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The channel capacity of optical communication can be

largely improved by using the orbital angular momentum

(OAM) beam because of its inherently infinite dimensions.

Identifying the topological charge carried by OAM beams is

essential for encoding and decoding the information [1, 2].

Thanks to its ability to tackle a variety of hard tasks (in-

cluding classifying, identifying, and interpreting massive

data), machine learning, particularly convolutional neural

networks (CNNs), has been proposed for identifying OAM

beams [3–5].

With the increase of the topological charge, the phase

singularity and diffraction effect greatly affect the intensity

distribution of OAM beams, which increases the difficulty

of focusing in free space and coupling in optical fibers [1].

This challenge limits the development of optical communi-

cation with high-order OAM. In this case, the superposi-

tion of asymmetric fractional OAM modes (i.e., the topo-

logical charges of two fractional OAM modes with opposite

signs and different magnitudes) can increase the possibility

of combining OAM modes, thereby expanding their mul-

tiplexing capacity at low topological charges [5]. However,

the asymmetric fractional OAM superpositions exhibit more

delicate differences between two adjacent modes, which in-

creases the difficulty of distinguishing between them.

In this study, we propose and demonstrate an efficient

preparation and identification method for asymmetric frac-

tional OAM superposition using a self-constructed neural

network. The method of interfering with plane waves us-

ing spherical waves was applied to obtain the datasets,

which effectively reduced the complexity of dataset acqui-

sition. The advantage of our method is that the experimen-

tal datasets have obvious features, which enables our model

in the high-accuracy identification of asymmetric fractional

OAM superpositions on small datasets. Furthermore, we

obtained arbitrary fractional OAM superposition by conve-

niently changing the phase holograms on the spatial light

modulator (SLM), without extra optical components. A

neural network with seven layers was then trained using

the experimental datasets. Utilizing this neural network,

we completed a 19-class classification task of asymmetric

fractional OAM superpositions with a precision of 0.1 and

recognition accuracy of 99.34%, only consuming 4560 total

datasets. The results demonstrated that this is a useful ap-

proach for the accurate, rapid identification of multiplexing

OAM in optical information processing.

The experimental setup for generating asymmetric frac-

tional OAM superpositions was shown in Figure 1(a). The

light source was an external cavity semiconductor laser

(Toptica DL pro) with a wavelength of 895 nm. The power

of the laser beam was adjusted using the combination of a

half wave plate (HWP) with a polarization beam splitter

(PBS). Since polarization is crucial for achieving high mod-

ulation efficiency, HWP2 was placed in front of the lens to

control the beam’s polarization. A 10 mW laser beam with

a Gaussian distribution was shaped by Lens1 and Lens2,

and injected into the SLM with a small angle to guarantee

the modulation efficiency. The SLM in this experiment had

a resolution of 1920×1080, with each pixel being 8×8 µm2.

To generate the asymmetric fractional OAM superposi-

tions, the phase holograms of the superpositions were up-

loaded on the SLM. After being reflected by the SLM, the

Gaussian-distributed beam was modulated into the asym-

metric fractional OAM superposition beam. A CCD camera

was utilized to capture and record the intensity patterns of

the beam, which provided reliable datasets for the subse-

quent neural network. To construct an abundant dataset,

we changed the phase holograms uploaded on the SLM by

adjusting the parameters θ0 and nmodes (Appendix A). The

parameter θ0 was varied within the range of 0 to 2π with

a step size of 0.1. The nmodes was selected for specific val-
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Figure 1 (Color online) (a) Experimental setup; (b) the intensity patterns of the asymmetric fractional OAM superpositions;

(c) the accuracy curves and loss function curves of the 19-class classification task; (d) the dependence of accuracy on different

numbers of datasets.

ues (10, 12, 14, 16, 18, and 20). As a result, the dataset

comprised a total of 4560 images and was divided into three

parts: 3192 for training, 912 for validation, and 456 for test-

ing. The theory of asymmetric fractional OAM superpo-

sitions and the phase holograms of superpositions can be

found in Appendix A.

The intensity patterns of the asymmetric fractional OAM

superpositions were shown in Figure 1(b). The patterns had

three main features: the gaps of the rings on the left side,

the central structure of the pattern, and the malposition be-

tween the top and bottom halves of the patterns on the right

side. The gap was determined by the fractional part of the

plane wave. The central structure of the pattern was de-

termined by the difference between the OAMs of the plane

wave and the spherical wave. The malposition was deter-

mined by the fractional part of the spherical wave. The

larger the fractional part of the spherical wave, the more

obvious the malposition. The direction of the malposition

was determined by the sign of the spherical wave. When the

sign was positive, the upper side shifted to the left, whereas

the lower side shifted to the right. Furthermore, the rotation

direction of the ring was determined by the wave with the

largest absolute value of the topological charge. When the

sign was positive, the ring rotated in a clockwise direction.

Otherwise, it rotated counterclockwise.

To identify the features of the intensity patterns, we per-

formed a 19-class classification task. The details of the neu-

ral network architecture can be found in Appendix B. The

accuracies of the training set and the verification set are

shown in Figure 1(c). The accuracy curve revealed the fast

convergence of the model during the early stages of training.

At the fourth epoch, the model achieved 90% accuracy on

both the training set and the validation set, which indicated

its ability to quickly capture the key features of the dataset.

With the increase of iterations, the model’s accuracy

was further stabilized and ultimately tended to be about

99%. The total time for the whole training process was

951.06 s. The results of the test set demonstrated that the

accuracy of the 19-class classification task reached 99.34%,

which demonstrated that our method is applicable for su-

perpositions with arbitrary values of topological charges.

A small-scale dataset with distinguishable features can

effectively speed up the training and recognition of net-

works. We present the dependence of accuracy on different

numbers of datasets in 19-class classification tasks in Figure

1(d). When the dataset was 2280, the accuracy remained

at 99.17%. Even when the dataset was reduced to 760, the

accuracy only dropped to 86.84%. This demonstrated that

even with a small dataset, the model could achieve a high

rate of accuracy.

Conclusion. We have demonstrated the identification

of asymmetric fractional OAM superpositions using a self-

constructed lightweight neural network. A 19-class classi-

fication task achieved an accuracy of 99.34% using 4560

datasets. The results confirmed that our neural network

architecture can achieve the high-accuracy identification

of asymmetric fractional OAM superpositions on small

datasets in a laboratory environment. There are many com-

plex environments in the practical application of optical in-

formation processing using OAM. The high-accuracy iden-

tification of asymmetric fractional OAM superpositions in

complex environments can be achieved by increasing the ex-

perimental datasets, introducing a residual connection, and

other methods. This work has provided a useful approach

for the high-accuracy identification of multiplexing OAM in

optical information processing with OAM.
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