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Abstract In recent years, quantum computation has been rapidly advancing, driving a technological revolution with sig-

nificant potential across various sectors, particularly in finance. Despite this, the insurance industry, an essential tool for

mitigating unforeseen risks and losses, has received limited attention. This paper provides an initial exploration into the

realm of quantum computational insurance and actuarial science. After introducing key insurance models and challenges, we

discuss quantum algorithms that can address insurance problems based on their mathematical nature. Our study includes

experimental and numerical demonstrations of quantum applications in non-life insurance, life insurance, and reinsurance.

Additionally, we explore the timeline for quantum insurance, the development of quantum-enhanced insurance products, and

the challenges posed by quantum computational advancements. This work systematically constructs the connection between

quantum computation and the insurance industry, enhancing the development of insurance while promoting the application

of quantum computation to more realistic problems.
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1 Introduction

Insurance is the financial means helping people to avoid potential loss and to hedge against risk from
particular sources [1]. What lies in the core and crux of insurance practice and actuarial science is to
model and evaluate random risky events [2]. In the branch of non-life insurance, The central tasks are to
price the premiums paid by an individual policyholder, to model the claims for an insurer to afford when
an insured event happens, and to estimate the liability considering the incurred but not reported (IBNR)
and reported but not paid (RBNP) claims [3]. Therein, Monte-Carlo simulation, regression, and neural
network are introduced to solve complicated statistics mathematics and stochastic process problems [4–6].
In contrast, the life insurance branch pays attention to insure life against disability-and-death risk by
mortality forecasting [7–9], as well as against live-too-long risk by life annuity pricing [7,10]. This can be
solved by mortality forecasting models, financial/mortality stochastic processes simulations, and multi-
period portfolio optimization [11–13]. As for the risk management branch, reinsurance and risk indicators
are common tools to transfer and quantify the risks, respectively [14]. Consequently, stochastic process
catching large claims and risk portfolio optimization are both emphasized when studying the reinsurance
problem [7, 11, 15, 16]. Nevertheless, the traditional insurance industry and academia are encountering
challenges due to the rapidly growing data size and increasingly complex models, which will require
exponentially increased computational resources [11].
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One exciting answer to these problems is quantum computation [17], which has been widely applied in
chemistry [18], biology [19,20], materials [21], drug design [22], and especially finance [23–25]. Specifically,
applying quantum computing methods to insurance problems has also been investigated, including the
insurance cash flow modeling [26], collective risk model [27], insurance capital modeling [28, 29], risk
identification [30, 31], and insurance claim fraud determination [32]. However, quantum computational
insurance is still in its infancy compared with other financial branches. Firstly, existing studies mainly
focus on applying quantum computation to specific insurance problems while a systematic study on
the general framework has not been established. Secondly, experimental demonstrations have not been
implemented on current quantum computers to pave the way for the applicability and practicality of
quantum insurance. Thirdly, while empirical analysis of these models on real-world data sets is essential
for any insurance problems, relevant research is still absent.

We argue that the above phenomena and challenges originate from the significant difference between
insurance mathematics and many other financial problems. From the theoretical aspect, as statistical
and actuarial models have been developed and applied to manage risk for hundreds of years, critical
analysis and theoretical interpretability have been proven fundamental to understanding their stochastic
basis [33]. The fancy relationships between quantum information and the stochastic nature of risk theory,
including multivariate statistical analysis, risk processes, and risks in the collective [34], need to be
released. From the practical aspect, realistic data-based empirical analysis is essential to calibrate and
validate insurance and risk models [35–37], while efficient data encoding methods are still challenging for
quantum computing, especially in its current noisy intermediate scale quantum (NISQ) era [38–41].

This article provides an early yet insightful exploration of addressing challenges in insurance practice
and actuarial science with quantum computation. To provide an intuitive perception of insurance, we first
review the problems in the main branches of non-life insurance, life insurance, and risk management. Then
we categorize the problems as stochastic modeling tasks, optimization tasks, and machine learning-based
tasks, and quantum algorithms to solve these tasks with potential speedup are introduced. Moreover, we
also discuss them with respect to the NISQ era [42] and fault-tolerant quantum computation (FTQC)
era [43] based on their requirement for quantum resources, offering a timetable for quantum computational
insurance.

We also numerically and experimentally study several quantum insurance applications corresponding
to mainstream insurance branches. Initially, for the policy excess problem, we designed the quantum
excess evaluation algorithm to model the (stochastic) payment and performed numerical simulations.
Following this, we experimentally demonstrate solutions for the reinsurance type allocation problems with
variational optimization algorithms and the Lee-Carter model [8] with machine learning-based algorithms
on the superconducting quantum processor “Wukong”1). Notably, solving the Lee-Carter model for
mortality forecasting is the first implementation of an insurance-specific quantum algorithm on a quantum
processor using real datasets. These demonstrations and empirical analyses provide further evidence of
the feasibility of quantum computational methods for realistic insurance problems.

