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Spin-orbit torque magnetic random-access memory (SOT-

MRAM) has been a promising candidate for next-generation

non-volatile memory, offering advantages such as energy effi-

ciency, high speed, and scalability. The in-plane-magnetized

three-terminal magnetic tunnel junctions (MTJs) are fa-

vored for SOT-MRAM due to their ease of fabrication and

integration. These MTJs are classified into two categories:

Type-y and Type-x devices. The former enables determin-

istic switching without an external magnetic field but has

a long precession time, limiting the speed. The latter has

a faster switching speed but requires an external magnetic

field for deterministic switching. The use of the magnetic

field increases the difficulties in chip integration. In order to

balance field-free switching and high-speed writing in Type-

x devices, two solutions have been developed and experi-

mentally validated: (1) combining SOT and spin-transfer

torque (STT) known as toggle spin torque (TST) [1], and

(2) canting the easy-axis of MTJ to break symmetry [2].

While these two solutions show both practical feasibility

and performance advantages, the derivation of the critical

switching current remains challenging due to complicated

multi-physics coupling. To date, no theoretical studies have

addressed this problem, which makes it difficult to accu-

rately predict device performance.

In this study, we propose a novel theoretical approach us-

ing the Routh-Hurwitz criterion to derive the critical switch-

ing current for the two kinds of Type-x devices. The derived

formulas provide clear physical insights and align well with

the numerical simulations. Our findings offer valuable guid-

ance for optimization and contribute to the development of

field-free, energy-efficient, and high-speed SOT-MRAM.

Theoretical derivation. We begin by analyzing a Type-

x device of TST configuration. As shown in Figure 1(a),

two currents are applied: one to the SOT channel to in-

duce SOT and the other to the MTJ to generate STT. In

this case, the magnetization dynamics are described by the

modified Landau-Lifshitz-Gilbert (LLG) equation:

∂m

∂t
=− γm×Heff + αm× ∂m

∂t
− γHSOTm× (σ ×m)

− γHSTTm× (mp ×m), (1)

where γ and α are the gyromagnetic ratio and the Gilbert

damping constant, respectively. m = M/Ms denotes the

normalized magnetization of the free layer, Ms is the sat-

uration magnetization. σ is the unit vector of spin polar-

ization direction in y-axis, and mp is the magnetization of

the pinned layer aligned to x-axis. Heff is the effective field,

which is critical for determining the equilibrium:

Heff = (Hkmx, 0,−Hdmz), (2)

where Hk = 4πMs(Ny − Nx) represents the in-plane

anisotropy field, Ni (i = x, y, z) denotes the demagneti-

zation coefficients. The demagnetization field, Hd, is de-

fined as 4πMs(Nz − Ny), specifically focusing on the effect

of shape anisotropy. HSOT and HSTT correspond to the ef-

fective field strengths related to SOT and STT, respectively.

According to the Routh-Hurwitz criterion, we calcu-

late the Jacobian matrix in Appendix A. The STT critical

switching current density under a given HSOT is obtained

as

JSTT,c=
2αetFMs

~P

(

1−HSOT
2

HdHk

)(

Hk+
Hd

2−3HSOT
2

2Hd

)

,

(3)

where e is the electron charge, tF is the thickness of free

layer, ~ is the reduced Planck constant and P is the spin po-

larization efficiency. Eq. (3) is also compatible with the cases

of the conventional pure STT and SOT devices. For exam-

ple, when HSOT = 0, it is consistent with the critical switch-

ing current density for a pure STT device [1]. When JSTT,c

= 0, the formula could give HSOT =
√
HdHk ≈

√
4πMsHk
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Figure 1 (Color online) Schematics of (a) TST and (e) canted Type-x device. Comparison between theoretical formulas and

macrospin simulations of (b) TST device and (f) canted Type-x device, with the insets showing the trajectory of m. Relative error

analysis of (c) TST device and (g) canted Type-x device. (d) Comparison between (3) and micromagnetic simulations of the TST

device, including results modified by a scaling factor k. (h) Comparison between (4) and micromagnetic simulations (red circles)

of the canted Type-x device, including the modified curve (yellow squares connected by a dotted line) and fitted results based on

pulse-width-dependent switching measurements (purple triangles).

which is identical to the critical condition to activate the

instability of the zero-field Type-x device [3].

Furthermore, we extend this approach to the canted

Type-x device (see Figure 1(e)), as detailed in Appendix

B. The SOT critical switching current density is derived as

JSOT,c =
etFMs

~θSHE

2HdHk sinϕ

α (2Hk +Hd) cos2ϕ

×





√

1 +
α2(2Hk +Hd)

2cos2ϕ

HdHksin
2ϕ

− 1



 . (4)

In the cases of ϕ → 0 and ϕ → π/2, Eq. (4) is consistent

with the formula of the pure Type-x device and the Type-y

device [3], respectively. If tanϕ ≫ α(2Hk + Hd)/
√
HdHk,

Eq. (4) can be approximately expressed as

JSOT,c ≈ αetFMs (2Hk +Hd)

~θSHE sinϕ
, (5)

which has a similar form to the switching current density of

the canted Type-z device [4]. The relationship of JSOT,c ∝
1/sinϕ has been supported by experimental evidence [5].

Numerical simulation. To validate our theoretical formu-

las, we conduct both macrospin and micromagnetic simula-

tions. Key parameters are provided in Appendix C.

Figure 1(b) illustrates JSTT,c as a function of JSOT for

the TST device. Our theoretical calculations show strong

agreement with macrospin simulations. The inset shows the

magnetization precessing around the y-axis for an extended

period, crossing the yz-plane, and switching to the −x di-

rection. Figure 1(c) presents relative errors of (3), defined

as (JSTT − JSTT,c)/JSTT × 100%. The relative errors re-

main below 0.92% and decrease further as α gets smaller,

demonstrating the high accuracy of our formula. Further

validation is presented in Figure 1(d), where the theoretical

calculations align with the trend of micromagnetic simula-

tions, although slight numerical differences are observed. To

minimize this discrepancy, a scaling factor k = 1.2 is applied,

achieving close alignment between the micromagnetic simu-

lation results and the theoretical formula. This confirms the

robustness of the formula for practical implementation.

Further analysis of the canted Type-x device and discus-

sion of Figures 1(f)–(h) are provided in Appendix D.

Conclusion. Based on the Routh-Hurwitz criterion, we

have derived theoretical formulas for the critical switching

current of two different kinds of field-free Type-x SOT-

MTJs. Our approach combines accuracy and simplicity

to understand the switching conditions of three-terminal

MTJs. The derived formulas align well with numerical sim-

ulations, providing valuable insight for scalable design and

energy-efficient optimization of SOT-MRAM.
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