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Abstract In this work, we present high-performance SiN/AlGaN/GaN metal-insulator-semiconductor high electron mobil-

ity transistors (MIS-HEMTs) on Si substrate for low-voltage application. Attributed to n+-InGaN regrown ohmic contacts,

the devices show low on-resistance of 0.6 Ω·mm and knee voltage of 1.2 V. Low pressure chemical vapor deposition SiN was

used as a passivation to withstand the high temperature when SiN gate dielectric was deposited by plasma enhanced atomic

layer deposition. The devices with the source-drain spacing of 0.9 µm demonstrate low leakage current with the high on/off

current ratio of 5 × 107, breakdown voltage of 52 V, and low current collapse at 30 V drain quiescent condition of 3.5%. Due

to the use of 7-nm thin-barrier AlGaN, the devices with a 250-nm gate length have gradely frequency characteristics with

a peak transconductance of 597 mS/mm and a cut-off frequency/maximum oscillation frequency (f T/f max) of 43/120 GHz.

S-band continuous wave large signal measurements yield a high PAE over 70% at low voltages of 6 and 9 V. The devices

show a maximum output power of 1.73 W/mm and power gain of 19.1 dB at V ds = 9 V. These excellent performances reveal

the great potential of the SiN/AlGaN/GaN MIS-HEMTs in low-voltage RF applications.
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1 Introduction

GaN-based high electron mobility transistors (HEMTs) have the advantages of high breakdown voltage,
high output power, fast switching speed, high temperature resistance, and radiation resistance, which have
attracted wide attention in 5G communication, radar, satellite communication, power electronics and so
on [1–3]. The existing GaN RF power devices are mainly used in high operating voltage and high output
power scenarios, so as to give full play to the advantages of GaN technology to improve the coverage ability
of RF signals [4–6]. GaAs RF technology with advantages of cost and maturity is still more used in low-
voltage application scenarios such as mobile communication terminals, microbase stations, and wearable
devices [7, 8]. However, GaN HEMTs also have great potential in low-voltage applications, which is
attributed to the advantages of high output power density and high power additional efficiency [9–11].
What is more, Intel reports that GaN-based HEMTs have lower on-resistance than Si-based devices at
the same breakdown voltage and are superior to GaAs RF devices at low operating voltages in terms of
power additional efficiency and output power density [12].

The key issues in achieving high performance GaN HEMTs at low voltage have two factors.
(i) Increasing power additional efficiency by reducing the leakage current of the devices and joule heat
dissipation. (ii) Increasing the power output density of the devices by reducing the parasitic resistance
and enhancing the output current density. The off-state leakage current includes buffer leakage current
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and gate leakage current, in which buffer leakage current and gate leakage current can be suppressed
by the technology of back barrier and the introduction of gate medium or plasma treatment in the gate
region, respectively [13–15]. The parasitic resistance consists of contact resistance and access resistance.
The lower contact resistance could be achieved through the technical route of n+-GaN/InGaN regrowth,
deposition of Si before the ohmic metal evaporates, and ion implantation in the ohmic regions [16–18].
Furthermore, the adoption of strongly polarized heterojunctions, such as AlN/GaN and InAlN/GaN,
scaling down the source-drain distance can effectively reduce access resistance [19, 20].

The development of GaN HEMTs on Si substrate faces challenges such as thermal and lattice mis-
matches, resulting in defects (cracks and dislocations) and self-heating [21–24]. However, advancements
in buffer layer engineering, field plate technology, and the use of Si wafers for cost-effective production
have significantly improved both performance and commercial feasibility. Soni et al. [25] designed mul-
tiple drain-connected field plates, which doubled the breakdown voltage to over 300 V. Gustafsson et
al. [26] implemented stepped Carbon doping in the buffer layer, achieving low leakage currents in the
off-state while avoiding current collapse, resulting in an f T of 46 GHz and an f max of 146 GHz. On
the other hand, GaN HEMTs on Si substrate have great advantages of low cost and large wafer size,
which can promote the popularization and application of 5G communication and other emerging tech-
nologies [27–29]. In addition, the heterogeneous integration of GaN RF devices and silicon transistors
can also be realized on Si process platform, so as to greatly improve the electrical circuit performance
and integration density and promote the development of intelligent front-end chip technology [30, 31].
The advantage of the low cost of GaN HEMTs on Si substrate is that they can meet the core needs of
RF devices for low-voltage applications. However, GaN HEMTs on Si substrate using AlGaN barrier,
which is the most mature barrier material and the closest to industrialization, have rarely been reported
for low-voltage RF applications.