Beyond the applicability and demonstrability of quantum insurance, we explore its influence and impact
on the insurance industry. We consider the three main developmental stages of quantum insurance and
highlight how quantum computation is driving the creation of new types of insurance products. Despite
these advancements, some fundamental challenges still need to be addressed.

Combining these aspects, our work introduces the connection between quantum computation and the
insurance industry. This can pave the way for the development of the insurance industry with quantum
computation while promoting the application of quantum computation to more realistic problems.

2 Problems related to insurance

2.1 Non-life insurance

Non-life insurance typically covers risks associated with damage to property, legal liabilities, and medical
expenses.

Collective risk model (CRM). In CRM [44], the aggregate amount of claims is given by
∑N(t)

i=1 Yi,
where N(t) is the number of claims up to time t, modeled by a discrete count process (e.g., a Poisson
process), and Yi is the size of the i-th claim, modeled by a continuous stochastic process. A primary

1) https://originqc.com.cn/.

https://originqc.com.cn/
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concern within CRM is the risk of ruin, which examines the potential for an insurance company to go
bankrupt, where the ruin probability is Pruin(u) = P (u(t) < 0), with u(t) the surplus of the insurance
company at time t and u = u(0) the initial surplus. In CRM, the arrival of claims is typically assumed
to be independent.

Policy excess and excess of loss reinsurance. In non-life insurance such as motor vehicle insur-
ance, it is common to consider policies with a policy excess [45]. This means that the risk is divided be-
tween the insured party and the insurer according to the contract. Mathematically, if X is the total claim
amount and E is the excess amount, the payment by the insurer I can be modeled as I = max(X−E, 0).
A similar model is used for excess of loss reinsurance, where the risk is shared between the insurer and
the reinsurer. The payment by the reinsurer R can be expressed as R = max(X −M, 0), where M is
the retention limit. One common important task in these cases is to model the payments of the insured
party, the insurer, and the reinsurer.

Generalized linear model. The generalized linear model [46] is widely used for short-term insurance
pricing. The expectation of the outcome Y can be derived as

E[Y |X ] = µ = g−1(Xβ), (1)

where g is the link function and Xβ is the linear predictor. Different link functions and corresponding
models are used for different insurance situations. For example, Poisson regression is typically used for
modeling the frequency of claims, while Gamma regression may be applied to model the severity of claims.

IBNR. It often happens that some insurance policies have incurred claims that have not yet been
reported [47]. The chain-ladder model [48] is a mainstream model used to estimate the IBNR amount. In
this model, the claims amount Ai,j is aggregated by accident year i and payment year j. The aggregated
claims amounts are assumed to be linked by a chain-ladder factor fj as Ai,j+1 ∼ fjAi,j and the core
problem is to estimate the chain-ladder factors fj .

Other related problems. In addition to the previously discussed issues, non-life insurance also deals
with various other problems. These include catastrophe modeling [49], which involves estimating the
impact of large-scale events such as natural disasters; premium calculation, which involves determining
the appropriate premium to charge for a given level of risk; reserve setting [50], which entails estimating
the reserves needed to cover future claims; and solvency assessment [51], which evaluates the financial
health and solvency of the insurance company. Addressing these challenges often requires the application
of advanced statistical and actuarial techniques, alongside robust computational methods.

2.2 Life insurance

Life insurance is a financial product that provides a payout to beneficiaries upon the death of the insured
individual. It serves as a crucial tool for financial planning, offering security and peace of mind to poli-
cyholders and their families. The valuation of life insurance contracts is a complex and computationally
intensive task, involving various factors such as mortality rates, lapse rates, and financial returns.

Valuation of insurance contracts. A key challenge in life insurance is accurately valuing insurance
contracts [52]. The expected cash outflow of a whole life insurance policy can be modeled as

E(C) =

T
∑

t=1

q(t) · Plapse(t), (2)

where E(C) is the expected cash outflow, q(t) and Plapse(t) are the payment and the probability of lapse
at time t. Since policyholders sometimes cancel their contracts, the dynamic lapse rate λ(t) is considered

Plapse(t) = 1− e−λ(t)t. (3)

These equations help capture the complexities involved in contract valuation by integrating both the
timing of payments and the likelihood of policy termination over time.

Mortality forecasting. Multivariate statistical analysis and data science techniques are introduced
to solve the mortality forecasting problems, which have many variants. For instance, the Lee-Carter
model [8] is a popular approach for mortality forecasting:

lnmx,t = αx + βxκt + ǫx,t, (4)
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where mx,t is the mortality rate for age x at time t, αx = (
∑T

x=1mx,t)/T represents the age-specific
component, βx captures the sensitivity to the time-varying index κt, and ǫx,t is the error term. This
model and its variants are extensively discussed in [6].

