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Abstract The rise of large-scale models has significantly increased the demand for high computational power and through-

put in artificial intelligence (AI) chips, presenting challenges for existing architectures. Compute-in-memory (CIM) has

emerged as a promising solution to address these bottlenecks. This study redefines the traditional computing architecture

pyramid by introducing the CIM pyramid, structured around different storage media. CIM architectures are classified into

two categories: compute-intensive CIM, which leverages static random-access memory (SRAM) and embedded dynamic ran-

dom access memory (eDRAM), and memory-intensive CIM, which utilizes DRAM and non-volatile memory (NVM). The

research reviews and analyzes recent advancements in both compute-intensive and memory-intensive CIM, highlighting their

development trends and challenges. Furthermore, the study suggests a hybrid, heterogeneous architecture that integrates

both CIM types with traditional computing systems, aiming to address the diverse computational needs of large models in

the future.
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1 Introduction

In recent years, the field of artificial intelligence (AI) has experienced rapid development, with its ap-
plications expanding from image recognition to e-commerce recommendation systems, object detection
in autonomous vehicles, and generative models (such as creating realistic images and coherent text). As
the scale of training data and parameters continues to increase, AI has made significant progress in areas
such as natural language processing (NLP) and generative AI, establishing large-scale AI models as a key
milestone in the evolution of the field. The rise of these large AI models brings both new opportunities
and significant challenges to hardware design.

The traditional von Neumann architecture presents a significant bottleneck in further enhancing AI
computational performance due to the memory wall issue [1]. In conventional methods, data are con-
tinuously moved from memory to the cache for processing during computation, leading to substantial
energy consumption from data transfer. However, memory technology has struggled to keep pace with
advancements in processor technology. In traditional architectures, transferring data from memory units
to processing units consume a significant amount of power, resulting in a low proportion of energy and
time being actually dedicated to computation. The development of memory performance lags far behind
that of processors, thereby limiting the improvement of processor performance. Compute-in-memory
(CIM) is considered one of the potential solutions to effectively address the current bottlenecks in chip
design [2]. After years of rapid development, both academia and industry have conducted extensive re-
search on overall CIM architectures and computational paradigms, demonstrating the feasibility of CIM
designs and their immense potential in AI applications [3–7].
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Figure 1 Memory pyramid of the von Neumann architecture vs. the memory pyramid of compute-in-memory architecture by

medium.

The hierarchical structure of the modern computer memory pyramid is illustrated in Figure 1. Each
type of memory has specific advantages and disadvantages compared to other types of memory, with dis-
tinct roles within computer architecture. For example, parts of static random-access memory (SRAM) and
dynamic random-access memory (DRAM), such as embedded dynamic random access memory (eDRAM),
have fast read/write speeds, no limits on read/write cycles, and low power consumption, but exhibit low
storage density and high unit costs, making them primarily used in cache systems. On the other hand,
DRAM and non-volatile memory (NVM) have relatively slower read/write speeds but offer lower costs
and higher storage capacities, making them suitable for use as memory and hard disk components within
computer architectures.

As shown in Figure 1, if CIM becomes involved in the data computation and processing pipeline, the
memory hierarchy would also adapt accordingly. Taking AI models as an example, CIM can be categorized
into two main types: compute-intensive CIM for computation-heavy operators and memory-intensive
CIM for memory-heavy operators. Compute-intensive CIM focuses on enhancing computation density,
primarily through in-memory computing (IMC), while memory-intensive CIM targets improvements in
memory bandwidth, mainly through processor-in-memory (PIM) and near-memory computing (NMC).

In compute-intensive CIM, the memory architecture corresponds to the cache in the von Neumann
architecture, primarily utilizing SRAM and eDRAM. Memory-intensive CIM aligns with the traditional
architecture’s memory and storage components, predominantly relying on DRAM and NVM. Extensive
research and exploration have already been conducted across various levels of the memory hierarchy
concerning CIM [8,9], and selecting the appropriate memory types and structures is crucial for effective
CIM implementations. In the CIM hierarchy, the storage capacity and computational energy efficiency
of various memory technologies differ significantly. SRAM typically provides storage capacity at the
megabyte (MB) scale, DRAM at the gigabyte (GB) scale, and NVM at the terabyte (TB) scale. Simi-
larly, the energy efficiency of CIM architectures varies across different storage media. Compute-intensive
CIM systems generally achieve energy efficiencies on the order of tera-operations per second per watt
(TOPS/W), whereas memory-intensive CIM systems typically exhibit energy efficiencies on the order of
giga-operations per second per watt (GOPS/W). Different types of CIM should leverage different storage
media to optimize their respective strengths.

With the advent of the era of large models, existing AI chip architectures face new challenges. Large
neural networks require substantial computational power for training [10]. Over the span of seven years,
the number of parameters in neural networks has surged from 60 million in AlexNet to 175 billion in
OpenAI GPT-3, a 2917-fold increase, while the computational demands for training neural networks have
grown by 300000 times. These computational requirements far exceed the pace of semiconductor develop-
ment predicted by Moore’s law. At the same time, the Transformer model imposes higher memory access
demands during the generation process. Currently, the computational speed of the world’s most ad-
vanced AI chips significantly outpaces the memory bandwidth, yet the acceleration of memory-intensive,
data-heavy operators remains limited.
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Figure 2 Different computing architectures categorized based on their computational and memory characteristics. (a) The

traditional von Neumann architecture; (b) computation-intensive CIM architecture; (c) memory-intensive CIM architecture;

(d) heterogeneous CIM architecture.