In this paper, n+-InGaN regrown ohmic method and low-pressure chemical vapor deposition (LPCVD)
SiN passivation were adopted to realize high-performance SiN/AlGaN/GaN MIS-HEMTs on Si substrate.
LPCVD-SiN passivation was used for the first time in GaN HEMTs for low-voltage RF applications.
Although similar passivation methods have been reported, only the use of LPCVD-SiN in medium and
high voltages was studied, and the great potential of LPCVD-SiN in low-voltage RF applications was
ignored [32,33]. Benefiting from scaling down the source-drain distance (Lsd) to 0.9 µm to further reduce
the access resistance, a low on-resistance (Ron) of 0.6 Ω·mm with a high saturation current density of
1.2 A/mm and a low knee voltage (V knee) of 1.2 V were obtained for the SiN/AlGaN/GaN MIS-HEMTs.
Plasma-enhanced atomic layer deposition (PEALD) SiN gate dielectric was adopted to greatly decrease
gate leakage current by about three orders compared to the AlGaN/GaN Schottky-gate HEMTs. Pulsed
I-V measurement shows that a low current collapse at 30 V drain quiescent condition of 3.5% was achieved
for the SiN/AlGaN/GaN MIS-HEMTs. High PAE of 71% (70.6%) and a high maximum output power
density (Pout) of 0.91 W/mm (1.73 W/mm) at low drain voltages of 6 V (9 V) in a continuous-wave
(CW) mode at 3.6 GHz have been achieved with the SiN/AlGaN/GaN MIS-HEMTs.

2 Device structures and fabrication

The schematic cross-sectional of the SiN/AlGaN/GaN MIS-HEMTs is shown in Figure 1(a). The Al-
GaN/GaN HEMT wafer was grown by metal-organic chemical vapor deposition (MOCVD) on a 6-inch
high resistance (HR) Silicon. A 1-µm GaN buffer was grown on a Si substrate, followed by a 150-nm
undoped GaN channel layer. The AlGaN barrier consists of a 1-nm GaN cap layer, a 7-nm AlGaN
barrier layer, and a 1-nm AlN interface enhancement layer. A 110-nm SiN was grown by LPCVD as a
passivation layer and a mask of regrown ohmic. On-wafer Hall measurement yields a sheet resistance of
276 Ω/square, a sheet carrier density of 1.08 × 1013 cm−2, and an electron mobility of 2064 cm2/V·s.

As shown in Figure 1(b), the device fabrication process began with the deposition of the SiO2 by
plasma enhanced chemical vapor deposition (PECVD), which together with LPCVD-SiN acts as a mask
of regrown ohmic. Then, the PECVD-SiO2 and LPCVD-SiN on the ohmic region were removed by
the F-based inductively coupled plasma etching. The n+-InGaN was regrown on the whole wafer by
MOCVD to reduce the ohmic contact resistance of the devices. After that, PECVD grown SiO2 mask
was removed by diluted HF solution, while the LPCVD-SiN was retained due to the slower corrosion
rate. Therefore, the use of LPCVD-SiN passivation can make GaN HEMTs with regrown ohmic not be
damaged by HF solution on the surface of AlGaN/GaN heterostructure when removing the mask. Then,



Li M D, et al. Sci China Inf Sci October 2025, Vol. 68, Iss. 10, 202402:3

Figure 1 (Color online) (a) Schematic cross-sectional and (b) fabrication process flow of the SiN/AlGaN/GaN MIS-HEMTs.

Figure 2 (Color online) Cross-sectional SEM picture of the SiN/AlGaN/GaN MIS-HEMTs.

Ti/Au metal stacks were deposited as ohmic contact formation. The LPCVD-SiN on the mesa isolation
region was removed by the F-based inductively coupled plasma reactive ion etching, followed by nitrogen
implantation to isolate the active region of the devices. Transmission line models were used to evaluate
the resistance component for the regrown structure. The low ohmic contact resistance of 0.17 Ω·mm was
measured. Then, the gate recess window was defined by etching LPCVD-SiN with F-based inductively
coupled plasma etching, followed by the deposition of a 5-nm PEALD-SiN. Finally, the gate fabrication
was finished by the deposition of Ni/Au/Ti metal stacks. Figure 2 shows the cross-sectional SEM picture
of the SiN/AlGaN/GaN MIS-HEMTs. The fabricated SiN/AlGaN/GaN MIS-HEMTs feature a source-
drain distance (Lsd) of 0.9 µm, a gate length (Lg) of 250 nm, a gate-source spacing (Lgs) of 280 nm, a
gate-drain spacing (Lgd) of 370 nm, and a total gate width of 2 × 25 µm. The devices with the same
fabrication process and structure dimension as SiN/AlGaN/GaN MIS-HEMTs without the PEALD-SiN
gate dielectric, i.e., AlGaN/GaN Schottky-gate HEMTs, were fabricated for comparison.