Multi-period optimization. For life insurance, especially for life annuities, multi-period optimiza-
tion [53] is an essential long-term financial management instrument. This involves optimizing the portfolio
over multiple periods, taking into account not only the return and variance of each assessment but also
the transaction costs. The objective function can be formulated as

max

{

T
∑

t=1

(

Rt −
1

2
γσ2

t − Ct

)

}

, (5)

where Rt is the return at time t, γ is the risk aversion coefficient, σ2
t is the variance of the return, and

Ct represents the transaction costs.
Other related problems. In addition to valuation, mortality forecasting, and multi-period optimiza-

tion, there are several other related problems of interest in the field of life insurance. First, underwriting
risk [54] refers to the assessment of risk associated with insuring a new policyholder, and it often involves
statistical and machine learning techniques to predict the likelihood of a claim. Additionally, longevity
risk [55] is another crucial concern, as it represents the risk that policyholders live longer than expected,
which can significantly impact the financial stability of life insurance companies. This issue is particularly
relevant for annuity products. Furthermore, ensuring that life insurance products comply with regula-
tory standards is essential, as the standards can vary significantly across different jurisdictions. Finally,
understanding and predicting customer behavior [56], such as lapse rates and claim frequencies, is critical
for better managing and pricing insurance products.

2.3 Risk management

Risk management is a critical aspect of financial and insurance industries, aiming to identify, assess,
and prioritize risks followed by coordinated efforts to minimize, monitor, and control the probability
or impact of unfortunate events. Effective risk management ensures the stability and profitability of
financial institutions.

(Conditional) Value at risk. The value at risk (VaR) and conditional value at risk (cVaR) are
common risk measures in risk management [57]. VaR is defined as the minimum loss bound at a given
risk level α ∈ [0, 1], such that the realized loss x is less than this bound with a probability of at least α.
Mathematically, it is expressed as

VaRα[X ] = inf {x|P[X 6 x] > α}. (6)

On the other hand, cVaR is the expected loss conditioned on the loss being under the bound VaRα[X ]
defined as

cVaRα[X ] = E[X |0 6 X 6 VaRα[X ]]. (7)

Managing the total risk of an insurance portfolio is an essential problem. For each kind of insurance
contract, one must decide whether to transfer the risk to the private market or to self-manage it within
the insurance pool by allocating its reinsurance type.

Risk transfer and reinsurance. In the context of insurance, risk transfer and reinsurance are crucial
strategies [14]. Risk transfer involves moving the risk from the insurance company to another party,
typically through reinsurance contracts. Reinsurance helps insurers to manage their risk exposure and
protect against significant losses. The decision on the type and extent of reinsurance involves evaluating
the trade-offs between the cost of reinsurance and the benefits of reduced risk exposure.

Portfolio risk optimization. Portfolio risk optimization [58] is another important aspect of risk
management. This involves optimizing the allocation of assets and liabilities to minimize risk while
maximizing returns. Techniques such as mean-variance optimization and stochastic programming are
commonly used. The objective function for portfolio optimization can be formulated as

max

{

n
∑

i=1

(

Ri −
1

2
γσ2

i

)

}

, (8)



Liu H-Y, et al. Sci China Inf Sci October 2025, Vol. 68, Iss. 10, 202501:5

where Ri is the return of asset i, γ is the risk aversion coefficient, and σ2
i is the variance of the return of

asset i.
Other related problems. There are several other related problems in risk management. First, credit

risk management [59] involves assessing the risk of loss due to a borrower’s failure to make payments. This
often includes the use of credit scoring models and default probability estimations. Second, operational
risk management [60] focuses on risks arising from internal processes, systems, and external events,
including fraud and cybersecurity threats. Furthermore, liquidity risk management [61] ensures that the
institution can meet its short-term obligations without incurring significant losses.

3 General framework for quantum computational insurance

In this section, we establish a general framework for quantum computational insurance. After a brief
introduction to the basics of quantum computation, we explore the connections between insurance prob-
lems and quantum computation. Firstly, the fundamental concept of probability distributions can be
efficiently encoded on quantum states by state preparation algorithms. Secondly, the essential model of
risk processes can be simulated and analyzed by quantum stochastic simulation algorithms. Thirdly, the
more complicated collective and portfolio of risk processes can be optimized by quantum optimization al-
gorithms. Finally, the rapidly growing data-driven insurance models can be trained by quantum machine
learning models. Following them, more specific algorithm implementations are left to Section 4.

3.1 Basics in quantum computation

This part briefly reviews some basic concepts in quantum computation. The first is the quantum bit
(qubit), the basic information in quantum computation. It is different from the classical bit as it can be
in a superposition of states, a two-dimensional vector in the Hilbert space:

|ψ〉 = α|0〉+ β|1〉, (9)

where |0〉 and |1〉 are the two basis states, α and β are complex amplitudes satisfying |α|2 + |β|2 = 1.
The multi-qubit state is within the tensor product of individual qubit space, indicating that an n-qubit
state represents a 2n-dimensional vector in the Hilbert space.

In quantum computation, we perform operations on qubits to accomplish specific tasks. The basic
operations in the quantum circuit model are quantum logic gates, which are mathematically described
by unitary matrices. Specifically, the single-qubit and two-qubit gates are commonly used. For instance,
the single-qubit X gate is the NOT gate:

X =

(

0 1

1 0

)

→
{

X |0〉 = |1〉,
X |1〉 = |0〉.

