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When a database is incremented, sequential patterns also

need to be dynamically maintained [1]. Incremental sequen-

tial pattern mining (SPM) avoids the need for brute-force

mining across all sequences [2]. Moreover, in some time-

sensitive applications, more recent data are generally be-

lieved to be more valuable. Therefore, the forgetting mecha-

nism [3] (or decaying factor [4]) can be introduced. Classical

incremental SPM methods disregard intra-sequence pattern

repetition frequency as a potential indicator of user behavior

significance [5], and repetitive SPM methods focus on static

data. To overcome these shortages, this paper addresses

one-off incremental sequential pattern (OIP) mining with a

forgetting factor. OIP mining employs a one-off occurrence

counting method for support calculation and introduces a

forgetting factor to progressively reduce the impact of old

data. To tackle the problem of OIP mining, we propose an

OIP-Miner algorithm. To efficiently calculate the supports,

OIP-Miner constructs a monomial search dictionary based

on an inverted dictionary. To reduce the number of candi-

date patterns, we propose four pruning strategies based on

the pattern join strategy. To improve the efficiency of incre-

mental pattern mining, OIP-Miner mines only incremental

data based on a global pattern dictionary.

Problem definition.

Definition 1. The support of pattern p in sequence s

is the number of one-off occurrences, and is represented by

sup(p, s). The support of pattern p within one batch is

sup(p,B) =
∑b

j=1 sup(p, sj). The support of pattern p in

an incremental sequence database D with a forgetting factor

is the sum of the product of the support in each batch and

the weight of that batch based on the forgetting factor, i.e.,

fsup(p,D) =
∑k

t=1(sup(p, Bt)× ηk−t).

Definition 2. In an incremental sequence database D,

if sup(p,B)/|B| > β (0 < β < 1), then pattern p is

a frequent one-off pattern in the added batch B, where

|B| represents the number of itemsets in B. Similarly, if

fsup(p,D)/|D| > β, then pattern p is a frequent OIP. Our

goal is to discover all frequent OIPs from the incremental

sequence database.

Proposed algorithm. OIP-Miner consists of four parts:

data preprocessing, support calculation, candidate pattern

generation, and incremental pattern mining. The framework

of OIP-Miner is shown in Figure 1.

Data preprocessing. We create an inverted dictionary

for each item. The dictionary has a key and its value. The

key stores the item, and the value is also a dictionary, where

its key is an ID of sequence SID, and its value is a list storing

the occurrence positions in the sequence.

Support calculation. Based on the inverted dictionary

for each item, we create a monomial search dictionary, which

has two components: a key and its value. The key stores the

frequent OIPs with size one, and the value is also a dictio-

nary, whose key is an ID of sequence SID and whose value

is a list that stores the positions of each frequent OIP with

size one in the sequence. We create m level nodes of the

Nettree using the monomial search dictionary, and employ

a depth-first search method to iteratively find the root-leaf

paths to calculate the support for the pattern.

Candidate pattern generation. We adopt the pat-

tern join strategy to generate candidate patterns. Suppose

we have two frequent OIPs p and q with length m. If suf(p)

= pre(q), then we generate a candidate superpattern r with

length m + 1, denoted as r = p ⊕ q.

To further reduce the number of candidate patterns, we

propose a pattern backward map structure, which is con-

structed from frequent OIPs with length two. Its size can
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Figure 1 (Color online) Framework of OIP-Miner.

be one or two. If it is one, then we use Ipre and Isuf to store

the prefix and suffix of each frequent OIP, respectively. If

Ipre of pattern p is x, then Ipre[x] is Isuf of pattern p. Simi-

larly, if it is two, then we use Spre and Ssuf to store the prefix

and suffix of each frequent OIP, respectively. If Spre of pat-

tern p is x, then Spre[x] is Ssuf of pattern p. Based on the

pattern backward map, we propose four pruning strategies.

Pruning strategy 1 (pruning the first items in S-

join). If len(qn) = 1 and i11 /∈ Spre, then pattern r cannot

be a frequent OIP and can be pruned.

Pruning strategy 2 (pruning the first and last

items in S-join). If len(qn) = 1, i11 ∈ Spre, and en1 /∈

Spre[i11], then pattern r cannot be a frequent OIP and can

be pruned.

Pruning strategy 3 (pruning patterns with size

one in I -join). If len(qn) 6= 1, size(p) = 1, and enu /∈

Ipre[i11], then pattern r cannot be a frequent OIP and can

be pruned.

Pruning strategy 4 (pruning patterns with size m

in I -join). If len(qn) 6= 1, size(p) > 1, and enu /∈ Spre[i11],

then pattern r cannot be a frequent OIP and can be pruned.

Incremental pattern mining. We propose a global

pattern dictionary, denoted as G, to store frequent OIPs. In

G, prefix patterns form the keys and inner dictionaries form

the values. In an inner dictionary, the keys are tuples con-

sisting of the last item of a pattern and a flag which is either

“i” or “s”, denoted as (item, flag), and the values represent

the supports of the patterns, where if the length of the last

itemset of the pattern is one, then the flag is “s”; otherwise,

the flag is “i”.

Conclusion. We have explored the mining of frequent

OIPs in an incremental environment, which employs a for-

getting factor to reduce the weights of old batches, and

proposed the OIP-Miner algorithm. To verify the perfor-

mance of OIP-Miner, 16 databases and 13 competitive al-

gorithms were selected. Experimental results show that

OIP-Miner is more efficient than other competitive algo-

rithms. More importantly, introducing the forgetting factor

improves the confidence rate for OIP-Miner, since users’ fu-

ture behaviors are often more closely related to recent behav-

iors than previous behaviors. All algorithms can be down-

loaded from https://github.com/wuc567/Pattern-Mining/

tree/master/OIP-Miner.
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