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Abstract In recent years, temporal knowledge graphs (TKGs) have emerged as a prominent research area in artificial
intelligence and knowledge engineering, offering notable potential for various applications. However, as the scope of TKG
applications continues to expand, distinct challenges arise in specific contexts, especially in open-world scenarios. Traditional
representation and reasoning models struggle to capture the associations of unseen entities within the knowledge graph,
making it difficult to accurately represent these entities and perform unseen entity prediction tasks in open-world settings. To
address these challenges, this paper proposes a novel reasoning framework, the diffusion model-based unseen entity prediction
method (DM-UEP). This innovative approach generates virtual representations for unseen entities using a diffusion model and
establishes a two-phase reasoning framework. The framework includes a graph extension and a transformer with reference to
human cognitive reasoning. In addition, we reconstruct three test datasets tailored specifically for unseen entity prediction
by leveraging existing public datasets. These datasets demonstrate the superiority of the proposed DM-UEP method in
tackling the specialized task of unseen entity prediction in open-world scenarios.
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1 Introduction

The concept of the temporal knowledge graph (TKG) was first introduced in 2016, making it a relatively
young research area with less than a decade of development [1]. As illustrated in Figure 1(a), an example
of TKG about Real Madrid CF is shown. Temporal knowledge representation [2] and reasoning [3] have
been recognized as the most central and pivotal research directions [4], driving rapid advancements and
numerous remarkable research achievements. Within the field of TKG, temporal knowledge representation
and reasoning occupy a paramount position, serving as the foundation for all other research directions.
The quality of representation and reasoning substantially influences progress in other areas and determines
the practical effectiveness of TKGs.

TKG representation and reasoning models can be divided into three core modules based on their
characteristics and application scenarios: the base-level embedding module, the temporal information
processing module, and the reasoning module. The base-level embedding module underpins the entire
model structure, where the choice of embedding considerably influences the design of subsequent models
and determines the overall capability for representation and reasoning. This module can be further cate-
gorized into two types based on semantic or structural correlation. The temporal information processing
module is crucial for handling temporal data in the TKGs, capturing the evolution patterns of knowl-
edge over time. The models ability to effectively mine and utilize historical features directly impacts
the accuracy of TKG representation and the precision of subsequent reasoning. Current mainstream
methods for temporal modeling include explicit approaches and implicit methods that extract historical
information. The reasoning module serves as the interface for practical applications, where selecting the
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Figure 1 Examples of (a) temporal knowledge graphs, (b) conventional entity prediction, and (c) unseen entity prediction in
open-world scenarios.

appropriate reasoning method based on the task can remarkably enhance overall model performance.
Currently, reasoning methods are classified into four main types: semantic-based, structure-based, prob-
abilistic computation, and hybrid approaches. However, existing temporal knowledge graph reasoning
methods heavily rely on historical information, making it challenging to reason about unseen entities
without such data. Therefore, research on TKG reasoning in open-world scenarios [5-7] remains scarce.

As TKGs are increasingly applied in real-world scenarios, the traditional closed-world assumption no
longer meets current needs. Consequently, research on TKGs in open-world scenarios has become crucial.
In open-world scenarios, reasoning tasks differ from those in closed-world settings [5]. For example, in the
entity prediction task, conventional methods in closed-world scenarios rely on the historical information
of the main entity in the query to predict its missing entities [8]. As shown in Figure 1(b), the answer to
the query (Juan Esnaider, member of sports team, ?, ¢ 4+ 1) is derived from past historical information.
However, in the unseen entity prediction task within open-world scenarios, the main entity in the query is
an unseen entity with no direct connections to the original TKG. Current methods are unable to generate
representations for such unseen entities, making it challenging to access relevant historical information
for prediction reasoning. This poses a substantial challenge for reasoning tasks. As illustrated in Figure
1(c), the unseen entity Cristiano Ronaldo does not exist in the original TKG (i.e., Cristiano Ronaldo is
absent from the training dataset). Traditional methods [9] are unable to generate a representation for
Cristiano Ronaldo.
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This paper addresses the challenge of open-world scenarios reasoning in TKGs by proposing a diffusion
model-based unseen entity prediction (DM-UEP) method. DM-UEP uses a structure-correlation-based
relational graph convolutional network (RGCN) [10] as the base-level embedding module and utilizes a
hybrid reasoning approach that incorporates historical information extraction. In open-world scenarios,
predicting triplets that include unseen entities poses a challenge since these entities lack prior embed-
dings derived from the existing knowledge graph. Early approaches used random or zero vectors as
placeholders for unseen entity embeddings, but these methods proved insufficient for accurate predic-
tions. Subsequently, researchers introduced entity descriptions and other attributes to strengthen the
connection between unseen entities and the original knowledge graph, using these descriptions as surro-
gates for entity representation. Although this approach notably improved the accuracy of unseen entity
tasks, it also introduced auxiliary information, limiting its application owing to dependencies on specific
scenarios. Our method avoids introducing additional information and instead relies on the relations in
queries to derive virtual representations of unseen entities. By treating the relations in all triplets as a
unique attribute of the head entity, our diffusion model-based module [11] generates embeddings inversely,
encapsulating key information about unseen entities. This approach enhances the effectiveness of unseen
entity prediction tasks.

Additionally, inspired by the two-step reasoning process [12,13] humans use during inductive reasoning,
which integrates pertinent historical information with immediate context for deduction, this study intro-
duces a two-phase reasoning framework. This framework simulates human reasoning processes, thereby
improving reasoning capabilities for temporal knowledge. Subsequently, the study refines existing pub-
lic datasets for TKG reasoning tasks by meticulously filtering out noise, enabling the construction of
new datasets specifically suited for predicting unseen entities in open-world scenarios. When evaluated
against current advanced algorithms on these novel datasets, the performance of our methods highlights
its cutting-edge capabilities.

The main contributions of our research are as follows.

e We incorporate the diffusion model, which enhances the performance of predicting unseen entities
in open-world scenarios of TKGs by generating virtual representations of unseen entities through the
relations present in queries.

e We propose a two-phase reasoning framework, which amalgamates information from adjacent time
points based on graph extension and extracts key features while also learning specific behavioral pat-
terns from historical information using a transformer. This combination emulates the two-step cognitive
reasoning process of humans, thereby bolstering the reasoning capabilities of TKGs.

e In relation to tasks associated with TKG, we refine existing public datasets and construct new
datasets tailored for predicting unseen entities in open-world scenarios, validating the superior perfor-
mance of our method against contemporary advanced algorithms.