(10)

The two-qubit Controlled-X gate applies the X gate on the target qubit according to the state of the
control qubit:

CX =













1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0













→



















CX |00〉 = |00〉,
CX |01〉 = |01〉,
CX |10〉 = |11〉,
CX |11〉 = |10〉.

(11)

An n-qubit quantum logic gate can process the 2n-dimensional information in one step, outperforming
classical logic gates. It can also cause entanglements or interference between qubits. These features
make quantum computation potentially to achieving speedups over classical computations. Quantum
algorithms based on these principles have been designed for various regions, including chemistry, biology,
and finance.

3.2 Quantum algorithms for insurance

This part discusses quantum algorithms for insurance problems. An overview is shown in Figure 1.
As aforementioned, modeling stochastic events is the core task of insurance and actuarial science. For

instance, CRM and the policy excess problem were introduced before. Quantum stochastic modeling
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Figure 1 (Color online) Quantum algorithms for insurance problems, which are categorized as stochastic modeling tasks, machine

learning tasks, and optimization tasks. The policy excess problem, the Lee-Carter model, and the reinsurance type allocation

problem are typical examples in these classes and are demonstrated numerically and experimentally in Section 4.

involves embedding classical stochastic information into a quantum computer, simulating the stochastic
process, and extracting the associated classical information for practical utilization. Efficiency in these
steps is required for quantum advantages. Fortunately, quantum stochastic modeling could reduce the
space exponentially with a further quadratic speedup. Firstly, statistical distributions, as well as initial
states of stochastic processes, can be prepared in a quantum superposition, wherein the intrinsic symmetry
of the underlying distribution can be employed to reduce the time complexity and mitigate the classical
quantum input bottleneck. Secondly, for a stochastic process, the Markov dynamics described by a
transition matrix can be simulated with quantum operations; herein, the memory-less property can be
employed to extend to continuous-time processes at a low cost. While the non-Markovian behaviors
are related to an open quantum system, whose simulation has been widely studied [62, 63]. Finally, to
evaluate the desired information from the expectation of moments, we implement the quantum-enhanced
Monte Carlo integration (QMC). It applies amplitude estimation to the quantum samplings described
above with a quadratic acceleration [64, 65].

In spite of stochastic modeling, many practical insurance problems, such as insurance pricing and
mortality forecasting, can be solved by data-driven methods of machine learning [6]. And quantum
machine learning would be an appealing choice. In the NISQ era, quantum machine learning is realized
via the well-known variational quantum algorithms [66], which are hybrid quantum-classical that combine
parameterized quantum circuits as neural networks and classical computers as optimizers. Parameterized
quantum circuits are set to be shallow to mitigate the hardware noise.

While in the FTQC era, where quantum circuits and the qubit number are greatly improved, it is
possible to implement quantum machine learning algorithms based on linear algebra. The core subroutine
in these algorithms is the solution of linear equations using the widely applied HHL algorithm [67, 68].
For instance, using quantum computers, the vision transformer [69], which is successfully applied on
natural language processing tasks, can achieve speedups [70]. The singular value decomposition (SVD)
for extracting features can also be accelerated with quantum algorithms [71].

When considering life annuity and risk assessment management, optimization plays an essential role.
Quadratic unconstrained binary optimization (QUBO) problems can be translated into finding the ground
state of Ising models, and a quantum annealer can derive the minima [72–74]. Variational optimization
algorithms like the quantum approximation optimization algorithms [75] can also be applied for these
goals.

4 Results

In this part, we numerically and experimentally study insurance problems covering the main branches as
non-life insurance, life insurance, and reinsurance. Based on the discussion of quantum algorithms, we
respectively solve them with quantum stochastic modeling algorithms, quantum optimization algorithms,
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Figure 2 (Color online) Simulation results of excess evaluation. Rtheory and Rtruncate represent the theoretical and the truncated

one, demonstrating that only considering x ∈ [0, 10] provides adequate accuracy. Rdiscrete is the payment evaluated with our

algorithm, showing that as the number of qubits increases, the accuracy is improved and converged to Rtruncate .

and quantum machine learning-based algorithms. First, we develop a quantum algorithm to model the
(stochastic) payment in the excess evaluation problem. The quantum computing framework QPanda [76]
is used for this task. Then we solve the reinsurance type allocation problem with variational quantum op-
timization algorithms and the Lee-Carter model with quantum singular value decomposition algorithms
on “Wukong”, which is a high-performance superconducting quantum computer with the average relax-
ation time T1 = 14.84 µs and T2 = 1.85 µs. The average fidelities of single-qubit gates and two-qubit
gates are respectively 99.7% and 96.3%.