As shown in Figure 2(a), in traditional computing architectures, when large-scale data operations are
performed, the movement of data between on-chip/off-chip memory and processing units significantly
increases latency and energy consumption. As shown in Figures 2(b) and (c), to address the challenges
posed by different operators, CIM has evolved into two distinct architectures: compute-intensive CIM
and memory-intensive CIM, forming an important extension of the memory hierarchy. In the era of large
models, it is essential to balance high parallelism and computational density while also meeting the high
memory access demands during decoder operations. This indicates that, as application scenarios evolve,
CIM should adopt different architectures (Figure 2(d)) for different applications, with compute-intensive
and memory-intensive CIM complementing each other, driving the development toward heterogeneous
architecture integration.

The remainder of the study is organized as follows. Section 2 introduces the challenges posed by
compute-intensive and memory-intensive operators as well as those introduced by large AI models.
Section 3 analyzes recent developments in compute-intensive CIM, with a focus on the design of SRAM-
CIM macros and eDRAM-CIM macro units. Section 4 examines memory-intensive CIM. Section 5 dis-
cusses the challenges and development trends of CIM in the era of large models. The conclusion is
presented in Section 6.

2 Challenges posed by AI and large models to hardware design

With the rise of AI large models, balancing computation and memory has become increasingly crucial.
Developing efficient operators, optimizing memory usage, and designing specialized hardware will be key
to addressing these challenges [11]. The design of hardware accelerators (such as GPUs and TPUs) and
dedicated AI chips (such as ASICs) must strike a balance between computational power and memory
bandwidth. This section focuses on comparing different types of operators and analyzing the distinct
characteristics of large models to identify the requirements they impose on hardware design.

2.1 Compute-intensive operators and memory-intensive operators

The commonly used metrics for evaluating the performance of neural network models include computa-
tional load, parameter count, memory access volume, and memory footprint. These metrics assess the
model’s size from different dimensions. Computational load refers to the number of operations required
by the model and reflects the demand on hardware processing units, making it the most commonly used
metric for assessing model size. Memory access volume, on the other hand, refers to the number of
bytes the model needs to access during computation, which indicates the demand on memory bandwidth.
Although often overlooked, memory access volume can significantly impact overall system performance.

Correspondingly, the inference speed of a model on hardware is not solely influenced by computational
load but is also affected by factors such as memory access volume, hardware characteristics, software
implementation, and system environment. These factors collectively determine the overall efficiency and
performance of the model on a given hardware platform.
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Figure 3 Key concepts in computational performance and model operations. (a) Roofline performance model; (b) two different

types of operators in large models.

To evaluate the performance of models on processors, Williams et al. [12] proposed a throughput-
oriented performance model called Roofline, which combines computational intensity with computational
performance. Computational intensity refers to the amount of computation required by a program per
unit of memory access, also known as the compute-to-memory ratio. This model provides a framework
for understanding the balance between a system’s computational power and memory bandwidth, helping
to identify the limiting factors in a program’s performance and optimize its execution on hardware.

As shown in Figure 3(a), when computational intensity is low, the program involves frequent memory
accesses with fewer computations, and its performance is constrained by memory bandwidth. This type
of program is referred to as memory-bound or memory-intensive. In this region, the performance upper
bound is equal to the product of computational intensity and memory bandwidth, represented by the
sloped line in Figure 3(a), where the slope corresponds to the size of the memory bandwidth. Con-
versely, when computational intensity is high, the program’s performance is limited by the hardware’s
peak computational capacity, making it compute-bound or compute-intensive. This region is depicted by
the horizontal blue line, where the performance upper bound is determined by the hardware’s compu-
tational power. In this scenario, computational speed is independent of computational intensity, but as
computational intensity increases, the required memory bandwidth decreases.

According to the Roofline model, in the compute-bound region, inference time scales linearly with
computational load, whereas for memory-bound operators, the primary determinant of performance is
memory access speed.

Traditional deep learning operators can be classified as either computation-intensive or memory-
intensive based on the criteria above. Compute-intensive operators rely heavily on the computational
power of processors or compute units. Their performance is typically limited by the processing speed and
parallel computing capabilities of the processor, rather than the speed of data transfer or storage. These
operators require significant amounts of floating-point or integer operations during execution. Memory-
intensive operators, on the other hand, are constrained by data storage and transfer speeds. During their
execution, they frequently access memory or storage, with their performance often limited by memory
bandwidth or latency rather than the computational speed of the processing units.

The key metric for evaluating compute-intensive programs is usually computational performance, as
they tend to have good data reuse and locality, for example, convolution and fully connected layers. In
contrast, memory-intensive operators spend the majority of their time accessing memory. These include
element-wise operators such as rectified linear unit (ReLU), element-wise summation, and, in some cases,
depth-wise convolution.