2 Related work

Current research in TKG modeling is segmented into three core modules. The first is the base-level
embedding module, where graph convolution techniques, such as RGCN [10], are widely applied to
capture the structural information of graphs. Next is the temporal information processing module, which
addresses the temporal dynamics of entities and relations. Finally, the reasoning module leverages the
semantic and structural features of TKGs to better predict missing entities [14].

2.1 Base-level embedding module

Given that a knowledge graph is a specialized graph structure, representation methods designed for
general graphs can often be adapted for knowledge graphs. Schlichtkrull, in collaboration with Kipf, the
author of GCN [15], introduced RGCN [10], a representation learning model for knowledge graphs that
extends the GCN framework to model various relations within the graph. Consequently, in TKGs, graph
convolution has become a preferred choice for base-level embedding representation. It effectively captures
the structural information of the graph in the initial stages, laying a solid foundation for subsequent
representation. In [16], the RE-NET model, which is similar to recurrent neural networks (RNNs),
employs RGCN as the base-level embedding to aggregate neighborhood information for entities at each
timestamp. It also uses an RNN-based event encoder to model the sequence of events and capture features
influenced by temporal information. Ref. [17] proposed the HGLS model, which employs a hierarchically
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structured relation-type graph neural network, HRGNN, to encode the global graph structure. At the
subgraph level, RGCN is used to model the static graph at a single timestamp. At the whole graph level,
temporal effects are incorporated as edge weights, and attention mechanisms [18] are employed to model
the global features of entities.

2.2 Temporal information processing module

Historical information of entities and relations represents another critical aspect of temporal data, indi-
rectly reflecting the evolution and impact of time. The historical information typically manifests in three
forms: the historical information of an entity itself, entity-relation history, which indicates the presence
of an entity-relation pair across different timestamps along with all associated entities, and the history of
knowledge (facts), which refers to the presence of a particular triplet on the graph at various timestamps.
Models typically target one or more types of historical information for extraction.

The earliest model to incorporate a historical information extraction module is Know-Evolve, proposed
in [19]. This model converts TKGs into a sequence of static graphs constructed at various timestamps
arranged in chronological order. Know-Evolve is designed to encode this sequence by introducing two
custom RNNs capable of updating representations with new triplets at successive timestamps. These
RNNs update the representations of entities by leveraging their historical information. Specifically, the
representation of an entity at a given time point (¢) is computed based on its representations at the
previous two timestamps (¢ and ¢”).

Subsequently, RE-GCN [9] was introduced, which featured evolutionary units for modeling historical
information. These units employ gated recurrent unit (GRU) [20] components to characterize the evolu-
tion of entities and relations. The representation of a relation is aggregated from the representations of
all associated entities.

In [21], CENET was proposed as another model that explicitly utilizes historical information. CENET
incorporates contrastive learning into TKG reasoning. It initially makes predictive judgments about
whether a missing entity is historical or nonhistorical. Based on these judgments, it focuses on making
final predictions within these categories (historical /nonhistorical entities). Furthermore, CENET consid-
ers historical and nonhistorical information during the representation process, modeling entity relations
accordingly. It introduces distinct evaluation functions tailored to scenarios involving historical and
nonhistorical information, enabling a more nuanced approach to knowledge graph reasoning.

2.3 Reasoning module

Hybrid reasoning, which has emerged in models over the past three years, represents a sophisticated
reasoning process that concurrently considers semantic and structural features.

In [22], EvoExplore is introduced as a model that simultaneously models local and global structures
of TKGs. For local structures, the model employs a semantically-based method to reason about entities,
while for global structures, it draws inspiration from the concept of communities in social networks. By
mining the community structures within TKGs, EvoExplore effectively captures the global features of
the graphs. This dual consideration of semantics and structure allows EvoExplore to better differentiate
between time-sensitive and time-insensitive entities compared to previous models like HyTE [23] and
TeMP [24]. In [21], CENET applies structural information to make predictive judgments about whether
a missing entity is historical while leveraging semantic information for the final entity prediction.

2.4 TKG reasoning in open-world scenarios

As TKGs evolve over time, unseen entities continually emerge, posing challenges for accurate and effective
modeling owing to their absence in the traditional knowledge graph. This directly impacts the reasoning
capabilities of the model.

Unlike other reasoning models, TITer [25] has been recognized for its ability to perform predictive
reasoning about unseen entities. The absence of direct connections between unseen entities and the
existing graph makes their precise representation challenging, complicating reasoning and prediction based
on the graph information. TITer addresses this challenge by leveraging the relations in the predicted
triplets to preliminarily determine the type of the unseen entity. It then employs an inductive mean
algorithm, which uses the representations of already trained entities of the same type to initialize values
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Table 1 Notations with descriptions.

Notation Description

G The whole temporal knowledge graph (TKG)

Gy The static slice of TKG at time ¢

G’i The enriched graph of Gy

E The set of entities in TKG

R The set of relations in TKG

T The set of time in TKG

E, The set of entities whose unique attribute is r
(s,r,0,7) A fact knowledge in TKG

s,o,r The embeddings of subject/object entities and relations
q A forward noise-adding process in the diffusion model

The round of noise-adding process
s ,s%,...,s A group of temporary embeddings in the noise-adding process

A hyperparameter determining the variance of the Gaussian distribution

w The weight of the adding edge

n The exponential decay function

0,5 The hyperparameters in 7

NS,ti The neighbor nodes set of entity o1,

7)) The RReLU activation function

si The embedding of s; at the [-th layer of RGCN in the wide-level

sk /el The embedding of s;/r; computed by RGCN in the wide-level

N;f The set of subject entities associated with r at time ¢

E;T The set of history entities related by r and s before time 7

QYT The set of fact knowledge related to s and r before time 7

- The evaluation function matrix computed by similarity between the entity and
relation embeddings

E The representation matrix computed by the wide-level

Wi, bris The trainable hyperparameters in F

¢ The hyperparameter in the whole loss function

P27 (o) The probability of fact knowledge (s, r, 0, 7) authenticity

for unseen entities. This method remarkably strengthens the connection between unseen entities and the
TKGs, enhancing the predictive accuracy of these unseen entities.

