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Memristors exhibit significant potential for neural net-

work inference acceleration through computing-in-memory

(CIM) architectures [1]. However, practical implementa-

tions face two fundamental limitations: non-ideal fabrica-

tion processes and insufficient hardware resource utiliza-

tion. This study proposes a ferroelectric memristor-based

algorithm-hardware co-optimization strategy (Figure 1(a))

that achieves efficient deployment through structured prun-

ing, weight quantization, and hardware-aware training. The

proposed strategy first employs a statistics-based adaptive

threshold algorithm to perform row-column bidirectional

structured pruning on convolutional kernels, dynamically

adjusting layer-wise sparsity thresholds to reduce parame-

ter scale while maintaining model capacity. Subsequently,

it leverages the 8-state (3-bit) conductance characteristics

of ferroelectric memristors to implement weight quantiza-

tion, with a dequantization mechanism designed to ensure

training stability. Finally, a joint optimization of cross-

entropy loss and bit-distribution entropy regularization ex-

plicitly constrains weight distribution to enhance robustness

against memristor non-ideal characteristics.

Methods. Emerging ferroelectric memristors based on

hafnium oxide ((HfO2)) materials have attracted significant

research interest due to their excellent CMOS compatibility

and high scalability. In this study, we fabricated Si-doped

Si:HfO2-based ferroelectric memristors with preferred (111)

orientation on Si substrates using pulsed laser deposition

(PLD) and magnetron sputtering techniques. As shown in

Figure 1(b), the devices demonstrate excellent 8-state con-

ductance retention characteristics, with all states maintain-

ing stability for over 8000 s. Device characterization and

image processing applications are provided in Appendixes A

and B.

Network pruning serves as a fundamental technique for

model compression. This study proposes an adaptive prun-

ing method based on statistical characteristics of parame-

ters. As detailed in Appendix C, our approach first com-

putes the L1-norm of convolutional sub-kernel weights as

importance metrics ‖Wi‖1 =
∑n

j=1 |Wij |, then dynamically

generates pruning thresholds according to layer-wise param-

eter distributions T = µ+ ασ, where µ and σ represent the

mean and standard deviation of layer weights, respectively,

and α is a learnable scaling factor. This row-column bidirec-

tional structured pruning strategy effectively balances model

compression ratio with accuracy preservation.

The memristor-based CIM architecture implements

weight mapping for neural network hardware through a bit-

slicing scheme [2]. This study proposes a weight quantiza-

tion method based on 8-state memristors, where the weight

B(wi
l
) is represented as

B(wi
l) =

7
∑

j=0

bj · 2j , (1)

where b7 denotes the most significant bit (MSB), and b0 rep-

resents the least significant bit (LSB). To accommodate the

eight stable conductance states of Si:HfO2-based memris-

tor, the 8-bit weight is partitioned into three slices: {b7, b6},

{b5, b4, b3}, and {b2, b1, b0}. Each slice resides in separate

memristor cells, enabling efficient CIM by exploiting multi-

conductance states. The weights in the l-th layer are defined

as

S(Wl) =

⌈

log2

(

max
wi

l
∈Wl

(
∣

∣wi
l

∣

∣

)

)⌉

, (2)

where wi
l
represents the weight element indexed by i in the

l-th layer, and Wl denotes the set of all weights in that layer.

The quantization step size Qstep is defined as

Qstep = 2S(Wl)−8. (3)

The weight element wi
l
is quantized into an 8-bit integer

B(wi
l
), which is calculated as

B
(

wi
l

)

= round

(

wi
l

Qstep

)

, (4)
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Figure 1 (Color online) (a) Flowchart of quantization-aware training; (b) eight conductance states; (c) accuracy comparison;

(d) sparsity comparison.

where B(wi
l
) ranges from [0, 255]. After the computation

is completed in each ReRAM crossbar array, the dynamic

range of the original weights is restored by applying a sim-

ple shift operation:

Q
(

wi
l

)

= B
(

wi
l

)

·Qstep. (5)

The quantized weight B(wi
l
) is mapped to three separate

crossbars, and the bit-level sparsity is optimized through ℓ1
regularization to suppress the impact of extreme values on

computation. The Bℓ1 regularization is defined as

Bℓ1 (Wl) =
∑

i,k

B
i,k
l

, (6)

where its gradient is backpropagated to the full-precision

weights Wl using the straight-through estimator (STE), en-

abling bit-level sparsity while maintaining training stability.

For further details on the quantization procedure, see Ap-

pendix D.

During training iterations, the weight wi
l
is first quan-

tized to B
(

wi
l

)

and then dequantized to Q
(

wi
l

)

, which is

used to compute the cross-entropy loss LCE and the penalty

imposed by the Bℓ1 regularization term. Gradients are cal-

culated in full precision, and the weights are updated ac-

cording to the following rule:

q(t) = Q
(

w
(t)
l

)

, (7)

w
(t+1)
l

= q(t)−h×
(

∇qLCE

(

q(t)
)

+ α∇qBℓ1

(

q(t)
))

, (8)

where w
(t+1)
l

represents the updated weight at the (t+1)-th

iteration, q(t) denotes the quantized weight at the t-th iter-

ation, h is the learning rate, ∇qLCE(q
(t)) is the gradient of

the LCE with respect to the quantized weights, ∇qBℓ1
(

q(t)
)

is the gradient of the Bℓ1 regularization with respect to the

quantized weights, and α is the regularization parameter.

Experiments. Experiments were conducted on an

NVIDIA GeForce RTX 3090 GPU (24 GB) using the

VGG11-Lite architecture. The model was trained on the

CIFAR-10 dataset for 150 epochs with a batch size of 128.

Optimization was performed using stochastic gradient de-

scent (SGD) with a momentum coefficient of 0.9. Additional

ablation studies and architecture comparisons are provided

in Appendix D for further analysis. Figure 1(c) demon-

strates that our method achieves 90.2% accuracy with row-

wise pruning and 90.8% under column-wise pruning. As

shown in Figure 1(d), the proposed Bℓ1 regularization im-

proves network sparsity by 2× compared to standard ℓ1 ap-

proaches.

Conclusion. This study proposes an efficient deployment

solution for memristor-based neural networks from three di-

mensions: device, algorithm, and hardware. By employ-

ing ferroelectric memristors to achieve efficient quantization,

adopting statistics-driven structured pruning to reduce com-

putational complexity, and utilizing bitwise regularization

to enhance network sparsity, the proposed approach signifi-

cantly improves computational efficiency while maintaining

model accuracy, providing an effective technical pathway for

hardware implementation.
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