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Recently, output synchronization has been widely applied

in communication networks and multiple robotic manipula-

tors [1–3]. Liu et al. [4] introduced an event-triggered aperi-

odic intermittent control (IC) mechanism to investigate the

fixed-time (FT) synchronization of multilayered networks

(MLNs). This study focuses on fixed-time output synchro-

nization (FOS) in MLNs by establishing FT stability and

developing novel IC schemes. First, a model of MLNs with

intra/inter-layer output coupling is proposed to more accu-

rately capture and represent the complexity and precision of

MLN structures. Subsequently, a switching-type FT stabil-

ity theorem is established, with its stability conditions re-

laxed, and a high-precision estimate of synchronization time

is obtained by using the comparison principle. Furthermore,

two novel saturation-based IC protocols are designed to mit-

igate the chattering effects associated with the traditional

FT controller that employs a sign function.

Notations. R and Rn respectively denote the set of all

real constants and a space formed by all n-dimensional real

vectors. N is defined as a set of natural numbers. Rn×n

is the set of all n × n real matrices, n̂ = {1, 2, . . . , n},

P̄ = {1, 2, . . . , P} and M̄ = {1, 2, . . . ,M}, where n, P and

M are positive integers. For any ξ ∈ R, sign(ξ) is the sign

function of ξ, and sat(ξ) is the saturation function of ξ. For

any ζ = (ζ1, ζ2, . . . , ζn)T ∈ Rn, ε = (ε1, ε2, . . . , εn)T ∈ Rn,

εs = ε+εT

2
, [ε]θ = (|ε1|θ, . . . , |εn|θ)T, θ > 0, and ζ ◦ ε =

(ζ1ε1, ζ2ε2, . . . , ζnεn)T. diag{·} stands for a diagonal ma-

trix, 0n is the column vector with all zero elements, ⊗ rep-

resents the Kronecker product for matrices.

Problem formulation. The r-layer can be visualized by a

graph Gr = (νr , ℘r), where νr and ℘r denote the set of ver-

tices and undirected edges, respectively. Let δr = (δrpq) ∈

RP×P , where δrpq = δrqp > 0 if and only if the p-node and the

q-node of the r-layer are connected, otherwise, δrpq = δrqp = 0

(p 6= q) for p, q ∈ P̄ . Let γ = (γrα) ∈ RM×M represent the

adjacency matrix between layers, in which γrα = γαr > 0 if

and only if an edge exists between the p-node of the r-layer

and the p-node of the α-layer, otherwise, γrα = γαr = 0

(r 6= α) for r, α ∈ M̄ . The corresponding Laplacian ma-

trix δ̂r = (δ̂rpq)P×P is given by δ̂rpq = δ̂rqp = −δrpq < 0 for

p 6= q, and δ̂rpp =
∑P

q=1,q 6=p δrpq > 0. γ̂ = (γ̂rα)M×M

is defined as γ̂rα = γ̂αr = −γrα < 0 for r 6= α, and

γ̂rr =
∑M

α=1,α6=r γrα > 0.

Consider a category of MLNs composed of M -layers,

which is described as





ẋr
p(t) = fr

p (x
r
p(t)) +

∑M
α=1,α6=r f

α
p (xα

p (t)) + ur
p(t)

+b
∑P

q=1,q 6=p δrpqH̄(yrq (t) − yrp(t))

+c
∑M

α=1,α6=r γrαF̄(yαp (t) − yrp(t)),

yrp(t) = Axr
p(t), p ∈ P̄ , r ∈ M̄,

(1)

where xr
p(t) = (xr

p1(t), x
r
p2(t), . . . , x

r
pn(t))

T ∈ Rn represents

the state vector of the p node in the r-layer, yrp(t) ∈ Rm

is the output state vector of the p node in the r-layer,

fr
p (x

r
p) = (fr

p1(x
r
p), . . . , f

r
pn(x

r
p))

T ∈ Rn is a continuous non-

linear vector function that describes the intrinsic dynamic

characteristics of node p in the r-layer, and fα
p (·) : Rn → Rn

represents the dynamic behavior of node p as it interacts

with the duplicate node at the α-layer. Here, b > 0 rep-

resents the inter-layer coupling intensity, c > 0 stands for

the intra-layer coupling intensity, and ur
p(t) represents the

control input for node p-node at r-layer. Additionally,

A ∈ Rm×n is the output coefficient matrix, 0 < H̄ ∈ Rn×m

is the inter-layer coupling matrix, and 0 < F̄ ∈ Rn×m is the

intra-layer coupling matrix.