Notably, our task does not rely on information beyond the entities and relations in the TKGs, such as
entity types or descriptive information. Therefore, the comparative models selected for this study also
use representation and reasoning methods that do not depend on additional information. Meanwhile,
methods based on large language models [26], which incorporate pretraining on large-scale corpora, have
access to more semantic information compared to other methods. As a result, such methods are not
considered comparative models in our study.

3 Concepts and definitions of TKG

The researchers initiated a focused exploration into the impact of temporal information on knowledge
graphs, culminating in the introduction of the TKG concept [1]. Simply put, a TKG extends the tra-
ditional knowledge graph triplet by incorporating temporal information. As shown in Figure 1(a), the
relation “member of sports team” between the entities “Juan Esnaider” and “Real Madrid CF” at the
timestamp of 1994, can be represented as (Juan Esnaider, Make a visit, France, [1994]).

The formal definitions of a TKG are as follows.

Definition 1 (TKG). A TKG is defined as a directed graph with timestamps G = (E,R,T). FE
represents a set of entities, and the TKG contains |E| different entities. R represents a set of relations,
and the TKG contains | R| different relations. T represents a set of timestamps, and the TKG contains |T|
different timestamps. Concurrently, a TKG is also a collection of static knowledge graphs, each associated
with a specific timestamp, i.e., G = G1,Ga,...,Gp. The important notations are in Table 1.

The knowledge in each TKG can be represented as (s,r,0,7), where s,0 € E indicate the Subject
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Figure 2 [Illustration of our DM-UEP method. The unseen entity virtual representation generation module represents the unseen
entity through the diffusion model. The two-phase reasoning framework is utilized to predict entities based on the extended graph.

entity and Object entity, r» € R represents the relation, and 7 € T reflects the timestamp.

Reasoning in TKG, compared to traditional static knowledge graph reasoning, incorporates the addi-
tional temporal information, thereby broadening the types of reasoning possible. Beyond the basic tasks
of predicting subject (or object) entities and relations, TKG reasoning expands to include time prediction
and unseen entity prediction. The definitions of several reasoning tasks in TKGs G = (E, R,T) are as
follows.

Definition 2 (Conventional entity prediction). For the TKGs G = (E, R, T), given the entity s € F
(or 0 € E) and a relation r € R, the process of solving o € E(or s € E) such that the resultant (s,r,0,7)
is true is termed as entity prediction.

Definition 3 (Unseen entity prediction). For the TKGs G = (E, R, T), given the entity s ¢ F and a
relation r € R, the process of solving o € E such that the resultant (s,r,0,7) is true is termed as unseen
entity prediction.

4 DM-UEP method

The DM-UEP method is mainly based on a diffusion model to generate virtual representations of unseen
entities. As illustrated in Figure 2, it also constructs a two-phase reasoning framework that simulates
the two-step cognitive reasoning process of humans, integrating RGCN with transformers [27] to achieve
embedded representations of knowledge for predicting unseen entities. The details of each aspect of this
method are presented below.

4.1 Unseen entities virtual representation generation module

Due to their absence in the original knowledge graph, unseen entities lack precise embedded represen-
tations. To address this, we introduce the diffusion model, which generates embedded representations
in reverse, using relations in triplets as special attributes of entities, as illustrated in Figure 3. Initially,
for triplets (s,r,0) in the training set, the relation r is regarded as a unique attribute of the entity s.
And E, is the set of entities whose unique attribute is . Subsequently, in the diffusion model, a forward
noise-adding process ¢ is constructed for the entities in the training set. This process involves adding
a series of (K rounds) Gaussian noise to the embedded representations of existing entities, gradually
transforming these representations s? of the entity s into pure Gaussian noise s, while also obtaining a
series of embeddings s',s?,s3,...,s% in the process. Each round of noise addition in the forward process
q is only related to the embedding after the previous round of noise addition, making it a Markov process.
The noise addition operation in process ¢ is as follows:

q(s*[s" 1) = N (s"; /1 = Brs® 1, i), (1)
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Figure 3 Overview of the unseen entity virtual representation generation module (DM module). For each entity-relation pair, we
train the hyperparameters based on their representations at the latest time, while treating the relation as the category attribute of
this entity.

K

1K|S H k|Sk 1 7 (2)

where {Bx € (0,1)}< | is a hyperparameter determining the variance of the Gaussian distribution used
in the noise addition process. It can be found from the above equation that s* is closer to pure noise as
the number of rounds increases. Based on (1), the expression of ¢(s¥|s”) can be obtained as follows:

q(s*[s”) = N(s*; vars’, (1 — ax)1), (3)

where a, = Hle a0 =1 — f;.

In contrast to the forward noise addition process, the reverse process in diffusion models represents
the denoising reasoning process, which progressively reconstructs the original image from the noise. We
can deduce through (1)—(3) using Bayes’ theorem that

Bk 1— - L,

k=1 k0 _ gk—1. 1 sk — ~
q(s |ss)—/\/< ' Jar m& o ),Z N(0,1). (4)

In the reverse process, obtaining s” requires knowledge of g(s*~!|s¥), which is challenging to ascer-
tain. Therefore, we constructed a neural network pg(s*~!|s¥) to approximate it and subsequently used
q(sF=1|s*s?) to guide its training.

In [28], researchers have substantiated that Ly is the variational upper bound of — logpy(s®) and
—Ey(s0) log pe(s?), i.e.,

B > —logps(s’), -
B = —FEys0)log pa(s°).
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relations, followed by employing a Transformer to represent the updates of entities over temporal evolution. In the deep-level
reasoning, it constructs an evaluation function based on dependencies of historical information.

Lyrp(r,s) can be simplified to
K
Lyia(r,s) = Dr(q(s®[s)|Ipa(s™)) + > Dxr(g(s™ [s"s%)||pe(s"!|s)) — logpu(s”[s').  (6)
k=2

Therefore, the training process of ps(s*~!|s*) aims to minimize the KL divergence between py(s*~![s*)
and ¢(s*~1|s*s?). We have established a loss function Lpy for the diffusion model component as

Lpm = Z Lvip(r,s). (7)
reR,sekE,

We applied the diffusion process to entities sharing a specific attribute, enabling the training of reverse-
generative neural networks tailored to each entity category. When an unseen entity emerges, its relation
in the context of the query, considered its unique attribute, is used to randomly generate Gaussian
noise. This noise aids in reverse engineering a virtual representation of the unseen entity. Such a virtual
representation effectively captures the essential characteristics of the unseen entity, thereby enhancing
its interconnectedness with the existing knowledge graph. This methodology significantly improves the
predictive accuracy for queries involving unseen entities.