2.2 Demands and challenges of large models

In the fields of computer science and artificial intelligence, large models have garnered significant attention
due to their superior performance and wide range of applications. These models often contain billions or
even trillions of parameters, enabling them to tackle complex tasks such as NLP, image recognition and
generation, and speech recognition. However, the training and inference processes of large models are
highly energy-intensive, making the improvement of computational and memory efficiency a critical area
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of research. The high performance of large models is accompanied by enormous data storage demands,
as these models require vast amounts of storage for parameters and intermediate computation results
during task processing. This creates challenges for traditional memory and computing architectures.

Transformers and large language models (LLMs), used to solve various NLP tasks, pose new challenges
for hardware design. The Transformer architecture was initially introduced as an encoder-decoder model
for machine translation tasks. The encoder focuses on the preliminary processing and feature extraction
of the entire input sequence, which demands significant computational resources to perform complex
matrix operations and neural network transformations, categorizing it as a compute-intensive operator.
In contrast, the decoding phase is primarily concerned with the step-by-step generation of the output
sequence, requiring frequent access to and updating of previously generated elements and intermediate
representations, which involves substantial storage and data transfer operations, making it a memory-
intensive operator.

During the training and inference of Transformer models, the significant data movement between
memory and computational units becomes a critical factor in limiting bandwidth and computational
power. In subsequent developments, architectures with encoder-only and decoder-only components were
introduced, separating the original encoder-decoder structure into individual components. Encoder-only
large models can process input sequences in parallel, with the entire sequence passing through repeated
encoder modules in one go. However, decoder-only large models must generate outputs sequentially,
as they are inherently autoregressive, meaning they generate one token at a time based on previously
generated tokens. This fundamental difference in processing places distinct demands on hardware, further
emphasizing the challenges posed by large models.

An analysis of floating-point operations and memory access for the bidirectional encoder representations
from transformers (BERT)-base encoder and the GPT-2 decoder [13], as shown in Figure 3(b), reveals
distinct differences in computational and memory access patterns. BERT requires significantly fewer
memory accesses while performing a large number of computation operations, making it more reliant on
computational resources, with memory bandwidth being a relatively minor bottleneck. In contrast, GPT-
2 frequently accesses memory, exhibiting much lower arithmetic intensity compared to BERT’s encoder.
This clearly illustrates that the encoder is compute-intensive, whereas the decoder is memory-intensive.

This comparison highlights the challenges that large models pose to underlying inference hardware. As
encoder-based models, such as BERT, are compute-intensive, the computational demands on chips grow
rapidly with the increasing scale of large models. On the other hand, since the decoding phase in models
like GPT-2 is memory-intensive, improving chip bandwidth is crucial to reduce latency. The development
of large models places increasing pressure on hardware design to simultaneously boost computational
power and memory bandwidth to meet the distinct needs of both encoder and decoder operations.

In this context, the two architectural paradigms of CIM could prove highly effective. The two distinct
types of operators in large models can be accelerated using either compute-intensive or memory-intensive
CIM architectures. Compute-intensive CIM is better suited for operators like encoders, which feature
high data reuse, while memory-intensive CIM is more advantageous for improving memory speed and
bandwidth, making it well-suited for decoders and certain activation operators.

Compute-intensive CIM typically performs calculations directly within memory units, addressing the
needs of high arithmetic intensity and operators with high data reuse. This approach is particularly
effective for complex computational tasks such as matrix operations and convolutions. By executing
computations within memory, this paradigm not only enhances computational efficiency but also reduces
power consumption, meeting the massive computational resource demands of large models. The primary
focus of compute-intensive CIM is to efficiently parallelize large-scale computational operations within
memory, reducing the reliance on external processing units. Additionally, the computational operations
within memory units must be flexible enough to accommodate different types of tasks. This design strat-
egy can significantly improve the computational efficiency of large models during the inference process.

Memory-intensive CIM, on the other hand, addresses the demands of large-scale data access and
processing. The decoding phase is often memory-intensive, requiring frequent access to memory to
retrieve model parameters and intermediate results. In such scenarios, the bandwidth and memory access
efficiency of the chip become performance bottlenecks. The design of memory-intensive CIM emphasizes
high-bandwidth memory access capabilities and efficient data transfer mechanisms. By significantly
increasing the bandwidth between memory units and external processing units, this architecture supports
rapid data exchange. For large models, memory-intensive CIM enables more efficient processing of vast
amounts of data during the decoding phase, thus reducing overall system latency.
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By adopting these two complementary CIM paradigms, hardware can be better tailored to the differing
computational and memory demands of large AI models, optimizing both computation and data transfer
efficiency.

The development of large models presents significant challenges to underlying inference chips. The
encoder phase is compute-intensive, demanding substantial computational power, whereas the decoder
phase is data-intensive, relying on frequent memory access. To enhance the performance of large mod-
els, compute-intensive CIM and memory-intensive CIM offer effective solutions for these two types of
operators. Compute-intensive CIM reduces the reliance on external processing units by performing large-
scale computations directly within memory units, thereby improving computational efficiency. On the
other hand, memory-intensive CIM enhances memory bandwidth and access efficiency, optimizing data
processing during the decoding phase.

In Sections 3 and 4, we will summarize and discuss the current advancements in these two CIM
architectural paradigms.