The dynamic state of the isolated node in the MLN (1)

is considered the synchronization target, and it satisfies

{
ẋ0(t) = f(x0(t)),

y0(t) = Ax0(t).
(2)

Assuming that x0(t) is bounded, then there exists a time

T †(x0(0)) for any given initial condition x0(0), such that

‖x0(t)‖ 6 û, ∀t > T †(x0(0)), where û > 0. Let ℏ
r
p(t) =
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yrp(t) − y0(t), where p ∈ P̄ and r ∈ M̄ . The error system

can be formulated as

ℏ̇
r
p(t) = A

[
fr
p (x

r
p(t)) +

∑M
α=1,α6=r f

α
p (xα

p (t)) − f(x0(t))
]

+b
∑P

q=1,q 6=p δrpqAH̄(ℏrq(t) − ℏ
r
p(t))

+c
∑M

α=1,α6=r γrαAF̄(ℏαp (t) − ℏrp(t)) +Aur
p(t).

Since x0(t) is bounded, and both fα
p and f

satisfy the Lipschitz condition, it follows that

fα
p (x0(t)) − f(x0(t)) is bounded above. More precisely,

supt→T † M max
α

‖fα
p (x0(t)) − f(x0(t))‖ = Θ for T † >

T †(x0(0)). The following saturation function is used:

sat(z) =

{
sign(z), |z| > k,

g(z), |z| < k,
(3)

where k > 0, g(z) is continuous on the interval (−k, k),

g(0) = 0, limz→k− g(z) = 1 and limz→−k+
g(z) = −1, and

sign(z)g(z) > w|z|β1 when z ∈ (−k, k) for some constants

w > 0, 0 < β1 < 1.

The IC strategy in this study is formulated as





ur
p(t) = −Bℏ

r
p(t) − β2sat(ℏ

r
p(t)) ◦ [ℏrp(t)]

s̄1

−β3sat(ℏrp(t)) ◦ [ℏrp(t)]
s̄2 , t ∈ [tι, zι),

ur
p(t) = 0, t ∈ [zι, tι+1),

(4)

where B ∈ Rn×m, β2 > 0, β3 > 0, 0 < s̄1 < 1, and s̄2 > 1.

The intervals [tι, zι) and [zι, tι+1) represent the ιth work

interval and rest interval, respectively, where t0 = 0 and

tι < zι < tι+1 for ι ∈ N.

Definition 1. For any tb > ta > 0, there exist τ ∈ (0, 1)

and o > 0 such that T†(tb, ta) > τ(tb − ta) − o, where

T†(tb, ta) denotes the total work interval length on [ta, tb),

τ represents the average control ratio, and o is the elasticity

index.

Definition 2. The MLN model given by (1) will achieve

FOS provided that there exists a positive constant T ∈

[0,+∞) and a constant Ψ > 0 such that




lim
t→T

ℏ(t) ∈ {ℏ(t)|O̧(ℏ(t)) 6 Ψ},

ℏ(t) ∈ {ℏ(t)|O̧(ℏ(t)) 6 Ψ}, ∀t > T ,

and {ℏ(t)|O̧(ℏ(t)) 6 Ψ} , Ξ is called a residual set

for all ℏ(t) ∈ RMPm, where T is the synchronization

time required to achieve FOS synchronization, and ℏ(t) =

(ℏ1(t)T, . . . , ℏM (t)T)T.

Assumption 1. For any vectors ρ1, ρ2 ∈ Rn, there ex-

ists a scalar εrp > 0(p ∈ P̄ ), such that ‖fr
p (ρ1) − fr

p (ρ2)‖ 6

εrp‖ρ1 − ρ2‖.