4.2 Two-phase reasoning framework

Humans reason and predict events by organizing historical information and integrating it with the current
situational context. As illustrated in Figure 4, our study emulates this process through a two-phase
framework, allowing the model to both aggregate historical information and draw insights from adjacent
time periods.

The model explores aggregated entity history information at a wide-level to aggregate adjacent tem-
poral information and at a deep-level to explore aggregated entity history information.

4.2.1  Wide-level reasoning

At each moment, entities are not only associated with their current neighbors but are also influenced
by neighboring entities from past and future timestamps. These influences, however, diminish as the
time gap widens. Our method, therefore, attempts to capture the associative information from nearby
moments while considering the relations of current entities, thus enhancing the perception of the current
scenarios in the model and maximizing the acquisition of immediate information.

We aggregated static graph information from k time intervals adjacent to the current moment t.
Considering the decay of information over time, the method assigns adjusted weights to new edges
(triplets) added at the time ¢. The historical information decay is represented by the decay coefficient
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from the Hawkes process [29]. The weight representation w; for new edges incorporated into the graph
at time ¢ from adjacent time points ¢’ is defined as follows:

w = ([t = 1')), (8)

where r represents the relation denoted by the new edge, and the decay function 7,.(-) is an exponential
decay function,

ne(t) = ore 9)

where o, and ¢, are learnable parameters of the decay function.

Through this approach, the method successfully expands the original static graph G; atlas of each
moment into an enriched static graph G7, incorporating knowledge information from the adjacent time
scenes of the current moment.

For these enriched static graphs G’ = (G, GY, ..., G!), RGCN is used to generate representations of
entities and relations in each graph,

1

+1 _
S =T\ I

> Wi(of, +1,)+Wis, |, (10)

o1, ENs,t;

where N, denotes the neighbor nodes set of entity s;, in the static graph G} , f(-) is the RReLU
activation function, and W} and WY are trainable weight matrices of the I-th layer.

This process via RGCN yields representations of entities in each expanded static graph. However, given
the temporal continuity in TKGs, entities’ representations in individual static graphs are not isolated.
They are interrelated across the temporal sequence. Previous research [9] introduced GRU to depict the
influence between static graphs over time. Our work employs a Transformer model to describe these
temporal associations, capturing underlying features more effectively than GRU [30,31]. The entity and
relation representations are updated using the Transformer as follows:

s, = Transformerg (s}, sf), (11)

r’,; = Transformerg(ry’,rf),

where s’ denotes the entity representation at time ¢, r denotes the relation representation at time ¢,
computed by aggregating the representations of entities interacting with relation r at time ¢,

rF = Meanpooling(sF) @ r, s, € N4, (12)

the operator Meanpooling(+) acts on the entity set N, ; associated with r at time ¢, and @ is concatenation
operator. All relations share the same parameters for Transformerg.

4.2.2  Deep-level reasoning

Historical information is the most important clue and basis in entity prediction. Therefore, the method
of using historical information plays a crucial role in our framework. To effectively utilize this data, we
developed a deep-level structure designed to aggregate and apply historical information.

For a given knowledge (s,r,0,7), we identify and collect all historically associated entities for the
entities s and o based on the relations r up to time 7, thereby forming the sets E};"" and E}"7 as
follows:

EZ%”S"T = {0|(87 'f‘, 07 T) € Qf”’r}7
EZ’)L':T = {S|(S7T7 07 T) € QEI)')T}7

where Q3" = U, {(s,7,0,t) € G¢} and Q9" = U, {(s,7,0,t) € G} represent sets of all knowledge
associated with entities s and o prior to the time 7.

Based on the approach proposed by [21], we constructed an evaluation function matrix F € R/Zl based
on the representational similarity of entities and relations in each knowledge tuple,

(13)

Fpl7 = tanh(W3, (s¥ & r¥) + bj, )ET,

14
Fyl7 = tanh(Wj, (r% & o) + b, JET, (14)
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Algorithm 1 Learning algorithm of DM-UEP.

Require: Training fact knowledge quadruples set GG, entity set E, relation set R, hyperparameters.
Ensure: A trained network.
Initiate parameters of network Net;
Compute new edge weight w; according to (8) and (9);
Generate extended graph G’ based on G, wy, k.
for [ in 1 to L do
Compute stL, r{f according to (10) and (12);
end for
for tin 1 to T do
Compute s}, ry” according to (11);
end for
for each (s,7,0,7) in G’ do
Compute EZ;T, EEZZT according to (13);
Compute F;>7, Fy">" according to (14);
end for
for each r in R do
for each s in E,. do
Find maxT s.t. (s,r,7) € G;
sp < s2;
Compute Ly, g(r,s) according to (1)—(6);
end for
end for
while loss does not converge do
Compute L7, according to (15);
Compute Lpm according to (7);
L < ¢Lpwm + Lrwoe + ¢'[[O]]2;
Optimize Net according to L;
end while
return Net.

where tanh is the activation function, @ is the concatenation operator, and W5, ,W¢. € R¥2? and

¢ .- D%, € R are trainable parameters. s¥,r¥ denotes the entity and relation representation at time
t through the wide-level process. E; is the matrix of entity representations obtained at time 7 through
the wide-level process.

The loss function Ly, for the deep-level component is designed as per (14) as

FS’.T"T ; FO,?",T i
e S o ER ) exp(Fy (51))

S, 7T o,T, T ) 15
e PEL (0,)) T X exp(FL (5,)) (15)

q=(s,m,0,7)EQ

T 0,7, T

where @ represents all quadruples in the training set, o; € E;7 and s; € E}2" denote the historically

associated entities for the entities s and o.

4.3 Parameter learning and reasoning optimization strategy

The overarching objective of parameter learning in our model is to minimize the aggregate loss function
L

)

L =(Lpwm + Lrwo + ('1O]|2, (16)

where ( indicates the hyperparameter used to balance the two types of loss functions. ¢’ is to control the
regularization strength.