3 Compute-intensive CIM

Compute-intensive CIM corresponds to the high data reuse and computational density of computation-
heavy operators, primarily aiming to achieve high computational power and energy efficiency. Its main
application scenarios include AI operator acceleration, such as convolution operations in convolutional
neural networks (CNNs) and the encoder part of transformer models. CNNs and fully convolutional
networks (FCNs) require a large number of pixel-wise and channel-wise multiply-accumulate (MAC)
operations, performing extensive MAC calculations per memory access, which consumes significant energy.
In the encoder part of transformers, the entire input sequence is fed into the model for extensive matrix-
matrix multiplications and element-wise additions. To achieve high computational power, computation-
intensive CIM integrates computing units into memory arrays, enabling large-scale parallel processing.

Compute-intensive CIM is mainly classified into SRAM-CIM, eDRAM-CIM, and some non-volatile
memory-based NVM-CIM. Among them, SRAM and eDRAM-based CIM primarily rely on in-memory
computing. SRAM, with its stable storage through a dual-cross inverter logic structure, has relatively
low power consumption during read and write operations and can implement CIM calculations using
various methods. eDRAM, which stores data using capacitors, has a higher storage density compared
to SRAM but suffers from lower stability. Both methods typically store weight values in memory arrays
and perform bitwise multiplication with input feature values, followed by accumulation along dedicated
paths to execute rapid MAC operations.

This section reviews the silicon validation of compute-intensive CIM from both academia and industry
over the past few years, categorizing these developments based on the storage medium used, specifically
into SRAM-CIM and eDRAM-CIM.

3.1 SRAM-CIM

In recent years, SRAM-CIM has seen rapid development, with continuous improvements in supported
MAC precision and an expanding range of operator types. Many designs are based on SRAM for several
key reasons. First, SRAM technology is mature, offering high data read/write speeds, and its perfor-
mance has significantly improved with advances in semiconductor processes. Second, SRAM is compatible
with advanced CMOS (complementary metal-oxide-semiconductor) processes, providing faster operation
speeds and greater durability, which are essential for supporting high computational power. Third, SRAM
can achieve computational precision consistent with traditional digital computing methods, eliminating
the need for complex retraining processes, which enhances the applicability of AI models. This capability
also lays the foundation for high computational efficiency and density, making SRAM-CIM highly suitable
for compute-intensive operators. Additionally, the inherent stability of SRAM and its energy efficiency
during operations further strengthen its role in enabling high-performance, large-scale parallel computa-
tions directly within memory. These characteristics make SRAM-CIM an ideal choice for accelerating
AI tasks that require intensive MAC operations, such as convolution and matrix multiplications in deep
learning models. Table 1 presents several recent studies on SRAM-CIM.
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Table 1 Comparison table of compute-intensive SRAM-CIM studies.

Reference JSSC2023 [14] JSSC2024 [15] ISSCC2024 [16]

Process 28 nm 28 nm 28 nm

Cell structure 6T+NOR DB6T+HFMC/LAMC 10T CR-CIM cell+C

Domain Digital Digital Charge

Precision INT8/INT16 INT8/BF16 INT4/INT8

Model Transformer CNN, Yolo, U-Net CNN/Transformer

Area efficiency 0.22 TOPS/mm2 0.61–2.05 TFLOPS/mm2 0.1–0.45 TOPS/mm2

Energy efficiency 16.22–70.2 TOPS/W 14.04–31.6 TFLOPS/W 29.6–148.5 TOPS/W

3.1.1 TranCIM: full-digital bitline-transpose CIM-based sparse transformer accelerator

Tu et al. [14] proposed TranCIM, a full-digital bitline-transpose CIM-based sparse transformer accelerator
with both pipeline and parallel reconfigurable modes. The pipeline mode is designed to reduce off-chip
memory access for attention layers, while the parallel mode enables high parallelism in fully connected
(FC) layers. This design is based on full-digital SRAM-CIM, supporting INT8 and INT16 precision, and
further optimizes computational resource usage through a sparse attention scheduler (SAS).

Fabricated using 28 nm CMOS technology, the TranCIM chip operates at a supply voltage of 0.6–1.0 V
and a frequency of 80–240 MHz. In terms of energy consumption, the chip consumed 15.59 µJ per token
for the BERT-base model and achieved 1.48–20.5 TOPS/W at INT8 precision and 0.37–5.1 TOPS/W at
INT16 precision. These results demonstrate TranCIM’s efficiency in handling the computational demands
of transformer-based models, especially in sparse attention and fully connected layers.

3.1.2 A 28 nm 64-kb digital-domain floating-point SRAM-CIM macro

Guo et al. [15] proposed a floating-point digital CIM macro based on a double-bit 6T SRAM structure.
The double-6T structure, utilizing split word lines on the bit-cell, allows two-bit weights to be read out
in the same cycle for calculation. This design implements the new ShareFloatv2 floating-point data
type within the CIM array and uses a high-bit full-precision multiply cell (HFMC) alongside a low-bit
approximate-calculation multiply cell (LAMC) to reduce internal bandwidth and area costs.

By employing a hybrid partial approximation and partial full-precision computation, the design ap-
proach strikes an optimal balance between energy efficiency, spatial efficiency, and computational accu-
racy. This work achieved an energy efficiency of 31.6 TFLOPS/W and an area efficiency of
2.05 TFLOPS/mm2 for floating-point MAC operations, demonstrating its potential for high-performance
floating-point computations in energy-constrained environments.