3 Results and discussion

Figure 3(a) shows the transfer curves of the SiN/AlGaN/GaN MIS-HEMTs and AlGaN/GaN Schottky-
gate HEMTs measured in double mode at V ds = 6 V. For the SiN/AlGaN/GaN MIS-HEMTs, V th was
extracted to be −1.0 V by linear extraction and small V th hysteresis less than 0.06 V was achieved.
Here, the negative shift of the V th of the SiN/AlGaN/GaN MIS-HEMTs compared to the AlGaN/GaN
Schottky-gate HEMTs is mainly attributed to the decreased control ability of the gate over the two-
dimensional electron gas (2DEG) channel due to the introduction of the gate dielectric, which can also
be verified by the reduction of the peak transconductance from 823 to 597 mS/mm. The excessively
large leakage current of 5 × 10−2 mA/mm results in a relatively low on/off current ratio of 2 × 104 for
the AlGaN/GaN Schottky-gate HEMTs. On the contrary, the SiN/AlGaN/GaN MIS-HEMTs exhibit a
lower off-state current of 2 × 10−5 mA/mm and a high on/off current ratio over 5 × 107, suggesting
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Figure 3 (Color online) (a) Transfer and (b) gate diode characteristics of SiN/AlGaN/GaN MIS-HEMTs and AlGaN/GaN

Schottky-gate HEMTs on 6-inch HR-Si substrates.

a superior vertical leakage current blocking capability of the PEALD-SiN gate dielectric. Figure 3(b)
compares the gate leakage currents under the reverse and forward gate biases for the SiN/AlGaN/GaN
MIS-HEMTs and AlGaN/GaN Schottky-gate HEMTs. Benefiting from the PEALD-SiN gate dielectric,
the gate leakage current was greatly reduced by about three orders of magnitude up to V gs = −4 V for
the SiN/AlGaN/GaN MIS-HEMTs, whose reverse gate leakage was as low as 4 × 10−6 mA/mm, lower
than 1 × 10−3 mA/mm for the AlGaN/GaN Schottky-gate HEMTs. Moreover, the forward gate leakage
current was also well suppressed up to a gate bias of +2 V, resulting in an enlarged gate swing to allow
the devices to operate at a larger maximum positive gate voltage to provide a higher maximum output
current and saturated power density.

Figure 4(a) shows the output characteristics with V gs swept from −2 to 2 V for the SiN/AlGaN/GaN
MIS-HEMTs. The devices exhibit the high maximum drain saturation current densities of 1.2 A/mm.
Moreover, the SiN/AlGaN/GaN MIS-HEMTs exhibit a low Ron and V knee of 0.6 Ω·mm and 1.2 V,
respectively, which attributed to reducing the access and contact resistance of the devices by the small
Lsd of 0.9 µm and the regrown ohmic contact (0.17 Ω·mm). The excellent on-state characteristics with the
high maximum output current density and the low on-resistance, as well as the small knee voltage, proved
that the SiN/AlGaN/GaN MIS-HEMTs have the potential to operate at low-voltage RF applications.
The breakdown voltage (V br) is defined as the drain voltage corresponding to the drain current density
of 1 mA/mm, while the device is biased at the off-state with the gate biased at −8 V and the source
biased at 0 V. As demonstrated in Figure 4(b), a V br of 52 V was achieved for the SiN/AlGaN/GaN
MIS-HEMTs with Lsd of 0.9 µm, which is sufficiently high to meet the low-voltage RF device’s need for
breakdown voltage. Additionally, it should be noted that the breakdown type of the SiN/AlGaN/GaN
MIS-HEMTs is a source-drain breakdown caused by buffer leakage rather than a gate-drain breakdown.

The dynamic performance of the fabricated SiN/AlGaN/GaN MIS-HEMTs is evaluated by the pulsed
I-V . The pulsewidth is 500-ns and the period is 1-ms. Figure 5 shows the pulsed I-V output of the
SiN/AlGaN/GaN MIS-HEMTs with the quiescent bias points of (VGSQ, VGSQ) of (0, 0), (−8, 0), (−8,
10), (−8, 20) and (−8, 30) V. Under the condition of (VGSQ, VGSQ) = (−8, 0) V, the SiN/AlGaN/GaN
MIS-HEMTs show a negligible gate delay. A low current collapse of 1.1%, 2.1% and 3.5% was obtained,
respectively, at the quiescent bias points of (V GSQ, V DSQ) = (−8, 10), (−8, 20) and (−8, 30) V. The
low current collapse of the SiN/AlGaN/GaN MIS-HEMTs is helpful in achieving high PAE and output
power in large signal characteristics, which is more suitable for low-voltage RF applications.