4.1 Quantum excess evaluation

In this part, we numerically solve the policy excess problem, which aims to model the payment for the
reinsurer to pay E[max(0, X −M)]. In this task, we consider the loss following the distribution:

f(x, µ, σ) =
1

xσ
√
2π

e−
(ln x−µ)2

2σ2 , (12)

where µ = 0 and σ = 1 are used. The threshold M(x) is set to be a non-decreasing function

M(x) =

{

0, x 6 1,

0.6(x− 1) + 1, x > 1.
(13)

In this case, the payment can be re-expressed as Rtheory =
∫∞

1 f(x)(x−M(x))dx. Due to the convergence
properties of the integral, it can be truncated with a certain level of precision. In this simulation, the

excess x is varied from 0 to 10 and the corresponding truncated payment is Rtruncate =
∫ 10

x=1
g(x)(x −

M(x))dx, where g(x) = f(x)∫ 10
x=0

f(x)dx
. In real simulations, we also need to discretize the range into N = 2n

points (claims). The loss of each claim is Xj, 0 6 j 6 N − 1. Then the payment becomes Rdiscrete =
∑

Xj>1 f(Xj)(Xj −M(Xj)).

We develop a quantum algorithm for this problem, which uses n + 2 qubits according to the discrete
of the excess range. The quantum algorithm starts with preparing the quantum state representing the
distribution of loss, then a quantum subtracter is applied to evaluate each Xj −M(Xj) in parallel. Then
a sequence of controlled rotations is applied to establish the connection between the payment and the
results when measuring auxiliary qubits. Details of the algorithm can be found in Appendix A.

The numerical simulation result of this task is shown in Figure 2. Several conclusions can be observed.
Firstly, it works when we truncate for large x. Secondly, the correctness of the algorithm grows with the
number of qubits. Thirdly, the algorithm can characterize the excess evaluation problem well.

4.2 Quantum reinsurance type allocation

As aforementioned, insurance companies pay reinsurance premiums for risk diversification and long-
term stability with different risk characterizations and charges for the following two reinsurance types.
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Self-managed insurance pooling across different regions can reduce the insurance portfolio variance with
lower premiums while being fragile to wide-ranging catastrophic [77, 78]. Private insurance purchasing
from the international reinsurance market can further diversify risk at the cost of higher reinsurance
premiums [79]. It is an essential yet intractable problem to allocate the reinsurance type for hundreds of
insurance products to minimize the variance of the risk portfolio [80].

More formally, given the retained risk Rj in the self-managed reinsurance pool that has not been
transferred to the private insurance market, one aims to minimize the total variance of the total risk
Rtotal =

∑

j xjRj with varying reinsurance type xj ∈ {0, 1} as

min
x∈{0,1}n

Var[Rtotal] s.t.

n
∑

j=1

xj = pn. (14)

Herein the risk Rj can be either a vector of historical data or a random variable from stochastic simulation,
and the proportion p satisfying 0 < p < 1 represents the average allocation probability and is assumed
to be fixed (for example, p = 0.5 as in [80]).

Expanding the above variance, we have

Var[Rtotal] =
∑

j

Var[xjRj ] +
∑

j 6=k

Cov[xjRj , xkRk], (15)

where Cov[X,Y ] is the covariance between X and Y . Using Var[X ] = Cov[X,X ], the equation becomes

Var[Rtotal] =
∑

jk

Cov[xjRj , xkRk] =
∑

jk

xjxkCov[Rj , Rk]. (16)

Denote the covariance matrix V with elements vjk = Cov[Rj , Rk], We have

Var[Rtotal] =
∑

jk

xjvjkxk = xTV x. (17)

In this task, we randomly generate the covariance matrix, and a VQA is applied. We generate the
ansatz with some parameterized unitary |x(θ)〉 = U(θ)|0〉. To evaluate the variance with quantum
measurements, we apply the map xj → (I −Zj)/2 such that xj = 〈xj |(I −Zj)/2|xj〉, xj = 0, 1. Then the
variance becomes

Var[Rtotal] = 〈x|Hcost|x〉, Hcost =
n
∑

j,k=1

vjk
I − Zj

2

I − Zk
2

. (18)

Then it is seen that evaluating the variance becomes a measure of the expectation value of the Hamiltonian
Hcost. Finding x satisfying

∑

j xj = pn that minimizes the variance becomes finding the eigenstate
corresponding to the smallest eigenvalue of the Hamiltonian’s specific subspace. Finally, we can apply a
classical optimizer to optimize the results.

We applied 6 superconducting qubits, illustrated in Figure 3(a), for this task. To satisfy the constraint,
instead of a traditional penalty function method, we utilize a more efficient problem-specified ansatz
consisting of two parts: a parameterized initialization layer to prepare a quantum state satisfying the
constraint, and repeating layers of reconfigurable Beam splitter (RBS) gates to transform the state while

keeping the constraint unviolated [81–83]. The RBS gate is diag
{

1,
(

cos θ − sin θ

sin θ cos θ

)

, 1
}

, which interacts

between |01〉 and |10〉 while keeps |00〉 and |11〉 unchanged. A quantum circuit implementation of this
gate is shown in Figure 3(b). The number of RBS layers is set to be 3 and the whole ansatz after some
simplifications is shown in Figure 3(c).