3.1.3 CR-CIM: a capacitor-reconfigured CIM macro for CNNs and transformers

Yoshioka [16] proposed a capacitor-reconfigured CIM macro (CR-CIM) designed for the unified acceler-
ation of both CNNs and Transformers. In CNN mode, the design utilized bit-parallel computing and
an 8-bit analog-to-digital converter (ADC), focusing on energy efficiency but with lower computational
accuracy. In Transformer mode, it switched to bit-serial computing and a 10-bit ADC to improve the
carrier-to-noise ratio (CSNR), thus enhancing computational accuracy.

The key innovation in CR-CIM was the reconfiguration of capacitors in the array for dual purposes:
computation and ADC implementation, which helped reduce the area overhead in the charge domain.
This dual-mode operation allowed for optimization across different tasks, balancing energy efficiency
and accuracy according to the application requirements. CR-CIM achieved an energy efficiency of 29.6–
48.5 TOPS/W (normalized to 28 nm INT8), demonstrating its capability to efficiently accelerate both
CNN and Transformer-based models.

3.2 eDRAM-CIM

In recent years, with the rapid development of deep learning technologies, the scale of networks and the
volume of computations have experienced explosive growth, which, from an application perspective, has
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placed higher demands on computation-intensive CIM for both memory density and computational power
density. However, due to the inherent 6T storage structure of SRAM cells, the potential for improving
the memory density and computational power density in SRAM-based CIM designs is limited. eDRAM
offers several advantages, including higher memory density, lower memory access power consumption, and
fast read/write speeds. As a result, eDRAM-based CIM designs have emerged as a promising solution to
address the density bottlenecks of SRAM-CIM, attracting significant attention from researchers.

This section provides a review of several eDRAM CIM macro designs and their contributions to over-
coming these challenges.

3.2.1 eDRAM CIM: a 1T1C eDRAM CIM macro

Xie et al. [17] proposed the first charge-domain CIM macro based on a 1T1C eDRAM cell, supporting
8-bit inputs and 8-bit weights. In this design, the storage node capacitance of some eDRAM cells is
reconfigured into a weight capacitor array, enabling operations such as data conversion, MAC, pooling,
and ReLU activation. This reconfiguration reduces the computational overhead at the accelerator level
and enhances the reconfigurability of the macro unit.

Implemented on a 65 nm process node, this study achieved a throughput of 4.71 GOPS, an energy
efficiency of 4.76 TOPS/W, and an area efficiency of 8.26 GOPS/mm2, demonstrating the potential of
eDRAM CIM designs to offer both high energy and area efficiency in deep learning accelerators.

3.2.2 Calibration-free 15-level/cell eDRAM CIM macro

Song et al. [18] proposed a 3T1C eDRAM cell that supports 8-level current programming. This cell
employs a dynamic cascaded structure to perform weight writing and MAC computations in the current
domain, reducing the impact of transistor threshold voltage variations and nonlinear I-V characteristics
on computational accuracy. As a result, a single memory cell can store 15 levels of weight without the
need for calibration.

The macro supports operations with 4-bit inputs and 4-bit weights. Fabricated using a 28 nm process
technology, it achieved an energy efficiency of 233–304 TOPS/W for 4-bit computations and an area
efficiency of 4.74 TOPS/mm2. With a refresh interval of 0.4 ms, the macro achieved over 90% inference
accuracy on the CIFAR-10 dataset.

3.2.3 eDRAM-LUT-based DCIM macro

He et al. [19] proposed a full-precision digital CIM macro based on eDRAM-LUT (look-up table) tech-
nology, supporting inputs ranging from 1 to 8 bits and 8-bit weights. This macro consists of 256 × 160
3T eDRAM cells, which are configured as a look-up table in CIM mode to perform MAC operations. In
storage mode, it functions as a 40 kb memory array. The design incorporates in-memory encoding and
refresh circuitry to reduce external read/write overhead.

This LUT-based in-memory computation approach offers a novel solution for balancing the trade-
off between memory density and computational density. The study achieved an energy efficiency of
18.1 TOPS/W in 8-bit CIM mode, an area efficiency of 11.8 TOPS/mm2, and a storage density of
2.4 Mb/mm2, demonstrating its potential for high-density and efficient computation in deep learning
applications.

As the aforementioned research demonstrates, recent work in this field typically involves structural
modifications or additional specialized circuitry to support computation, closely linked to memory cells,
memory arrays, and peripheral circuits for computation. These modified cell designs often result in a
significant reduction in memory density. However, for applications that achieve high performance, the
reduction in area efficiency can be justified when the applications exhibit high data reuse or high GOPs
per byte, as the area cost can be amortized over time through repeated data reuse.

The primary goal of in-memory computing (IMC) is to enhance both energy and area efficiency. From
the perspective of macro-level designs, improving precision and supporting a broader range of operator
types are key research focuses. Optimizing analog readout circuits and digital adder trees is also crit-
ical for boosting energy efficiency. From an accelerator perspective, exploring more efficient dataflows
is an important area of investigation. For compute-intensive CIM, the specific operators used in differ-
ent compute-intensive tasks (e.g., matrix multiplication in the self-attention mechanism of large model
encoders and tasks in edge-based BERT NLP networks) are essentially the same, primarily consisting
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Table 2 Comparison table of different metrics for DRAM-PIM (memory-intensive CIM).