To characterize the small signal performance of the SiN/AlGaN/GaN MIS-HEMTs, the S-parameters
were measured around the peak Gm and the frequency ranged from 100 MHz to 40 GHz using an Agilent
8363B network analyzer. Figure 6 illustrates the microwave performances of the SiN/AlGaN/GaN MIS-
HEMTs, biased at V ds = 6 V and V gs for peak transconductance. The maximum current-gain cutoff
frequency (f T) and the maximum power gain cutoff frequency (f max) were obtained by extrapolating
the current gain (H21) and the unilateral power gain (UPG) with a −20 dB/decade slope. It can be
observed that f T and f max of the devices were 43 and 120 GHz, respectively. High values of f T × Lg

(10.75 GHz · µm) and f max × Lg (30 GHz · µm) were obtained in the fabricated SiN/AlGaN/GaN
MIS-HEMTs on Si with Lg = 0.25 µm.
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Figure 4 (Color online) (a) Output and (b) three-terminal breakdown characteristics of the SiN/AlGaN/GaN MIS-HEMTs.

Figure 5 (Color online) Pulse I-V characteristic at different

static biases ((0, 0), (−8, 0), (−8, 10), (−8, 20), and (−8, −30)

V) for the SiN/AlGaN/GaN MIS-HEMTs.

Figure 6 (Color online) Small signal characteristics of the

SiN/AlGaN/GaN MIS-HEMTs.

The low-voltage RF power capability characterizations of the SiN/AlGaN/GaN MIS-HEMTs at
3.6 GHz were performed in continuous wave using an on-wafer load-pull system. The load and the
source impedance were tuned for optimum PAE. Figure 7 shows the PAE, Pout, and the power gain
as a function of the input power for the SiN/AlGaN/GaN MIS-HEMTs, which were biased at class-AB
operation and biased at V ds = 6 and 9 V. It can be observed that the PAE of the SiN/AlGaN/GaN
MIS-HEMTs is over 70% at the bias of 6 and 9 V. Specifically, the PAE of 71%, the Pout of 0.91 W/mm
and the power gain of 16.5 dB were achieved for the SiN/AlGaN/GaN MIS-HEMTs biased at V ds of
6 V. In addition, the PAE as high as 70.6%, the Pout of 1.73 W/mm, and the high power gain of 19.1 dB
were achieved with bias at V ds = 9 V. The excellent PAE is attributed to the low gate leakage and the
high breakdown voltage. The high Pout is attributed to the superior dispersion control, the high satura-
tion current, and the low V knee and Ron. These results suggest that the SiN/AlGaN/GaN MIS-HEMTs
demonstrate excellent low-voltage RF power performances.

Figure 8 summarizes the RF power performance of the SiN/AlGaN/GaN MIS-HEMTs compared with
the previous reports about GaN-on-Si HEMTs operating at sub-6 GHz band [9–11,34–42], showing that
the devices enable both high PAE and output power. To the best of our knowledge, the SiN/AlGaN/GaN
MIS-HEMTs fabricated in this work are the first AlGaN/GaN HEMTs on Si substrate with ultrahigh
PAE over 70% at the sub-6 GHz band. Meanwhile, the power performance of these devices is better than
the AlGaN/GaN HEMTs and comparable to the InAlN/GaN HEMTs and AlN/GaN HEMTs.
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Figure 7 (Color online) Load pull at 3.6 GHz for the SiN/AlGaN/GaN MIS-HEMTs at (a) V ds = 6 V and (b) V ds = 9 V.

Figure 8 (Color online) Benchmark of low-voltage RF power performance for GaN HEMTs on Si substrate measured 6 10 V and

within sub-6-GHz band.

4 Conclusion

High-performance SiN/AlGaN/GaN MIS-HEMTs were achieved using LPCVD-SiN passivation layer,
regrown ohmic technology, PEALD-SiN gate dielectric, and scaling down the source-drain distance. The
devices exhibit excellent performances with a low Ron of 0.6 Ω·mm, a low V knee of 1.2 V, a high on/off
current ratio of 5 × 107, and a high current density of 1.2 A/mm. The f T/f max values of 43/120 GHz
were obtained in the devices with Lg = 250 nm, delivering a high f T × Lg value of 10.75 GHz · µm and a
high f max × Lg value of 30 GHz · µm. At the operating frequency of 3.6 GHz, a PAE of 71% accompanied
with a maximum output power density of 0.91 W/mm and an associated gain of 16.5 dB, as well as a peak
PAE of 70.6% accompanied with a Pout of 1.73 W/mm and an associated gain of 19.1 dB were obtained
for the SiN/AlGaN/GaN MIS-HEMTs when biased at V ds = 6 and 9 V, respectively. These results prove
that the SiN/AlGaN/GaN MIS-HEMTs have great potential in low-voltage RF applications.
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