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Appendix A Grating-Lobe Analysis

To facilitate the analysis, we assume that the size of the transmit region (i.e., A) is sufficiently large, such that constraint

(3b) can be relaxed. Note that to maximize the received signal power at any specific user (e.g., user 1), the transmit

beamforming should be set based on the maximum ratio transmission (MRT) as

w(T ) =
√

Pmax
h1(T )

||h1(T )||
. (A1)

Next, we show that the MRT in (A1) for user 1 can also lead to the maximum beamforming gain at any other user k,

k ∈ Kc = K\{1} under certain conditions. By substituting (A1) into (2), the received SNR at user k is expressed as

γk(T ) =
βPmax

Nd2kσ
2
k

∣∣∣∣∣
N∑

n=1

ej(xnak+ynbk)
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2

, ∀k ∈ Kc, (A2)

where

ak =
2π

λ
(sin θ1 cosϕ1 − sin θk cosϕk), ∀k ∈ Kc, (A3)

bk =
2π

λ
(cos θ1 − cos θk), ∀k ∈ Kc. (A4)

To proceed, we present the following theorem.

Theorem A1. Let τk = λak/2π = sin θ1 cosϕ1 − sin θk cosϕk, k ∈ Kc. If all τk’s are rational numbers, there must exist

an APV T ⋆ such that the maximum beamforming gain can be achieved at each user in Kc.

Proof. To construct the desired APV, we place the N MAs with an equal spacing dx along the x-axis. Hence, the

coordinate of the n-th MA is given by tn = [(n− 1)dx, 0]T , n ∈ N , and the received SNR at the k-th user can be expressed

as

γk(T ) =
βPmax

Nd2kσ
2
k

∣∣∣∣∣
N∑

n=1

ej(n−1)dxak

∣∣∣∣∣
2

.∀k ∈ Kc. (A5)

To reap the maximum beamforming gain in (A5), we can adjust the spacing dx such that each exponential term in (A5) is

equal to unity, for which we have

dxak = 2πmk, ∀k ∈ Kc, (A6)

where mk is an integer. Note that (A6) is equivalent to find a set of mk’s that satisfy

dx =
λm2

τ2
=

λm3

τ3
= · · · =

λmK

τK
. (A7)

Next, we show how to construct the desired mk’s satisfying (A7). According to the basic number theory, a rational

number can be expressed as the ratio of two relatively prime integers. As each τk is a rational number, it can be expressed

as τk = pk
qk

, k ∈ Kc, where pk and qk are two relatively prime integers. Let m̂k = pk
∏

j ̸=k qj and cmax denote the greatest

common factor of m̂k, k ∈ Kc. As such, we can set mk = m̂k
cmax

, ∀k ∈ Kc in (A7) and the resulting antenna spacing dx is

d⋆x =
ζλ

∏K
k=2 qk

cmax
. (A8)

where ζ is the minimum integer that ensures d⋆x ⩾ Dmin. By setting tn = [(n − 1)d⋆x, 0]
T , n ∈ N , we can achieve the

maximum beamforming gain at all users. This completes the proof.
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Theorem 1 indicates that even with equal-spacing MAs, the maximum beamforming gain (i.e., N) can be achieved at an

arbitrary number of users by simply tuning the antenna spacing to generate the grating lobes based on the users’ positions.

As the path gain βk’s and the average noise power σ2
k’s are both constant for each user k, the received SNRs at all users

can be maximized. Thus, tn = [(n − 1)d⋆x, 0]
T , n ∈ N and (A1) should be an optimal solution to (P1) (if constraint (3b)

is relaxed). However, Theorem 1 requires all τk’s to be rational numbers1), which may be difficult to be met in practical.

Hence, we consider another special case of N = 2 and present the following theorem.