AMD MI100 GPU [23] GDDR6-AiM [24] UPMEM PIM [25]

Year 2023 2022 2018

Memory DRAM (HBM) DRAM (GDDR6) DRAM (DDR4)

Type NMC NMC (single core) NMC

Memory bandwidth 1.2 TB/s 16 GB/s 2 TB/s

Capacity 2.25 TB 8 GB 160 GB

Application AI AI AI/Genomics

of MAC operations for matrix multiplication. Compute-intensive CIM macro can achieve scalability for
matrix multiplications of different sizes by extending the length of MAC operations and the depth of
memory.

In addition, NVM technologies [20,21] have been increasingly employed for compute-intensive CIM in
recent years. Choosing the appropriate storage medium is crucial for improving computational efficiency.
These topics will be further discussed in Section 5.

4 Memory-intensive CIM/NMC

Memory-intensive CIM/NMC aims to address the critical challenges of LLMs access and bandwidth
constraints. This paradigm integrates storage and computing units. The computing units are placed close
to the memory to maximize memory access bandwidth and reduce data movement, thereby enhancing
overall computing efficiency.

Memory-intensive CIM is mainly based on DRAM and NVM, categorized into storage up-shift and
computation down-shift. Storage up-shift utilizes advanced packaging technologies to position memory
near the processor, increasing the number of links between computing and storage to improve memory
access bandwidth. Typical products include high bandwidth memory (HBM) and hybrid memory cube
(HMC), which achieve high bandwidth and low power consumption through vertically stacking multiple
chips. Computation down-shift refers to moving computational tasks from the main processor (such as the
CPU) to dedicated computing units or accelerators within the memory subsystem for execution. Through
computation down-shift, compute-intensive tasks can be processed in specialized hardware accelerators
or computational units within the memory, alleviating the burden on the main processor and improving
computational efficiency and energy efficiency. A typical product is computational storage devices (CSD),
which incorporate computing units within or near the controller of solid-state drives (SSD) to enhance
overall energy efficiency.

Emerging NVM also shows immense potential in data-intensive near-memory computing. Compared
to traditional NVMs like Flash, emerging NVMs such as ReRAM, MRAM, PCRAM, and FeRAM provide
better read/write performance, improved scalability, and distinct characteristics.

This section reviews representative achievements in data-intensive near-memory computing from both
academia and industry in recent years. Table 2 presents several related examples.

4.1 DRAM NMC

DRAM has advanced storage density, performance, power efficiency, and reliability. By utilizing smaller
process nodes and multi-layer stacking techniques, DRAM chips now provide higher storage capacities,
making them ideal for applications like data centers that handle LLMs. Due to the mature manufacturing
processes of DRAM, memory-intensive compute-in-memory technology based on DRAM has already
found applications in specific commercial fields.

4.1.1 HBM-PIM

At the 2021 Hot Chips conference [22], Samsung proposed the Aquabolt-XL HBM2-PIM solution for ma-
chine learning accelerators. HBM2 employs 3D stacking of up to eight DRAM chips, each HBM2 stack
consisting of eight DRAM chips (8-Hi). Each chip features two 64-bit channels, resulting in 16 pseudo-
channels with a combined width of 1024 bits. This architecture offers a high memory bandwidth exceeding
256 GB/s. The Aquabolt-XL HBM2-PIM architecture integrates PIM technology within HBM2, achiev-
ing over a 2× improvement in system performance and reducing energy consumption by more than 70%.
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Aquabolt-XL achieved an external PIM compute bandwidth of 1.23 TB/s and an internal PIM compute
bandwidth of 4.92 TB/s on unmodified GPU and Xilinx FPGA.

At the 2023 Hot Chips conference [23], Samsung introduced the HBM-PIM cluster architecture based
on PIM and PNM technologies. The HBM-PIM cluster demonstrated over 3× higher energy efficiency
and more than 2× performance improvement compared to conventional GPU clusters. This architecture
features 96 AMD MI100 GPUs integrated with HBM-PIM technology, designed to accelerate large-scale
workloads, delivering 471.9 TFLOPS of PIM performance and 17.7 PFLOPS of FP16 GPU performance,
with a memory capacity of 2.25 TB. The GPUs are interconnected via a 200G InfiniBand network,
providing a bandwidth of 1.2 TB/s.

4.1.2 GDDR6-AiM

At the 2022 ISSCC conference [24], SK Hynix proposed the first accelerator memory based on PIM tech-
nology, GDDR6-AiM, designed to accelerate memory-intensive machine learning applications. GDDR6-
AiM integrates 16 processing units per chip and is responsible for performing MAC and other deep-
learning tasks. The chip employs an entire library base-width mantissa shifting (BWMS) scheme to
handle floating-point operations efficiently, reducing computation time, power consumption, and circuit
area. A dedicated instruction set is also introduced to minimize latency during operation mode transitions
and efficiently support deep learning operations. During automated test equipment testing, GDDR6-AiM
demonstrated up to 16 Gbps with a supply voltage of 1.10 V, lower than the standard GDDR6 voltage
of 1.35 V. In FPGA-based system evaluations, GDDR6-AiM exhibited a 7.5–10.5-fold performance im-
provement in GEMV and MNIST applications compared to HBM2 or conventional GDDR6 systems,
showcasing significant performance and energy efficiency advantages in memory-intensive machine learn-
ing applications.