During reasoning, for a given query (s,r,0,7), where s ¢ E is the unseen entity and o € F is the entity
to be predicted. For the unseen entity s, DM-UEP prioritizes the generation of a virtual representation
for s. This representation, along with the relation r and the time 7, is fed into the two-phase framework.
The model is used to calculate probability values for all candidate entities, denoted by

P(o|s,r,7) = P27 (0) = softmax(F};."). (17)
Based on the probability values, all candidate entities are ranked, and the predictive performance of

the model is evaluated using the mean reciprocal rank (MRR) and hit rate (Hits) metrics, applied in
descending order. The detailed training process of DM-UEP is provided in Algorithm 1.
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Table 2 Details of three open-world datasets for unseen entity prediction and six filtered datasets for conventional entity
prediction.

Dataset Entities Relations Training set Original test set New test set Time interval
ICEWS18-filter 21085 251 373018 49545 47590 24 h
ICEWS14-filter 9722 248 74845 7371 7242 24 h

ICEWS05-15-filter 9332 248 368868 46159 41581 24 h
WIKI-filter 9009 24 539286 63110 36031 1 year
YAGO-filter 9736 10 161540 20026 18417 1 year
GDELT-filter 7146 238 1734399 305241 304477 15 min

ICEWS18-OW 21085 251 373018 49545 1728 24 h

ICEWS05-15-OW 9332 248 368868 46159 5169 24 h

WIKI-OW 9009 24 539286 63110 27045 1 year

5 Experiments

This section outlines a series of experiments conducted to test the proposed DM-UEP model. Due to
the limitations of current public datasets in fully accommodating the task of unseen entity prediction in
open-world scenarios, we initially constructed three datasets specifically tailored for predicting unseen
entities based on existing datasets. Simultaneously, we refined the original datasets to better suit the
evaluation of entity prediction in standard scenarios. All our datasets are publicly available for research
purposes. Additionally, we conducted an in-depth analysis of DM-UEP by exploring four key questions
designed to elucidate the capabilities of DM-UEP and highlight its superiority in unseen entity prediction.

e Q1: How does DM-UEP perform compared with state-of-the-art TKG representation and reasoning
methods on the unseen entity and conventional entity prediction tasks?

e (Q2: How does every module affect the performance of DM-UEP?

e Q3: How do loss function modules affect the performance of DM-UEP?

e Q4: How sensitive is DM-UEP with different hyper-parameters?

5.1 Experimental setup

5.1.1 Datasets

Commonly used public datasets for TKG tasks include ICEWS05-15 [32], ICEWS14 [33], ICEWS18 [34],
GDELT [35], WIKI [36], and YAGO [32]. The test datasets of these datasets are somewhat disordered,
containing queries related to unseen entities as well as queries where the predicted entity is unseen, leading
to biased test results in existing models. Therefore, we extracted queries related to unseen entities from
the valid and test datasets of the original datasets to construct new test datasets. The datasets derived
from ICEWS18, ICEWS05-15, and WIKI, in particular, offer extensive test data conducive to evaluating
tasks in open-world scenarios involving unseen entity prediction. Specifically, construct the original valid
and test datasets quadruplets whose subject entities are unseen and object entities are original into new
test datasets »-OW. Detailed statistics of these three datasets are shown in Table 2.

In addressing conventional prediction tasks, the test datasets, including queries related to unseen
entities, can adversely affect the accuracy of entity prediction. To facilitate a more effective evaluation of
the performance of the model in entity prediction, we filtered six existing public datasets x-filter (subject
and object entities in quadruplets are original). This process involved the extraction and refinement of
datasets to better suit the evaluation needs of standard scenarios. The detailed statistics of these refined
datasets, post-filtering, are presented in Table 2.

The filtered test dataset eliminates noise knowledge that interferes with entity prediction tasks, mak-
ing it more suitable for evaluating conventional entity prediction tasks and better distinguishing the
advantages and disadvantages of different representation inference models.

5.1.2 Baseline models

For the unseen entity prediction task, we chose HGLS, the latest model in the direction of time series
graph representation in recent years, RE-GCN, a representative model from [9], and TITer, which has a
certain ability to predict unseen entities, as the benchmark models to compare with our method.
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HGLS encodes the global graph structure through the designed hierarchical relational graph neural
network HRGNN. At the sub layer level, RGCN is used to model static graphs under the same timestamp;
At the whole graph level, the temporal influence is transformed into edge weights, and then attention
mechanism is used to model the full graph features of the entity. HGLS models short-term and long-term
impacts separately, and the semantics of relationships tend to stabilize in long-term changes. Therefore,
the static representation of relationships is used as their long-term representation; and they use GRU to
capture short-term changes in entity relationships.

RE-GCN, as an earlier representative paper in the time series research of the Li team, models entities
and relationships based on the time line static atlas sequence, while focusing on the impact of historical
information on current facts. Therefore, relying on GCN to capture the structural information character-
istics of the atlas, an evolutionary unit is designed to model the historical information, in which the gate
cycle component and GRU component are used to represent the evolution of entities and relationships,
and entity static attributes (common sense knowledge) are also used to constrain entity representation.

TITer is currently one of the few models with the ability to predict unseen entities. It uses the
form of a map snapshot sequence to arrange the time series knowledge map in chronological order to
form a time series map chain. In order to capture relevant historical information from the atlas on the
historical timestamp, TITer connects the atlas entities on different timestamps across time according to
the relation. In this way, the search space for path search can be expanded, cross time search can be
realized, and historical information can be directly reflected in cross time connection. At the same time,
TITer preliminarily judges the type of unseen entity through the relation in the triplet to be predicted,
and designs an induced mean (IM) algorithm, which uses the trained entity representation of the same
type to set the initial value of the unseen entity, gradually updates the representation of the unseen entity
through the co-occurrence relation between the unseen entity at different times and the relation category,
and finally further generates the representation of the unseen entity through its category.

For the conventional entity prediction task, we compare our newly proposed DM-UEP model against
a diverse array of state-of-the-art TKG models, including RE-NET [16], xERTE [37], CyGNet [38], RE-
GCN [9], TITer [25], CEN [33], CENET [21], TECHS [39], and HGLS [17].

