal, as the
process typically involves a single forward pass, allowing the model to process all input sequences in
parallel. For instance, in Transformer models, tokens in the input sequence are computed simultaneously
via matrix multiplication, thereby fully leveraging the parallel computing capabilities of GPUs/TPUs.
Our experiments using LLaMA2-7B on the Alpaca dataset revealed that this process typically requires a
computational time comparable to generating 1–2 tokens. Our benchmarks on LLaMA2-7B (A100 GPU)
show that prefilling a 512-token query takes 31.31 ms, which is comparable to generating 1.12 tokens
(27.93 ms/token). Consequently, when performing batching generation with similar lengths queries, we re-
perform the prefilling operation instead of reusing the previously calculated KV cache. Furthermore, the
minimal overhead associated with this process can be effectively compensated by the overall acceleration
achieved through sequence scheduling.

Results. Table 4 presents the throughput across different scheduling strategies. It is worth noting
that all associated overheads, such as response length prediction and grouping, are included in the exper-
iments. Among our 4 different methods, the clustering-based batch grouping approach (EDL+Cluster)
demonstrates the best performance, achieving throughput improvements of 42.37% on LLaMA2-7B and
33.91% on Qwen2.5-14B compared with the baseline (Vanilla) method. Furthermore, our method out-
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Table 5 Performance of model trained at temperature = 0.6, top p = 0.9 and evaluated on random temperatures ∈ [0.1, 1.0],

and random top p ∈ [0.7, 1.0].

Prediction performance (MAE) Inference throughput (samples/s)

Fixed hyperparameters 119.2315 0.588

Varied hyperparameters 131.0613 0.554

performs Zheng’s baseline method by 29.51% on LLaMA2-7B and 11.49% on Qwen2.5-14B. The main
reasons for this improvement are: (1) the overhead of response length prediction in our method is lower
by two orders of magnitude; (2) our clustering-based grouping strategy, which groups queries according
to the response length range, is more effective than directly grouping by maximum length.

6 Generalization discussion

In this section, we investigate the generalization ability of the proposed method. For all experiments
herein, LLaMA2-7B is employed as the default base model. The discussion aims to answer the following
questions.

• RQ1: How does the model generalize under different hyperparameter settings?
• RQ2: Can a model trained on one dataset generalize to another?
• RQ3: What is the trend of predictive performance with varying training data scales?
• RQ4: If the model is trained on a mixture of data from several heterogeneous domains, is it able to

maintain high performance across the corresponding test sets?

6.1 Hyperparameters sensitivity (RQ1)

Intuitively, decoding hyperparameters such as temperature and top p can significantly affect the output
length of language models. To investigate their impact, we randomly selected a set of queries and
conducted controlled experiments. For each query, we generated 100 responses under each combination
of temperature and top p settings. We then plotted the response length distributions using histograms
and kernel density estimation (KDE). Representative examples are shown in Figure 9. From these results,
we can draw an important conclusion: although temperature and top p strongly influence the response
of individual queries, their effect on the overall length distribution is relatively minor. While higher
temperature increases response variability and lower temperature reduces it, the overall trends in length
distribution remain relatively stable across different hyperparameter settings.

This finding suggests that our length prediction model may generalize well across different decoding hy-
perparameters. To further validate this, we trained our model with fixed hyperparameters (temperature =
0.6, top p = 0.9), and evaluated it under randomly varying settings (temperature ∈ [0.1, 1.0], top p ∈
[0.7, 1.0]). As shown in Table 5, our model exhibited only a modest degradation in MAE (9.92%). The
inference throughput saw a minor decrease from 0.588 to 0.554 samples/s compared with fixed hyper-
parameters, while it still significantly outperformed the vanilla method’s baseline (0.413 samples/s, see
Table 4).

Finally, as previously discussed, higher temperature increases response variability and lower temperature
reduces it. This behavior may potentially be further corrected through the temperature scaling method
[43], which we leave as future work.

6.2 Generalization across datasets (RQ2)

To evaluate the generalization capability of our method on unseen queries and different prompting
paradigms, we conducted an experiment to assess whether a model trained on one dataset can gen-
eralize to another. Specifically, we employed the GSM-8K and the Instruction-in-Wild dataset. In the
GSM-8K dataset, each query is structured with embedded reasoning examples, following a zero-shot
in-context learning framework.