4.1.3 UPMEM PIM

UPMEM [25] is the first company to integrate processors into DDR4 DRAM chips, achieving general-
purpose in-memory computing and commercialization. UPMEM modules embed 8 PIM chips on each
side, totaling 16 per module, with 128 DPUs in each DIMM module. These modules adopt the standard
DDR4-2400 DIMM form factor, allowing easy insertion into standard servers. Standard DIMMs and
UPMEM DIMMs can coexist, supporting both conventional and PIM processing. The additional cost of
manufacturing PIM-DRAM chips is minimal compared to regular DRAM. UPMEM PIM can accelerate
applications that utilize highly parallel operations and fine-grained partitioning, handle data volumes of
tens or hundreds of gigabytes, exhibit a high compute/data ratio, and involve processing large datasets,
implicit data movement, and executing critical operations on these applications.

DRAM-PIM technology integrates computational capabilities into DRAM chips, significantly enhanc-
ing performance and energy efficiency for data-intensive applications. Samsung’s HBM-PIM and SK
Hynix’s GDDR6-AiM have substantially improved system performance and power efficiency, particularly
in machine learning and large-scale workloads. UPMEM has pioneered the commercial use of general-
purpose in-memory computing with DDR4 DRAM. With technology maturing, DRAM-PIM is expected
to see widespread adoption in fields like AI and big data analytics, driving innovations in computing
architecture.

4.2 NVM CIM/NMC

NVM is pivotal in enabling data-intensive computing. NVM CIM/NMC technology provides an efficient
approach to near-memory computing by significantly increasing storage density, reducing power con-
sumption, and improving read/write speeds. NAND Flash is the fundamental storage medium in SSD.
It provides high-density, non-volatile storage that allows SSD to access large volumes of data rapidly and
reliably, significantly reducing data transfer overhead between memory and remote processors. Numerous
academic studies have underscored the promising future of emerging NVM.

This section will introduce representative products of data-intensive near-memory computing based on
NVM.
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4.2.1 Samsung smartSSD

Lee et al. [26] proposed the SmartSSD, an SSD equipped with an onboard FPGA, allowing for the
offloading of computation directly within the SSD. The SmartSSD consists of an SSD controller, NAND
array, FPGA accelerator, FPGA DRAM, and a PCIe switch. Utilizing the built-in FPGA supports high-
speed computation close to where the data is stored, enhancing data processing speed and efficiency. A
comparison between the SmartSSD approach and various other methods, including those utilizing external
FPGAs, reveals that SmartSSD achieves a 3.04× speedup over traditional CPU-based techniques. In
contrast, another method utilizing two external FPGAs demonstrates up to a 2.64× speedup.

Regarding commercial application, the first-generation SmartSSD, co-developed by Samsung and AMD
in 2020 with a capacity of 3.84 TB, has been instrumental in supporting global IT service providers,
including video communication platforms. Notably, it was recognized as a CES 2021 Innovation Awards
Honoree for its exceptional performance and energy efficiency. In 2022, Samsung introduced the second-
generation SmartSSD, which offers up to 97% CPU utilization, a 50% reduction in processing time, and
a 70% decrease in power consumption compared to traditional Samsung SSDs. The second-generation
SmartSSD utilizes Arm cores, custom-developed intellectual property (IP), and software, enabling more
efficient data processing. It effectively integrates computation and storage functions in data centers,
significantly enhancing CPU efficiency while dramatically reducing power consumption. With data-
intensive applications proliferate, Samsung second-generation SmartSSD offers enhanced performance
and efficiency, meeting the growing demands of this expanding market.

4.2.2 StreamPIM: streaming matrix computation in racetrack memory

An et al. proposed StreamPIM [27], a novel PIM architecture that integrates the memory core with
computation units. StreamPIM directly constructs a matrix processor using domain-wall nanowires,
eliminating the need for CMOS-based computation units. Additionally, it incorporates a domain-wall
nanowire-based bus, which removes the requirement for electromagnetic conversion. StreamPIM enhances
performance by exploiting internal parallelism. Evaluation results demonstrate that StreamPIM delivers
a 39.1× increase in performance and a 58.4× reduction in energy consumption compared to conventional
computing platforms.

4.2.3 X-Former: in-memory acceleration of transformers

Sridharan et al. [28] proposed X-Former, a hybrid in-memory hardware accelerator integrating NVM and
CMOS processing elements to handle transformer workloads efficiently. To enhance hardware utilization
of X-Former, they also introduced a sequence blocking dataflow that allows concurrent computations
between the two processing elements, thereby reducing execution time. Through various benchmarks, X-
Former demonstrated significant performance gains, achieving up to 69.8× and 13× reductions in latency
and energy consumption compared to an NVIDIA GeForce GTX 1060 GPU and up to 24.1× and 7.95×
improvements in latency and energy compared to a state-of-the-art in-memory NVM accelerator.

The high storage density, low power consumption, and high bandwidth of NVM technology enable faster
data access and processing by the processor, accelerating computation and enhancing overall performance
and energy efficiency. However, this technological approach presents drawbacks, including slow read/write
speeds and limited write endurance. While it offers benefits in reducing data transfer energy consumption
and improving data processing efficiency, these limitations must be considered in practical applications.