5.1.3  Ewaluation setting and metrics

For the evaluation index, we still choose to use the general evaluation method of temporal knowledge
graph representation and reasoning. That is, MRR and Hits@(1, 10). MRR calculates the average
reciprocal of the ranks of positive fact candidates across all queries. Hits@K measures the proportion of
instances where the positive fact candidates are ranked within the top K positions. These metrics are
standard benchmarks for assessing the performance of extrapolation reasoning.

5.1.4  Model configurations

For all datasets, we maintain an embedding size of 200, aligning with the baseline methodology established
in CyGNet. We employ a transformer with 8 encoders. The base embedding utilized is RGCN, with
a Dropout setting of 0.2 to mitigate overfitting. The model parameters are optimized using the Adam
optimizer, with a learning rate set to 0.001. The balance hyperparameter of loss is adjusted to 0.3, and
the hyperparameter k for the graph extension time interval is established at 3. All experimental trials
are executed on GeForce GTX 3090*2. Baseline results are obtained from testing on reconstructed data
using codes publicly shared in previous studies. For models without available codes, we recreate the code
based on descriptions in the respective papers and conduct comparative trials.

5.2 Results comparison (Q1)

5.2.1 Unseen entity prediction task

The results of the unseen entity prediction task are shown in Table 3. We test and compare our model
with the three benchmark models on the newly constructed unseen entity prediction datasets and the
filtered conventional entity prediction datasets.

Through the contrast experiment of unseen entity prediction in Table 3, we can find that our model has
significantly improved the effect on the unseen entity prediction task. Among them, RE-GCN and HGLS
have no targeted design for unseen entities, so compared with the conventional entity prediction, their
effects are significantly reduced. When designing, TITer has made a targeted design for unseen entities,
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Table 3 Performance (%) for the unseen entity prediction task on ICEWS18-OW, ICEWS05-15-OW, and WIKI-OW datasets.
The best performance is in bold, and the second best is underlined.

ICEWS18-OW ICEWS05-15-O0W WIKI-OW
Model MRR Hits@1 MRR Hits@1 MRR Hits@1
RE-GCN 16.55 14.69 16.46 13.27 43.36 40.67
TITer 21.56 19.80 18.73 17.06 56.91 54.82
HGLS 18.72 16.67 21.56 19.79 52.12 51.34
DM-UEP 26.55 23.26 30.27 28.79 62.31 61.24

Table 4 Performance (%) for the conventional entity prediction task on ICEWS14, ICEWS05-15, ICEWS18, and GDELT datasets.
The best performance is in bold, and the second best is underlined.

ICEWS14-filter ICEWS05-15-filter ICEWS18-filter GDELT-filter
MRR Hits@l Hits@10 MRR Hits@l Hits@10 MRR Hits@l Hits@10 MRR Hits@l Hits@10
RE-NET 40.56  31.35 59.01  44.77  34.78 64.72  30.62  20.91 50.67  20.45  14.23 35.86
xERTE  41.68  33.41 58.34  47.21  38.58 65.82  30.22  22.24 47.93  20.98  13.12 36.14
CyGNet  38.85  29.78 59.19  43.25  31.12 64.61 28.36  18.34 48.67 2231  14.45 37.88
RE-GCN  43.26  33.59 66.59  50.52  39.26 72.08  33.28  22.88 53.76  21.03  13.56 36.68
TITer 42.98  33.86 49.68  48.86  39.3 69.04  30.26  23.23 46.10 19.23  11.89 35.56
CEN 43.89  34.12 67.31 - - - 32.51  24.01 53.59 - - -
CENET  43.24  33.98 68.21 51.23  40.36 73.26  34.29 2525 54.23  20.34  12.23 35.26
TECHS  45.23  36.78 69.89  52.23  41.25 74.55  35.58  26.23 54.65 - - -
HGLS  48.21 37.083  75.67  51.16  40.65 73.98  34.86  25.81 54.86  23.43 14.86
DM-UEP  48.02  36.86 76.86 53.36 42.35  74.92 36.13 28.13  56.50 23.21  14.32

Model

W ojw
® |0
[
o o

so its performance in unseen entity prediction tasks is better than the current latest model HGLS. At the
same time, our model has the most obvious improvement over other models in terms of WIKI data. This
is because in the original dataset, unseen entities in the WIKI dataset account for a large proportion, and
their distribution is more inclined to the unseen entity task. Due to the targeted design of our model,
the model has better performance on it.

5.2.2  Conventional entity prediction task

The results of the conventional entity prediction task are shown in Tables 4 and 5. We test and com-
pare our model with the nine benchmark models on the newly constructed filtered conventional entity
prediction datasets.

According to the results of the conventional entity prediction task on the filtered data of each model
in Table 4, compared with the results on the original data, the test results of the model have generally
improved after removing the noise data. HGLS is still the best performing model among the comparison
models so far. Since our model has no unseen entities in the conventional prediction, the DM module does
not play a role. At this time, the two-phase module we built plays a major role. Through comparative
experiments, we can find that our model human reasoning thinking framework still maintains a high
performance, ranking the best and second best in all test indicators. Our method is affected by the
DM module during the training process and will slightly affect the performance of the method in the
conventional entity prediction task. So the performance of our method is slightly improved in conventional
prediction, combined with the results in Table 3, we can intuitively show the excellent performance of
the DM module in unseen entity prediction. On the dataset ICEWS14, due to the smaller amount of
training data compared with other datasets, our method cannot aggregate information well by the graph
expansion module and capture more historical information by the transformer module. Therefore, on the
dataset ICEWS14, the performance of our method is slightly inferior to other methods.

5.3 Ablation study on different modules (Q2)

To clarify the contributions of key modules within our model towards DM-UEP, we conducted ablation
experiments for both unseen entity prediction and conventional entity prediction tasks, utilizing MRR
(mean reciprocal rank) as our evaluation metric.
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Table 5 Performance (%) for the conventional entity prediction task on YAGO and WIKI datasets. The best performance is in
bold, and the second best is underlined.

Model YAGO-filter WIKI-filter
ode
MRR Hits@1 Hits@10 MRR Hits@1 Hits@10
RE-NET 69.35 61.45 88.67 69.24 61.23 84.26
xERTE 86.13 81.46 90.43 83.26 71.12 89.32
CyGNet 70.56 59.45 87.56 69.41 57.12 88.65
RE-GCN 84.32 80.15 90.42 89.23 87.61 90.12
TITer 88.64 81.32 91.13 87.68 85.12 89.89
CEN — — — 89.93 87.05 90.91
TECHS 72.35 65.34 83.54 40.12 34.35 48.68
DM-UEP 88.93 82.25 91.26 89.68 87.43 93.15
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Figure 5 Impact of the main modules on MRR (%) in the unseen entity prediction task. By removing the three main modules
(DM, Transformer, and Graph Extension), the unseen entity prediction performance of DM-UEP shows varying degrees of decline.
The results emphasize the effectiveness of these three modules. (a) ICEWS18; (b) ICEWS05-15; (c) WIKI.