Theorem A2. When N = 2, for any given δ ∈ (0, 1), there must exist an APV T ⋆ such that

γk(T
⋆) ⩾

βPmax

d2kσ
2
k

(1 + δ),∀k ∈ Kc. (A9)

Proof. Similar to the proof of Theorem 1, we place the two MAs with a spacing of dx along the x-axis. By setting N = 2,

tn = [(n− 1)dx, 0]T , n = 1, 2, the received SNR at the k-th user in (A2) can be simplified as

γk(T ) =
βPmax

d2kσ
2
k

(1 + cos akdx), ∀k ∈ Kc. (A10)

Next, we introduce the following lemma.

Lemma 1 [1]: If ak’s are linearly independent over the set of rational numbers, for any given δ ∈ (0, 1), there must exist

a d⋆x ∈ N such that

cos akd
⋆
x > δ,∀k ∈ Kc. (A11)

Note that due to the users’ random locations, all ak’s should take an irrational value with the probability of one and thus

are linearly independent over the set of rational numbers. As a result, for any given δ ∈ (0, 1), by setting tn = [(n−1)d⋆x, 0]
T ,

n = 1, 2, and applying Lemma 1, (A9) can be achieved. It should be mentioned that as d⋆x is a positive integer, it should

be much greater than the wavelength-level antenna spacing considering the ultra-high THz frequency band. Thus, the

minimum spacing constraints in (B1c) should always be satisfied. This completes the proof.

It follows from Theorem 2 by setting δ → 1, approximately the maximum beamforming gain, i.e., 2, can be attained at

all users. This implies that a two-antenna sparse array suffices to generate flexible grating lobes for THz multicasting if the

inter-antenna distance can be flexibly adjusted. Both Theorems 1 and 2 indicate that the antenna position optimization

offers more degrees of freedom to improve the THz multicast performance over conventional FPAs. It is worth noting that

although the above analytical results are derived assuming a LoS channel from the BS to each user, they are also applicable

to the case with multi-path BS-user channels, by simply treating each path as a virtual user.

Appendix B Proposed Solution to (P1)

To start with, we introduce an auxiliary variable η. Then, (P1) is equivalent to the following optimization problem:

(P1) max
η,w,T

η

s.t. γk(T ) ⩾ η,∀k ∈ K, (B1a)

tn ∈ Ct, n ∈ N , (B1b)

||ti − tj ||2 ⩾ Dmin, ∀i, j ∈ N , i ̸= j, (B1c)

||w||22 ⩽ Pmax. (B1d)

However, (P1) is still a non-convex optimization problem. To this end, we propose an AO algorithm to decompose (P1)

into two subproblems and solve them alternately.

First, we optimize the transmit beamforming w for any given APV T . Note that as each channel vector hk(T ), ∀k ∈ K
is fixed, by introducing an auxiliary variable η, (P1) can be simplified as

(P2) max
η,w

η

s.t. wHHk(T )w ⩾ η,∀k ∈ K, (B2a)

wHw ⩽ Pmax, (B2b)

where Hk(T ) = 1
σ2
k

hk(T )hH
k (T ), k ∈ K. However, (P2) is still difficult to solve because the constraints in (B2a) are

concave with respect to (w.r.t.) w (instead of convex). To address this challenge, we apply the SCA to transform (P2) into

a series of more tractable approximated convex subproblems. Specifically, with a given local point wi, the left-hand side

(LHS) of (B2a) can be lower-bounded by its first-order Taylor expansion, i.e.,

wHHk(T )w ⩾ wH
i Hk(T )wi + 2Re

{
wH

i Hk(T )(w −wi)
}

= 2Re
{
wH

i Hk(T )w
}
−wH

i Hk(T )wi

≜ γlb
k (T ).

(B3)

1) In the case of irrational numbers, Theorem 1 may also approximately hold by properly truncating each τk into a rational
number.
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Then, by substituting (B3) into (B2a), (P2) in the i-th SCA iteration can be approximated as

(P2-i) max
η,w

η s.t. γlb
k (T ) ⩾ η,∀k ∈ K, (B2b),

which is a quadratically constrained quadratic programming (QCQP) problem and thus can be optimally solved by the

interior-point algorithm. Next, the SCA proceeds to (P2-(i+1)) by setting wi+1 as the optimal solution to (P2-i) until the

convergence is reached. It can be shown that the computational complexity of solving (P2-i) is in the order of O(N3K0.5).