While the theoretical output maintains the constraints, any deviation due to hardware noise is cor-
rected by excluding erroneous shots from measurements. We apply a measurement-based error mitigation
strategy to combat quantum hardware noise. It first runs several quantum circuits to benchmark the
probability of flips when measuring 0 and 1. Then after the measurement outcome is obtained, we perform
a reverse operation to get the noise-mitigated result.

The result is shown in Figure 4. The bottom orange line indicates the minimum orange of the loss
function. We optimize the parameters based on the output of quantum computers while using the
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Figure 3 (Color online) Setup for the reinsurance type allocation problem. (a) The 6 superconducting qubits used in the quantum

computer “Wukong”; (b) the quantum circuit for the RBS gates; (c) the quantum circuit for the ansatz, with 6 qubits and 3 RBS

layers, after some simplifications.

Figure 4 (Color online) Experimental results for the reinsurance type allocation problem. The blue line illustrates the decrease

in the loss function as outputted by quantum computers. The green line indicates the classically computed loss function using the

same parameters. The orange line represents the target value.

parameter to compute the noiseless loss function classically, which are labeled by “quantum quantum”
and “quantum classical”, respectively. We can see that as the optimization goes, the loss function is
decreased, and the corresponding “classical” loss function is closer to the target value, which is capable
of generating the target x.

4.3 Quantum Lee-Carter solver

Here, we report experimental results for solving the Lee-Carter model described in (4). Given a list of
data mx,t, the core task is to estimate βx and κt. This is usually done by first constructing the matrix D
whose elements are Dx,t = lnmx,t−αx. Then a singular value decomposition is performed on D, and the
left(right) singular vector related to the maximum singular value is associated with βx(κt). Then these
data can be used for further predictions. We apply real-world data obtained from the website2). The
year t is from 2014 to 2017 and the age x is from 0 to 10–14. Then the matrix size of D is set as 4× 4.

We apply the quantum singular value decomposition algorithm [71]. A brief introduction to this al-
gorithm is shown in Appendix B. A total of 4 superconducting qubits are used, and a total of 200
optimization steps are evaluated. Similar to the previous experiment, we directly optimized the param-
eters on a quantum computer and used those parameters for benchmarks. Denote the optimized left
and right vectors in the optimization process as β and κ, then to characterize the optimization process,
we observe the Frobenius norm distance between the data matrix D and our constructed matrix βκ,
‖D−βκ‖F , and the Kullback-Leibler (K-L) divergence between the optimized vector and the target one,
DKL(β‖βx) and DKL(κ‖κt), where DKL(p‖q) =

∑

i pi log(pi/qi).

2) https://www.mortality.org.

https://www.mortality.org
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Figure 5 (Color online) Experimental results of the Lee-Carter model. (a) Evolution of the loss function in the optimization

process; (b) evolution of the Frobenius norm distance between the data matrix D and our constructed matrix βκ, where β and κ

are the left and right vectors in the optimization process; (c) evolution of the K-L divergence between the theoretical vector βx

and β; (d) evolution of the K-L divergence between the theoretical vector κt and κ.

The experimental results are shown in Figure 5. It shows that the loss function decreases with the
optimization steps. During this process, both the Frobenius norm distance between the data matrix and
our constructed one and the K-L divergence between the theoretical singular vector and our estimated
singular vector also decrease, indicating the successful performance of the target singular value decom-
position. Note that this is the first time an insurance-specific real-world data problem is experimentally
solved with real quantum computers.

5 Conclusion and discussion

In the preceding sections, we delved into the realm of quantum computational insurance and actuarial sci-
ence. We examined critical issues across the principal branches of insurance, including non-life insurance,
life insurance, and reinsurance. Following this, we explored the application of quantum algorithms to
address these challenges. Additionally, we conducted both numerical and experimental studies on several
insurance problems using quantum algorithms. Besides the introduction of the general paths to applying
quantum computing to insurance, these demonstrations clarified the associated technical details. The
connection between quantum computation and the insurance industry is established and enhanced, which
can promote the development of both quantum computing and insurance.

In this section, we outline the roadmap for the future of quantum computational insurance. In the
NISQ era, the available qubit number of quantum operation depth is limited due to the noise [42].
Although experiments have shown early quantum advantages on some specific applications [84], there
is still a long way to universal quantum computing. While one of the most challenging problems is
to strive for fault-tolerant quantum computing, how can the insurance industry make use of quantum
computation in the NISQ era? We believe that both theoretical and experimental breakthroughs focusing
on quantum insurance and actuarial science will be achieved. On the aspect of theoretical development,
many quantum insurance algorithms will be proposed and proved to have quantum speed-up. Quantum
stochastic modeling will be applied to study risk and ruin theory with many applications as suggested
in the previous section. Also, quantum machine learning and optimization will be further developed on
prediction and portfolio optimization problems. As for the aspect of experiments, quantum insurance
algorithms, including but not limited to variational quantum algorithms and quantum Monte Carlo
simulations, can be performed on quantum processors. The insurance industry can help to find the
best scenarios and applications of quantum insurance and bring more attention to this cross-field. With
the cooperation of quantum computation scientists, the insurance industry, and academia, quantum
algorithms driven or inspired by insurance can reveal more power of quantum computation and further
applicability to insurance.

