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Appendix A Asymmetric fractional OAM superpositions

In the fractional OAM mode, the phase jump is not an integer multiple of 2π, and the interval between adjacent topological

charges is non-integer. The plane wave ψ1 of the fractional OAM superpositions can be decomposed into the basis of integer

OAM modes [1]

ψ1(ρ, θ, z) =

mmax∑
m′=mmin

cm′µm
′

p (ρ, θ, z). (A1)

Here mmin = Rnd[M − nmodes/2], mmax = mmin + nmodes − 1, M = m + µ represents the fractional topological charge,

where m and µ ∈ (0, 1) are the integer and fractional parts of the topological charge respectively, and nmodes denotes the

finite number of contributing modes in the superposition. The integer OAM modes µm
′

p (ρ, θ, z) can be described by the

Laguerre-Gaussian functions in cylindric coordinates [1], and the coefficient cm′ is given by

cm′ = exp(−iµα)
i exp[i(M −m′)θ0]

2π(M −m′)
[exp[i(M −m′)α](1− exp(iµ2π))]. (A2)

Here, we set the radial index as p = 0, α is the orientation of the edge dislocation within the range of 0 to 2π [2,3], and the

angle θ0 is an arbitrary starting point for the azimuthal angle.

Besides the plane wave of the fractional OAM superpositions, there is also the spherical wave of the fractional OAM

superpositions. The spherical wave ψ2 can be expressed in cylindrical coordinates [4]

ψ2(ρ, θ, z) = (
ρ
√
2

w(z)
)|M| exp(−

ρ2

w2(z)
) exp(iM θ)

1

z
exp(−ikz(1 +

ρ2

2z2
)). (A3)

The Gaussian spot size is represented by the parameter w(z), which is given by

w(z) = w0

√
1 + (

z

zR
)2, (A4)

where zR denotes the Rayleigh range, and w0 indicates the waist radius.

Here, we consider the superposition of the plane wave and spherical wave, which can be applied to generate the asymmetric

fractional OAM superpositions (|ψ⟩ = |ψ1⟩ + exp(iϕ)|ψ2⟩). In the asymmetric fractional OAM superpositions, the plane

wave |ψ1⟩ has a positive (negative) fractional topological charge and the spherical wave |ψ2⟩ has a negative (positive)

fractional topological charge, and the absolute value of the two topological charges are different. The phase holograms of

the asymmetric fractional OAM superpositions are shown in Fig. A1.

Appendix B Neural network architecture

For identifying the fractional topological charges of the OAM superposition states, we construct a neural network architec-

ture. We use the images with a resolution of 224 × 224 pixels as input. Each module includes a 3 × 3 convolutional layer

(Conv), a rectified linear unit (ReLu) and a 2× 2 max-pooling layer. The image undergoes preliminary feature extraction

through a Conv. Then the ReLu activation function is applied to introduce nonlinearity to enhance the expressive power
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Figure A1 The phase images of the asymmetric fractional OAM superpositions. (a) The topological charge of the plane wave

changes and the spherical wave at l = −0.5. (b) The topological charge of the spherical wave changes and the plane wave at l = 1.3.

of neural networks. After that, a max-pooling layer halves the feature map size, thereby selecting the most representative

features. In the fourth pooling layer, average pooling is utilized instead of max-pooling to smooth the feature map. After

four modules, the spatial size of the feature map is reduced to 14×14 pixels and then connected to the fully connected layer

(FC). To reduce the risk of overfitting, a Dropout layer is added after the FC. At the output, a softmax layer is applied to

perform multi-class classification, where the class with the highest predicted probability is selected as the final class. The

network architecture occupies 101.15 MB of memory, which maintains high efficiency and achieves structural simplicity.

The experimental platform is built on the Windows operating system and features a robust hardware configuration.

It includes an Intel Xeon Platinum 8255C processor with 12 virtual cores operating at a clock frequency of 2.25 GHz

and an NVIDIA GeForce RTX 2080 Ti Graphics Processing Unit (GPU) supporting high-performance parallel computing.

Additionally, RAM with 40 GB is equipped to ensure ample resources for complex data processing and multitasking. The

neural network is trained in the PyTorch framework and the parameters are updated using the Adam optimizer with the

learning rate set at 1× 10−4.

The accuracy of the model’s predictions is quantified by the cross-entropy loss function, which is defined as follows

Cross-Entropy Loss = −
C∑

j=1

yi,j log(pi,j). (B1)

Here, C represents the total number of categories, yi,j denotes the true label of the i sample on j category, and pi,j is the

predicted probability. By minimizing the cross-entropy loss, the model can optimize its parameters, thereby improving the

accuracy of its predictions. The detailed parameters of the neural network are presented in Table B1.

Table B1 Parameters of Neural Network

Hyper-parameter Value

Batch size 4

Epoch 50

Iteration 20520

Initial learning rate 0.0001

.

Appendix C Supplemental experimental results

After the training, the model parameters with the highest accuracy are saved for subsequent testing. The test results of

19-class classification tasks of the asymmetric fractional OAM superpositions are presented in Fig. C1, where the confusion

matrix compares the model’s predicted labels and the samples’ true labels. The accuracy of the model on the test set is

99.34%.

When the larger topological charge is chosen, the accuracy will decrease if the number of datasets is not increased. With

the increase of topological charge, the challenges mainly come from the larger aperture size and more complex intensity

distribution of the OAM beams in the experimental datasets, which increases the identification difficulty of CNN [5, 6].
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Figure C1 Confusion matrix of 19-class classification tasks of the asymmetric fractional OAM superpositions.

The challenge of the larger aperture size of the OAM beam with high-order topological charges may be solved by using

the Laguerre-Gaussian mode coaxial superposition method [7]. This method uses a coaxial superposition of suitable low-

order Laguerre-Gaussian modes as the initial optical vortex arrays, and devises a mathematical algorithm to multiply these

vortices into arbitrarily high orders, while the array structure remains unchanged. The other challenge of the complex

intensity distribution of the OAM beam with high-order topological charges may be solved by increasing the diversity of

the experimental datasets and optimizing the CNN parameters.
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