Next, we optimize the APV T for any given transmit beamforming vector w. In this case, (P1) can be simplified as

(P3) max
η,T

η

s.t. |hH
k (T )w|2 ⩾ ησ2

k, ∀k ∈ K, (B5a)

(B1b), (B1c).

(P3) can be solved by applying a similar sampling-based approach in our previous works [2–4]. Thus, we only outline

the main steps. Specifically, we uniformly sample the horizontal/vertical dimension of the transmit region Ct into M

(M ≫ N) discrete points, with a spacing δs = A/M . Then, the coordinate of (i, j)-th sampling point is given by pi,j =

[−A
2
+ iδs,−A

2
+ jδs]T , i, j ∈ M ≜ {1, 2, · · · ,M}. Let P ≜ {pi,j |i, j ∈ M} denote the set of all sampling points. Next,

we construct a set of initial positions of MAs denoted by t̃n ∈ P, n ∈ N . In the n-th iteration of the sequential search,

we update the coordinate of n-th MA and fix the coordinates of other N − 1 MAs. Let Pn denote the set of all feasible

sampling points in the n-th iteration, i.e.,

Pn ≜ {p ∈ P|||p− t̃m|| ⩾ D, ∀m ∈ N ,m ̸= n}. (B6)

Let T̃n ≜ [t̃1, · · · , tn, · · · , t̃N ] denote the collections of N MAs in the n-th iteration. Then, we can optimize tn by solving

the following problem,

(P3-n) max
tn∈Pn

η

s.t. |hH
k (T̃n)w|2 ⩾ ησ2

k, ∀k ∈ K, (B7a)

(B1b), (B1c),

which can be optimally solved by performing an enumeration over Pn. Denote by t⋆n the optimal solution to (P3-n). Then,

we can update t̃n = t⋆n and proceed to solving (P3-n) via a similar process, which always yields a non-decreasing objective

value of (P3). This ensures the convergence of our proposed algorithm. The computational complexity of solving (P3-n) is

given by O(NM2). Notably, compared to the continuous algorithms for MA position optimization proposed in [5–7], the

discrete sampling approach is easier to implement, as it does not require gradient-based calculations and searching.

Based on above, we can alternately solve (P2) and (P3) by applying the SCA technique and the sampling-based method.

As both of these two algorithms yield a non-decreasing objective values of (P1), the convergence of AO is guaranteed.

Appendix C Numerical Results

In this appendix, numerical results are provided to demonstrate the efficacy of our proposed algorithm. Unless otherwise

specified, the simulation settings are as follows. The operating frequency band is f = 150 GHz. The BS is equipped with

N = 4 MAs. The minimum distance between any two adjacent MAs is Dmin = λ
2
. The spacing of the sampling points

along x- and y-axes is set as δs = λ
25

. The distances between the BS and all users are assumed to be independent and

identically distributed (i.i.d.) random variables following uniform distribution between 10 m and 20 m. The elevation and

azimuth AoAs for all users are assumed to be i.i.d. random variables following uniform distribution within [−π/2, π/2].

The BS’s maximum transmit power is Pmax = 23 dBm, and the average noise power is σ2
k = σ2 = −80 dBm, k ∈ K. All

the results are averaged over 100 independent channel realizations.

Moreover, we consider the following benchmark schemes for performance comparison:

1. MRT: The BS’s transmit beamforming is set as the MRT w.r.t. user 1, i.e.,

w(T ) =
√

Pmax
h1(T )

||h1(T )||
, (C1)

while the APV is optimized similarly as in Appendix B.