As shown in Table 6, our model achieves a 21.25% lower MAE than the point estimation method on the
Instruction-in-Wild dataset (169.33 vs. 215.03), and its performance is also comparable to that of a model
directly trained on Instruction-in-Wild (MAE of 163.13, as reported in Table 3). Moreover, based on the
predicted lengths, our sequence scheduling method achieves a 37.32% improvement on throughput over
the vanilla baseline. For the GSM-8K dataset under the context-learning setting, our model reduces the
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Figure 9 (Color online) Response length distributions using histograms and kernel density estimation under different hyperpa-

rameter settings.

Table 6 Performance of model trained on the Alpaca dataset and evaluated on Instruction-in-Wild and GSM-8K.

Prediction performance (MAE) Inference throughput (samples/s)

Our method Point estimation Our method Vanilla Improvement

Instruction-in-wild 169.3260 215.0257 0.447 0.325 37.32%

GSM-8K 454.1903 716.0652 0.342 0.297 15.10%

length prediction MAE by 36.57% compared with the point estimation method (454.19 vs. 716.07), yet
the absolute error remains relatively high (see Table 7, the MAE can be reduced to 192.48 when trained
directly on GSM-8K). The reason is that GSM-8K focuses on mathematical reasoning, which differs
in domain from Instruction-in-Wild and Alpaca. Furthermore, in the GSM-8K dataset, a substantial
number of responses reach the maximum output length limit (1024 tokens), while our predictor was
trained on data with very limited examples exceeding this threshold. Despite this challenge, our method
still achieves a 15.10% throughput improvement over the vanilla baseline, because even coarse predictions
can still provide some useful signals for scheduling. However, optimal performance is expected when the
model has previously been exposed to similar input types.

6.3 Performance with varying training data scales (RQ3)

As analyzed in Subsection 6.2, optimal performance is expected when the model has previously been
exposed to similar input types. This, however, may raise a new concern: the model’s potential reliance
on very large-scale datasets. To address this concern, we investigated how predictive performance scales
with the amount of training data. For both datasets, we trained the model using incrementally sampled
subsets of the training data (5%, 10%, 15%, 25%, 50%, 75%, and 100%) and evaluated four key metrics:
mean absolute error (MAE), mean interval score (MIS), interval score (IS), and expected calibration error
(ECE). Figure 10(a) illustrates the experimental results. For the Alpaca dataset, the model achieved
near-optimal performance with approximately 50% of the training data. This indicates that our length
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Figure 10 (Color online) How predictive performance (a) MAE, (b) MIS, (c) IS, and (d) ECE scales with the amount of training

data.

Table 7 Performance of model trained on the Alpaca dataset and evaluated on Instruction-in-Wild and GSM-8K.

Prediction performance (MAE) Inference throughput (samples/s)

Trained on mixture dataset Trained on single dataset Our method Vanilla Improvement (%)

Alpaca 120.8307 119.2315 0.577 0.413 39.71

Instruction-in-wild 159.5449 163.1294 0.458 0.325 40.92

GSM-8K 195.3575 192.4831 0.402 0.297 35.35

prediction model can effectively capture the relationship between input queries and output lengths from
moderate data scales. In contrast, the Instruction-in-Wild dataset required a larger proportion of training
data to reach comparable performance levels. Specifically, the model needed nearly 75% of the training
data to achieve its near-optimal predictive capability. This slower convergence is due to the limited size
of the data set, only 429 queries. Overall, these results confirm that our method can efficiently capture
latent input-output length correlations from limited data, avoiding overreliance on large-scale datasets.

6.4 Generalization across heterogeneous domains (RQ4)

As shown in the experiments of Subsection 6.2, when the model encounters queries from previously
unseen domains, its prediction performance tends to degrade. In this subsection, we investigate whether
a model trained on a mixture of data from several heterogeneous domains can maintain high performance
across the corresponding test sets. Specifically, we selected the Alpaca, Instruction-in-Wild, and GSM-8K
dataset. In the GSM-8K dataset, each query is structured with embedded reasoning examples, following
a zero-shot in-context learning framework. We randomly sampled 50% of the training data from each
dataset to construct a mixture dataset for training. The results, shown in Table 7, indicate that the
length prediction performance of the model trained on the mixture dataset is comparable to that of
models trained individually on each dataset. Furthermore, based on predicted lengths, the scheduling
method achieves a significant throughput improvement upon all three datasets. These results demonstrate
that when trained on a dataset representative of multiple domains, the model can generalize well across
them.