In the second stage of fault-tolerant quantum computing, errors on quantum processors can be corrected
[43,85]. These high-quality logical qubits, together with larger qubit numbers, will enable us to consider
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and perform more realistic quantum insurance applications [43]. As the power of quantum computation
has been released, many exciting insurance applications and products can come true. The risk can
be estimated and evaluated more precisely, and such an evaluation process can be even online and
personalized, based on quantum computation with Internet and Internet of Things data. The potential
loss can be predicted more early and precisely, benefiting from quantum computational climate predicting,
mortality forecasting, and fat-tail events modeling, to name but a few. Furthermore, quantum natural
language processing can help to accelerate complicated tasks such as AI customer service and consultation
[86], and quantum pattern recognition can speed up claim analysis [87]. Nevertheless, one should also
notice that, besides those quantum benefits mentioned above, there are quantum threats as well. Impacted
by universal quantum computation, there will be lots of unexpected and consecutive influences that can
be viewed as a source of uncertainty and risks. We believe that one of the most challenging problems is
the modeling and evaluating of such a new source of risks. Once again, we caution that the insurance
industry and quantum scientists should cooperate together to handle these challenges.

In this work, we have discussed the major ideas and impacts of quantum computational insurance and
actuarial science, and have considered most of the possible applications and challenges at present and
in the future. We also emphasized that we are far away from the final answer to those fundamental
problems of quantum computational insurance and actuarial science. The applications and potential
challenges within the context of quantum insurance should be invested in detail and considered carefully
and the communication and cooperation of the insurance industry and quantum scientists are necessary.

Similar to other practical applications, quantum algorithms still face significant challenges. For in-
stance, encoding a general distribution into a quantum computer requires the preparation of the corre-
sponding quantum state, which demands exponential resources [40, 88]. Although n qubits can encode
2n amplitudes, each shot yields only a single n-bit binary string after performing the desired operations,
thereby greatly limiting efficiency. Additionally, noise in quantum computers remains a challenge for
most quantum algorithms. To address these issues, researchers are exploring several solutions. Quan-
tum random access memory [89] and advanced encoding strategies [90] can be utilized for efficient state
preparation. Advanced sampling methods, such as shadow tomography [91, 92], offer faster readout.
Furthermore, quantum error mitigation [93] strategies are being developed to combat noise in quantum
hardware.
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Appendix A Quantum excess evaluation algorithm

Here, we provide details about the quantum excess evaluation algorithm. The algorithm is divided into the following steps,

and a sketch map of the quantum circuit is shown in Figure A1.

Setup. As introduced in the main text, the algorithm aims to estimate
∑

Xj>1 f(Xj)(Xj −M(Xj)). We start this with

representing x with n qubits |x〉 = |xn−1 · · ·x1x0〉 under the condition that x =
∑n−1

i=0 xi2i, where xi ∈ {0, 1}, ∀i. Then we

re-scale the interval [0, 10] to [0, 2n − 1] such that the state |x〉 indeed represents the number 10x/(2n − 1) (for instance,

|0〉⊗n and |1〉⊗n refer to 0 and 10, respectively).

State preparation. We use n qubits to represent each loss Xj as |j〉. Then, using quantum superposition, we prepare

the quantum state

|ψ1〉 =
N−1
∑

j=0

√
pj |j〉 (A1)

with the unitary UX , where pj = f(Xj)/C with C a normalization factor.

Quantum subtractor. When x > 1, the payment is x −M(x) = 0.4(x − 1). We first need to evaluate x − 1 with a

quantum subtractor (US) detailed in [94], in which the threshold 1 needs to be converted as 1n = bin( 2
n−1
10

). With one

auxiliary qubit, we can finish this task and the resulting state is

|ψ2〉 =
1n−1
∑

j=0

√
pj |N − j − 1n〉|1〉a +

N−1
∑

j=1n

√
pj |j − 1n〉|0〉a, (A2)

where qa means the auxiliary qubit.

Controlled rotations. Apply an X gate on the auxiliary qubit, and then add one new measurement qubit qm, followed

by an RY(π/2) gate; we have

|ψ3〉 =
1n−1
∑

j=0

√
pj |N − x− 1n〉|0〉a

[

cos
(

π

4

)

|0〉m + sin
(

π

4

)

|1〉m
]

+

N−1
∑

j=1n

√
pj |j − 1n〉|1〉a

[

cos
(

π

4

)

|0〉m + sin
(

π

4

)

|1〉m
]

.