5.3.1 Unseen entity prediction task

Ablation experiments are carried out on three datasets: ICEWS18, ICEWS05-15, and WIKI. We closely
examine the influence of three critical modules: the diffusion model (DM), Transformer, and Graph Ex-
tension. The results, as presented in Figure 5, include a comparative analysis of four variables: (1) the full
DM-UEP model, (2) DM-UEP without DM (-DM), (3) DM-UEP without Transformer (-Transformer),
and (4) DM-UEP without Graph Extension (-Graph Extension).

Overall, the ablation of these modules results in a significant reduction in MRR across all three TKG
datasets. Particularly, the ‘-DM’ variant leads to a noticeable decline in results, affirming the critical role
our proposed diffusion model plays in the unseen entity prediction task.

The comparison with ‘-Transformer’ indicates that Transformer can effectively capture the evolving
characteristics of entities over time, enhancing the ability of our method to predict unseen entities.
Furthermore, through the comparison experiment with ‘-Graph Extension’, our designed Graph Extension
mechanism can effectively aggregate relevant information at the current moment, providing effective
assistance for the unseen entities prediction.

5.3.2  Conventional entity prediction task

For the conventional prediction task, we conduct ablation experiments on six filtered datasets. We ana-
lyze the impact of three key components: temporal evolution modeling, graph extension, and evaluation
function components. The corresponding results are shown in Figure 6, which includes a comparative
analysis of five variables: (1) the full DM-UEP model, (2) DM-UEP without Transformer (-Transformer),
(3) DM-UEP replacing Transformer with GRU (-Transformer+GRU), (4) DM-UEP without Graph Ex-
tension (-Graph Extension), and (5) DM-UEP’s evaluation function without FEL‘;’ST’T)(—FZ(;’:’T)).

Overall, the ablation of these modules leads to a significant decrease in the conventional entity pre-
diction performance across six filtered datasets. Among them, the Transformer module has the greatest
impact. Additionally, comparison experiments with GRU replacements demonstrate the importance of
the temporal processing module, and also show that Transformer outperforms GRU in handling the ef-
fects of temporal evolution on entity representation update. Similar to the experiments on unseen entity
prediction, the Graph Extension mechanism also plays a crucial role in the conventional entity prediction
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Figure 6 Impact of the main modules on MRR (%) in the conventional entity prediction task. By removing the three main
modules (Transformer, Graph Extension, and FE:;STT)), the conventional entity prediction performance of DM-UEP shows varying
degrees of decline. The results emphasize the effectiveness of these three modules. (a) ICEWS14; (b) ICEWS05-15; (c) ICEWS18;

(d) GDELT; (¢) YACO; (f) WIKI.

task.
In our method, although the head entity prediction task is not conducted in the experiments, FEL‘;’ST’T) is
still added during the construction of the evaluation function. The comparison with ‘—FZ‘Z’ST’T)’ shows that

adding F;;’ST’T) indeed improves the performance of the tail entity prediction task. This might be because
some knowledge in the graph is bidirectional, and adding F;;;’ST’T) can better enhance the training effect
of 1-to-N instances between head and tail entities, ultimately improving the overall tail entity prediction
performance.

The ablation experiments conducted validate the effectiveness of the proposed modules for virtual
representation generation of unseen entities, temporal processing with Transformer, and Graph Extension,
in unseen entity prediction and conventional entity prediction tasks. The integration of these modules has
significantly enhanced the prediction reasoning performance of DM-UEP, confirming their importance in
both types of tasks.

5.4 Ablation study on loss function and evaluation function (Q3)

To analyze the impact of the evaluation and loss functions designed in the DM-UEP inference process
on the final entity prediction tasks, we conduct detailed ablation studies to explore the effectiveness of
the proposed diffusion model and two-phase framework. These ablation comparison results are shown in
Figure 7, where the impact of key components within the loss and evaluation functions on the overall
performance of DM-UEP is clearly displayed.

The analysis clearly shows that the absence of loss (L7y,) leads to a significant decline in model
performance. This outcome highlights the substantial impact of entity and relation representations on
the results of the unseen entity prediction task. Similarly, the ablation of loss (Lpy) also results in
decreased model performance, corroborating the findings presented in Figure 5 and emphasizing the
importance of the unseen entity virtual representation generation module DM which we designed. The

removal of L7, (FEZ’:’T)) from the evaluation function, as corroborated by the results in Figure 6, once

again demonstrates that adding FE;’ST’T) can further improve the entity prediction effect.

From these ablation studies, it is evident that both parts L., and Lpy in the loss function of our
method design hold significant value, and their combination leads to better outcomes. Our method, DM-
UEP, can effectively generate a virtual representation of unseen entities in the unseen entity prediction
task, thereby enhancing the temporal knowledge graph reasoning capabilities in open-world scenarios.
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Figure 7 Impact of loss functions and evaluation metrics on MRR (%). Through ablation experiments, it has been proven that
the loss generated by the unseen entity representation module and the loss generated by the entity-relation representation play a

crucial role in the task of unseen entity prediction. Meanwhile, the comparative results also illustrate the effectiveness of Fgloi’;"r)
in the evaluation metrics. (a) ICEWS18; (b) ICEWS05-15; (¢) WIKI.
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Figure 8 Impact of (a) loss balance hyperparameter ¢, (b) hyperparameter k in new entity prediction, and (c) hyperparameter
k in conventional entity prediction variations on DM-UEP. When the hyperparameter ¢ is set to 0.3, our method achieves the best
performance. Setting the graph expansion time interval value to 3 yields the optimal result for the model.

5.5 Hyperparameter study (Q4)

In this analysis, we delve into the performance of DM-UEP under various hyperparameters.