7 Related study

Efficient LLM inference. LLMs have become an important tool for knowledge-based industries and
provide support for many human-centric tasks due to their powerful reasoning ability in language [44,45].
However, it usually requires higher computational costs and usage rates to deal with the large number of
requests. Achieving efficient inference for LLMs has undoubtedly become an important way to effective
deployment. The Parallelism method includes data parallelism [46], tensor parallelism [47] and pipeline
parallelism [48], whose core is to divide the corresponding part into multiple groups and allocate them
onto multiple GPUs for parallel computing, thereby reducing latency and improving device throughput,
alleviating the problem that LLM parameters may not be able to be stored in a single computing device
due to their large size. Quantization reduces the amount of memory occupied and accessed by converting
the weight and activation of a model from high-precision to low-precision representation, such as Refs.
[49–51] concentrate on weight quantization, Refs. [52,53] focus on both weight and activation, and Refs.
[54, 55] focus on compression of key value (KV) caching. Additionally, there is still some work focused
on optimizing LLM batch processing, Refs. [56, 57] adopt a simple FCFS strategy to meet different
scheduling requests. Deepspeed-fastgen [58] utilizes continuous batch processing and non-continuous KV
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caching technology to improve the hardware utilization rate and response speed of LLMs. FastServe [12]
proposes a preemptive scheduling strategy to optimize the head-of-line blocking problem and achieve
lower job completion time (JCT). Cheng et al. [59] proposed a batch prompting strategy for few-shot in-
context learning to reduce tokens and inference costs. Our method focuses on the uncertainty in response
length perception tasks and provides more reliable length prediction intervals. Finally, we can provide
better batching strategies based on these prediction results.

Uncertainty quantification. In many key areas such as healthcare [60] and autonomous driving [61],
uncertainty quantification can help models know “when they don’t know”, and also help humans identify
when not to trust model predictions, thereby reducing potential risks. Therefore, the study of uncertainty
quantification in deep learning has received increasing interest in recent years. Gal et al. [30] treated
the prediction with dropout as an approximate Bayesian inference in deep Gaussian processes. Bayesian
neural networks [62] use probability distributions instead of single values to represent weights, which can
provide uncertainty information while giving a prediction. However, both methods require significant
computational and memory overhead, which severely hinders their deployment. Unlike that, evidential
deep learning directly places prior information on the likelihood function and trains neural networks
to output hyperparameters of higher-order evidence distributions to represent uncertainty in discrete
classification [31, 63, 64] and continuous regression problems [32, 37]. In this study, we are the first to
discuss the uncertainty quantification methods in the response length perception task, and this new
paradigm will yield a more reliable model result within a confidence interval for length predictions.
Finally, we also benchmark the four uncertainty quantification methods on two public prompt datasets.

Response length perception. Due to the lack of a clear purpose, there is not much work being
applied to the response length perception tasks. At present, most works focus on the non-autoregressive
translation tasks [65] because their parallel generation mechanism requires prior knowledge of the ap-
proximate length of the output sequence in order to allocate resources to each part of the sequence. For
example, Sun et al. [66] obtained the target sentence length based on the sentence lengths in the source
dataset, a constant bias term calculated from the train data, and Gu et al. [67] proposed to predict the
overall sentence length by predicting the number of tokens converted from each input token with the
fertility model [68]. Several methods, such as [69,70], train the model to predict the length of a sequence
as a response length output by adding a special token LENGTH to the encoder, and methods [71, 72]
pool the outputs of the encoder into a length classifier. In addition, Zheng et al. [16] had attempted to
improve their length prediction capabilities through modifying prompts and fine-tuning methods. How-
ever, current prediction methods are all simple point estimation and do not consider the uncertainty of
length itself.

8 Conclusion

In this paper, we discuss why uncertainty quantification is important in LLM response length perception
tasks. We then propose a new paradigm that incorporates uncertainty quantification, allowing the model
to generate confidence intervals for its predictions. We further benchmark four uncertainty quantification
methods, including both Frequentist and Bayesian approaches, and find that the EDL is the most effective
and efficient for this task. Moreover, we conducted a case study to evaluate whether the predicted
response length could guide the batching strategy and thereby improve LLM inference efficiency. The
results demonstrate that our proposed uncertainty-aware approach averagely reduces the inference time
by 38.14% compared with random batching and by 20.50% compared with the state-of-the-art approach
without uncertainty quantification [16].

Compared with traditional methods, our approach provides confidence intervals for predictions (i.e.,
ranges for the predicted response lengths). However, there is still room for improvement. If we can also
obtain probability density distributions for each predicted response length, the optimal batching strategy
can be calculated directly. We plan to explore this in future work.
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