(A3)

Consider the CCRY(θ) gate, which has two control qubits and one target qubit. It applies an RY(θ) gate on the target

qubit only if the two control qubits are both in the state |1〉:

CCRY(θ) |1〉|1〉|ψ〉 = |1〉|1〉RY(θ) |ψ〉, CCRY(θ) |1〉|0〉|ψ〉 = |1〉|0〉|ψ〉. (A4)

Then using RY(0) = I, we can combine the above two equations as

CCRY(θ) |1〉|x〉|ψ〉 = |1〉|x〉RY(θx) |ψ〉. (A5)

Then we apply a sequence of n CCRY gates shown in Figure A1. For each gate, the first control qubit is the auxiliary qubit

qa. The second control qubit is one of the n qubits that prepare |j〉. The rotation angle is 2ic, where c is a relatively small
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Figure A1 Quantum circuits for the quantum excess evaluation algorithm. The unitary operations UX and US are used to

prepare the state |ψ1〉 and realize the subtraction operations. Followed controlling operations rotate the measurement qubit. The

desired value is associated with the probability of obtaining |1〉 in multiple shots.

positive number and i is the index in the binary representation. According to (A5), these operations will convert the state

|xn−1〉 · · · |x1〉|x0〉|1〉|ψ〉 to |xn−1〉 · · · |x1〉|x0〉|1〉RY
(

c
∑n−1

i=0 2ixi
)

|ψ〉, or more accurately, |xn−1〉 · · · |x1〉|x0〉|1〉RY(cx) |ψ〉.
Therefore, |ψ3〉 is evolved to the following state:

|ψ4〉 =
1n−1
∑

x=0

√
px |N − x− 1n〉|0〉a

(

cos
(

π

4

)

|0〉m + sin
(

π

4

)

|1〉m
)

+

N−1
∑

x=1n

√
px |x− 1n〉|1〉a ⊗

(

cos θx|0〉m + sin θx|1〉m
)

,

(A6)

where θx = π

4
+ c(x− 1n).

Measure and post-processing. Finally, we measure the measurement qubit qm, and the probability of obtaining |1〉
is

P0 =

1n−1
∑

x=0

px sin2
(

π

4

)

+

N−1
∑

x=1n

px sin2
(

π

4
+ c(x− 1n)

)

. (A7)

When c is very small, we use Taylor’s expansion and neglect terms of order O(c2); the result is sin2
(

π

4
+ c(x − 1n)

)

≈
c(x− 1n) +

1
2
. Finally, the above probability is

P0 =

1n−1
∑

x=0

1

2
px +

N−1
∑

x=1n

px

(

1

2
+ c(x− 1n)

)

=
1

2

N−1
∑

x=0

px + c

N−1
∑

x=1n

px(x− 1n). (A8)

With
∑

x px = 1, it follows that
N−1
∑

x=1n

px(x− 1n) =
P0 − 1

2

c
. (A9)

We can see that the left-hand side is exactly what we need

∑

Xj>1

f(Xj)
(

Xj −M(Xj)
)

= 0.4× 10

2n − 1

N−1
∑

x=1n

px(x− 1n). (A10)

Then the algorithm is finished.

Appendix B Quantum singular value decomposition algorithm

In this part, we briefly introduce the QSVD algorithm, which is detailed in [71].

Vectorized SVD. The SVD of a matrix D is

D =
∑

i

σi|ui〉〈vi|, (B1)

where σi is the singular value, and |ui〉 or |vi〉 is the associated left or right singular vector. We can also express it using a

vectorized matrix representation, which employs a vector of MN elements to represent the M ×N matrix:

D =











D11 · · · D1N

..

.
..
.

DM1 · · · DMM











→ |D〉 =
(

D11 · · · D1N · · · DM1 · · · DMM

)T
. (B2)
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Therefore, the SVD of a vectorized matrix is expressed as

D =
∑

i

σi|ui〉〈vi| → |D〉 =
∑

i

σi|ui〉|vi〉. (B3)

QSVD algorithm. In quantum computers, with a re-normalization factor C =
√

〈D|D〉, we can prepare the quantum

state of D and express it in the Schmidt decomposition form

|ψ〉AB =
1

C
|D〉 =

∑

i

λi |ui〉A |vi〉B , (B4)

where A,B represent the two subsystems. Consider two unitary operations U and V that convert the states {|ui〉} and

{|vi〉} to the computational basis {|ei〉}:

U |ui〉 = eipi |ei〉, V |vi〉 = eiqi |ei〉. (B5)

We have

(UA ⊗ VB)|ψ〉AB =
∑

i

λi e
i(pi+qi) |ei〉A |ei〉B . (B6)

Therefore, when measuring the two subsystems A and B of the state |ψ〉AB , we obtain the same measurement result on

the computational basis. The corresponding probability is λ2i = σ2i /C
2. Finally, applying U† and V † on the computational

basis state |ei〉 yields the singular vectors |ui〉 and |vi〉.
To obtain U and V , we apply the variational QSVD algorithm by introducing an optimization procedure. That is, after

preparing the state |ψ〉AB , we apply two parameterized quantum circuits UA(θ1) and VB(θ2). The loss function is

C =
1

Nm

Nm
∑

x=1

δ(px, qx), (B7)

where Nm is the number of shots, and px, qx are the two binary strings at the x-th shot. δ(a, b) is 0 if a 6= b and 1 if a = b.

A classical optimizer is employed to optimize the parameters to minimize the loss function.
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