5.5.1 Balance hyperparameter  of loss

As shown in Figure 8(a), the performance of our method improves as the initial proportion of the DM
module loss function increases, but further increases in weight lead to a gradual decline in method
performance. This trend indicates that the DM module plays a significant role in unseen entity prediction,
but the modeling and representation of entities and relations are the core of the entire method. A DM
loss proportion of around 0.3 allows the method to achieve its optimal state.

5.5.2  Hyperparameter k in unseen and conventional entity prediction

As Figures 8(b) and (c¢) demonstrate, the time interval value k for graph extension, shows that aggregating
information from three time intervals before and after the current moment can optimize subsequent
prediction performance. Aggregating information beyond three time intervals leads to a gradual decrease
in model performance. This is because information from overly long time intervals can introduce a large
amount of data, the impact of which on the current entity significantly fades as the interval lengthens,
resulting in a lot of redundant information. Moreover, graph extension aims to capture the contextual
information of an entity at the current moment, emulating the second step of human reasoning and playing
a critical role in the wide level of our two-phase reasoning framework. Thus, overly long intervals diminish
the importance of current scenario information, while overly short intervals reduce the aggregation of
current scenario information, leading to a loss of relevant contextual information for the entity. Therefore,
based on the results depicted, setting the time interval for graph extension around three achieves better
outcomes, enhancing the entity prediction capability of our method significantly.
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Table 6 Runtime (s) comparison with RE-GCN and TITer.

Conventional entity prediction task on ICEWS14 Unseen entity prediction task on ICEWS18
TITer RE-GCN DM-UEP TITer DM-UEP RE-GCN
Runtime 82.74 11.29 10.67 552.02 106.88 46.77

Table 7 Performance on the relation prediction task. The best results are in bold.

ICEWS18-OW ICEWS05-15-OW
RE-GCN 20.18 21.77
DM-UEP 31.43 33.72

5.6 Comparison on prediction time

To study the efficiency of DM-UEP, we compare its prediction runtime with two baseline models, RE-
GCN and TITer, on the conventional entity prediction task and the unseen entity prediction task. For a
fair comparison, the experiments are conducted in the same environment (RTX1080Ti) and on the same
test datasets.

In the conventional entity prediction task, we compare the prediction time of the three models using
ICEWS14. As can be seen from the results in Table 6, DM-UEP is slightly more efficient than RE-GCN,
and TITer is significantly less efficient than both. This is because DM-UEP does not need to generate
virtual representations for entities on a conventional entity prediction task, and the Transformer handles
temporal information more efficiently.

In the unseen entity prediction task, we compare the prediction time of the three models using
ICEWS18. As shown in Table 6, DM-UEP’s prediction efficiency is five times higher than TITer’s. This
is because DM-UEP generates virtual representations through a diffusion model, which not only pro-
duces more accurate new entity representations but also significantly reduces processing time compared
with TITer’s path reasoning. However, due to the additional step of generating virtual representations,
DM-UEP’s prediction speed on the unseen entity prediction task is only half that of RE-GCN (though
DM-UEP’s prediction performance is 1.6 times better than RE-GCN’s).

5.7 Scalability study

To study the scalability of DM-UEP, we compare its performance with the baseline model RE-GCN in re-
lation prediction experiments on Open-World knowledge graphs using the ICEWS18-OW and ICEWS05-
15-OW datasets. Unlike conventional relation prediction experiments, in Open-World knowledge graph
relation prediction, the head entities of the quadruplets are unseen, meaning s is an unseen entity in
(s,7,0,7).

As shown in the results in Table 7, our model significantly outperforms the baseline model RE-GCN
in relation prediction on both datasets. The comparative experiments demonstrate that our model is
not only effective in entity prediction tasks in open-world scenarios but also excels in relation prediction.
This is because the unseen entities’ virtual representations generated by the diffusion model effectively
simulate the characteristics of unseen entities. Our model, DM-UEP, exhibits good scalability.

5.8 Case study

To understand how our model generates virtual representations for unseen entities in open-world scenar-
ios, we visualized two test quadruples as shown in Table 8. These cases demonstrate that the virtual
representations generated by our model, DM-UEP, are capable of reflecting the connections between un-
seen entities, queries, and the original knowledge graph to a certain extent. By calculating the distances
between the virtual representations of unseen entities and the representations of other entities, we visual-
ize the entities with the highest similarities. It can be observed that these entities share similar features
with the unseen entities, indirectly proving the feasibility of generating virtual representations through
the diffusion model. In the example, Cristiano Ronaldo and Romain Edouard are the unseen entities not
present in the training set. Through the virtual representations generated and the tail entity predictions
ranked by the subsequent two-phase framework, it can be seen that the final answers, Real Madrid CF
and International Master, are ranked first respectively, indicating that our model is somewhat effective
in predicting unseen entities.
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Table 8 Case study. Bold entities in the query indicate the unseen entities.

Similar entities

Query (new entity Top 5 of
computed by Answer
prediction) . . prediction results
virtual representation
Santiago Canizares, Real Madrid CF,
(Cristiano Ronaldo,
Alfredo Di Stefano, Argentina men’s national football team, .
member of sports team, X . . Real Madrid CF
2, 2015) Juan Esnaider, Portugal men’s national football team,
Luis Aragones, Ferenc Puskas Manchester United F.C., Real Zaragoza
Wolfgang Unzicker,
International Master,
(Romain Edouard, Erich Eliskases,
Grandmaster, .
title of chess person, Ludek Pachman, International Master
Johannes Hendrikus Donner,
7, 2007) Arluro Pomar,

Johan Hellsten, Christian Bauer
Mark Taimanov

6 Conclusion

This study provides a comprehensive analysis of TKGs, focusing specifically on addressing the challenges
encountered in open-world scenarios. Our introduction of the innovative DM-UEP method represents a
considerable advancement in predicting unseen entities. This method enhances the reasoning capabilities
of TKGs, demonstrating notable effectiveness in complex scenarios. Furthermore, we have reconstructed
three datasets suitable for the unseen entity prediction task and six datasets suitable for the conventional
entity prediction task, all based on six existing public datasets.

However, the datasets we constructed still fall short of fully capturing the diversity of real-world
scenarios. This limitation prevents us from thoroughly testing and demonstrating the model’s effectiveness
in real-world applications. In the future, it will be essential to develop more suitable real-world datasets
for open-world scenarios. Such datasets would enable more robust testing of the model performance and
better equip it to handle more complex open-world challenges.
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