Lemma 1. Assume that the function O̧(ℏ(t)) : Rn → R

is positive-definite and radially unbounded. If there exist

constants ♭, �> 0, κ ∈ R, 1 >  > 0, and ı > 1, such that

when ℏ(t) ∈ Rn\{0n}, the following differential inequalities

hold:
{

Ȯ̧(ℏ(t)) 6 −♭O̧ı(ℏ(t))− � O̧(ℏ(t)) + κO̧(ℏ(t)), t ∈ [tι, zι),

Ȯ̧(ℏ(t)) 6 0, t ∈ [zι, tι+1),

(5)

and κ < min{♭, �}. Then the origin is FT stable and the

synchronization time is estimated as




T †
1 = 1

κτ(ı−1)
ln( ♭

♭−κ
) + 1

κτ(1−)
ln( �

�−κ
) + 2o

τ
, κ 6= 0,

T †
2 = 1+♭(ı−1)o

♭(ı−1)τ
+ 1+�(1−)o

�(1−)τ
, κ = 0.

Lemma 2. Given a positive-definite and radially un-

bounded function O̧(ℏ(t)) : Rn → R, along with constants

κ ∈ R, ♭, �, σ > 0, 1 >  > 0, ı > 1, d > 0, 1 > ς > 0, and

ß > 0 satisfying





Ȯ̧(ℏ(t)) 6 −♭O̧ı(ℏ(t))− � O̧(ℏ(t)) + κO̧(ℏ(t)) + ß,

t ∈ [tι, zι),

Ȯ̧(ℏ(t)) 6 σO̧(ℏ(t)) + ß, t ∈ [zι, tι+1),

(6)

and κ̂ < min{♭̂, �̂}, where ℏ(t) ∈ Rn\{0n}. If there

exist positive numbers d and τ satisfying σ − dτ < 0

and 0 < τ < 1, then the systems (1) and (2) are FT

stable. Moreover, the residual set can be expressed as

Ξ = {lim
t→T

†
r

ℏ(t) | O̧(ℏ) 6 max{m1,m2, m3,m4}}, where

r = 3, 4, m1 = (ß/(♭ς))1/ı , m2 = (ß/(� ς))1/ , m3 = ß/(κς),

m4 = ß/(dτ − σ). The synchronization time is estimated as




T †
3 = 1

κ̂τ(ı−1)
ln( ♭̂

♭̂−κ̂
) + 1

κ̂τ(1−)
ln( �̂

�̂−κ̂
) + 2o

τ
, κ̂ 6= 0,

T †
4 =

1+♭̂(ı−1)o

♭̂(ı−1)τ
+

1+�̂(1−)o
�̂(1−)τ

, κ̂ = 0,

where ♭̂ = (1 − ς)♭exp{(1 − ı)do}, �̂ = (1 − ς) �, and

κ̂ = (1 + ς)κ+ d(1 − τ).

Theorem 1. Under Assumption 1 and the control law

(4), if the conditions κ̄ < min{♭̃, ♭̄, �̄, �̃}, 0 < s̄1 + β1 <

1, ∧3 −dτ < 0 are satisfied where d > 0 and 0 < τ < 1,

then systems (1) and (2) will achieve the FOS, which im-

plies that the synchronization error ℏ
r
p(t) converges to the

attraction region Ξ in a fixed-time T †: Ξ = {limt→T† ℏrp(t) |

O̧(ℏ(t)) 6 max{m1,m2, m̂1, m̂2, m̂3, m̂4}}, and T † satisfies

the following inequality:

T † 6






1
κ̄τ(ı̄−1)

ln( ♭̄
♭̄−κ̄

) + 1
κ̄τ(1−̄)

ln( �̄

�̄−κ̄
)

+ 1
κ̄τ(ı̃−1)

ln( ♭̃

♭̃−κ̄
) + 1

κ̄τ(1−̃)
ln( �̃

�̃−κ̄
) + 4o

τ
, κ̄ 6= 0,

1+♭̄(ı̄−1)o

♭̄(ı̄−1)τ
+

1+�̄(1−̄)o
�̄(1−̄)τ

1+♭̃(ı̃−1)o

♭̃(ı̃−1)τ
+

1+�̃(1−̃)o
�̃(1−̃)τ

, κ̄ = 0.

The MLNs model achieved the best results compared

with other approaches under the same conditions in this

study. As shown in Appendixes A–E, the Motivation, the

proof of Lemmas 1 and 2, the proof and symbols of Theorem

1, and the Simulations are discussed, respectively.

Conclusion. This work investigated the FOS of MLN

with intra/inter-layer output coupling based on the IC ap-

proach. The analysis of FT synchronization of MLNs against

replay attacks using composite antidisturbance control [5] is

extremely rare and will be explored in future research.
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