2. FPA: The BS’s N antennas are deployed symmetrically to the center of the transmit array along the x-axis and

separated by the minimum distance Dmin. The BS’s transmit beamforming is optimized similarly as in Appendix B.

3. Sparse array (SA): The BS’s N antennas are sparsely and uniformly deployed along the x-axis, with a spacing of
A
N
. The BS’s transmit beamforming is optimized similarly as in Appendix B.
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Figure C1 (a) Received signal power of each user and (b) optimized beam patterns by MAs and FPAswith A = 2λ; (c) received

signal power of each user and (d) optimized beam patterns by MAs and FPAs with A = 8λ.
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Figure C2 Max-min SNR versus (a) the normalized size of the transmit region, A/λ; (b) the number of transmit MAs.

First, we plot in Figures C1(a) and C1(b) the received signal power of each user and the optimized beam patterns,

respectively, by the proposed algorithm and FPAs w/o AS with A = 2λ. The azimuth AoDs for all users are assumed to

be idenntical as θk = 90◦, k ∈ K, and the number of users is K = 5. It is observed from Figure C1(a) that the max-min

received signal power by our proposed algorithm is larger than that by the FPA benchmark. Nevertheless, the received

signal powers of certain users (e.g., users 1 and 2) are observed to become smaller with MAs than the FPA benchmark.

Moreover, it is observed from Figure C1(b) that the beam gain directed towards certain users may also decrease with MAs

compared to FPAs, e.g., user 1 at 6.5◦. This is because different users experience varying path losses with the BS, which

should be considered in the MA position optimization to achieve the optimal multicast performance. The above observations

made from Figures C1(a) and C1(b) imply that in the case of A = 2λ, MAs play a similar role to conventional transmit
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beamforming, primarily for balancing the received signal power at all users.

In Figures C1(c) and C1(d), we show similar results to Figures C1(a) and C1(b) but with A = 8λ, respectively. In contrast

to the above observations, it is observed from Figure C1(c) that all users’ received signal powers can be improved with MAs

compared to those with the FPA benchmark. Furthermore, it is observed from Figure C1(d) that the beamforming gains for

all users are improved as well with MAs. Particularly, the maximum beamforming gain, i.e., N = 4, can be approximately

attained at all users. It follows that in the case of a large transmit region, it suffices for MAs to maximize the beamforming

gain for all users without needing to account for their path losses with the BS as in Figures C1(a) and C1(b).

Next, we plot in Figures C2(a) the max-min received SNRs by different schemes versus the normalized size of the transmit

region in each dimension, i.e., A/λ. The total number of users is K = 6. It is observed that the max-min received SNRs by

all considered schemes (except the FPA and SA benchmark) increase with the transmit region size, as this leads to a larger

degree of freedom for antenna position optimization. In particular, our proposed AO algorithm is observed to outperform

all other benchmarks. Nonetheless, as A increases, the performance gap between MRT and AO reduces, which is consistent

with our theoretical analysis. It is also observed that the SA benchmark may even yield a worse performance compared to

the FPA benchmark. This is because the SA may not be able to generate high-gain grating lobes towards the considered

directions of the users given its fixed inter-antenna spacing.

Lastly, we plot the max-min received SNRs by different schemes versus the number of MAs in Figures C2(b), with A = 4λ.

It is observed that the max-min SNRs by all considered schemes increase with the number of MAs. This is expected, as

more antennas lead to a higher beamforming gain to enhance the multicast performance. Moreover, it is observed that

to achieve the same max-min received SNR, the proposed scheme requires fewer antennas than FPA benchmark. For

instance, to achieve a max-min SNR of 6 dB, the proposed scheme uses only 3 antennas, whereas the FPA benchmark uses

7 antennas. This suggests that MAs can significantly reduce the hardware cost and power consumption of conventional THz

BSs with FPAs. It is also observed that the performance gain of the proposed scheme over other benchmarks becomes more

significant with an increasing number of MAs. This implies that continuous antenna movement yields a more substantial

gain for multicasting with a large number of antennas.
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