With the development of LLMs, the application scenarios for data-intensive operators are becoming
increasingly widespread. Data-intensive in-memory computing is undoubtedly an essential approach to
addressing this challenge. Numerous efforts have significantly improved the performance of data-intensive
applications by enhancing memory bandwidth and processing capabilities, combined with optimizing the
integration of storage and computation. The technology for data-intensive storage circuits has gradually
matured. However, to further enhance the efficiency of large-scale data processing, additional efforts are
required to optimize the overall circuit architecture and the algorithmic and software frameworks. These
aspects will be discussed in detail in Section 5.
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Figure 4 Taxonomy of compute-intensive CIM and memory-intensive CIM.

5 Challenges and development trends of CIM/NMC in large language model

In the era of LLMs, the rapid progress in AI and deep learning has exposed the computational and
bandwidth limitations of traditional architectures [29,30], especially in addressing compute-intensive and
data-intensive tasks. To overcome these challenges, compute-intensive CIM and data-intensive CIM/NMC
have emerged as critical approaches for accelerating LLMs [31–33]. The former enhances efficiency in
tasks with high data reuse and computational demands, while the latter focuses on optimizing storage
and processing in scenarios limited by bandwidth and data intensity. Figure 4 [22–28, 34–85] summa-
rizes numerous existing studies on compute-intensive and memory-intensive CIM architectures. Current
research is actively exploring these two computing paradigms. With the development of LLMs, the ef-
ficient implementation and integration of both compute-intensive CIM and memory-intensive CIM will
be crucial for enhancing the performance and energy efficiency of future high-performance computing
systems.

5.1 Compute-intensive CIM

In compute-intensive CIM design, maximizing energy efficiency and computational power is crucial, par-
ticularly for operators with high reusability and computational density in LLMs. Many recent studies have
focused on optimizing energy efficiency while balancing other design aspects. Moreover, a complete AI
computing deployment requires more than just macro cell design; it also demands an optimized memory
hierarchy, data flow, and instruction set design. A rational approach to data flow and control is essen-
tial. The use of advanced materials could further enhance energy efficiency and computational power.
This section focuses on the design trade-offs in compute-intensive CIM and explores future development
trends.

5.1.1 Energy efficiency

Compute-intensive CIM confronts a tradeoff between energy efficiency, throughput, and computational
accuracy. While high reuse and parallel computation boost performance in compute-intensive tasks,
throughput often comes at the expense of energy efficiency. Analog computation employs digital-to-
analog converters (DACs) for simultaneous multi-bit input, shortens the computation cycle, and improves
throughput while significantly enhancing energy efficiency. However, accuracy errors introduced by ana-
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Figure 5 Compute-intensive CIM precision development trends.

log computation must be addressed, making the balance between energy efficiency and computational
accuracy a key focus for future CIM research.

A promising approach to improving energy efficiency is hybrid CIM, which combines digital and analog
domains. Hybrid CIM ensures accuracy in the digital domain while utilizing the analog domain for
greater area and energy efficiency. Current hybrid methods include product decomposition, where lower
bits of multi-bit multiplication are computed in the analog domain and higher bits in the digital domain,
and decomposition of calculations, assigning analog computation to less significant portions and digital
computation to critical parts.

Low power technology is also very helpful for improving energy efficiency [86–88]. Additionally, utilizing
network characteristics such as sparsity [89] offers a promising avenue for circuit optimization and energy
efficiency improvement. In analog computation, sparsity affects quantization circuit utilization, while in
digital circuits, it influences the switching rate. Despite efforts to integrate software and hardware to
exploit network characteristics, effectively harnessing circuit properties arising from sparsity to reduce
energy consumption remains a significant challenge.

5.1.2 Operator types

Compute-intensive CIM supports only specific layers in certain networks, leaving other layers reliant on
traditional digital circuits, limiting system-level energy efficiency. As network complexity increases and
more operators are required, advancing CIM will depend on expanding its support for a broader range
of operators. This would reduce data transfer between CIM macros, external memory, and logic circuits,
improving overall generalization.

For more complex operators, the precision demands for CIM are continuously increasing. Figure 5
shows the compute-intensive CIM precision development trends in recent years. Some networks can
operate at 8-bit fixed-point precision through quantization during inference, but floating-point operations
are essential for training and specific inference tasks. The challenge with floating-point CIM is the tight
coupling between exponent alignment and integer mantissa MAC (multiply-accumulate). Implementing
re-exponent alignment in memory disrupts the direct accumulation structure of CIM, reducing efficiency.
The critical issue is how the exponent is managed during computation.

As shown in Figure 6, there are three main approaches for implementing floating-point operations in
CIM. The first method pre-aligns inputs and weights to their local maximum exponents before com-
putation, resembling a global floating-point and local fixed-point approach. This method has minimal
circuit overhead but suffers from significant precision loss. The second method calculates the exponents
of inputs and weights and then shifts the inputs before multiplication. This approach also has low circuit
overhead with comparatively less precision loss. The third method adheres to the standard floating-point
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Figure 6 (Color online) Three methods for implementing floating-point operation shift in CIM. (a) Only input alignment: align-

ing input data before performing floating-point operations; (b) sharefloat: utilizing a shared floating-point format to optimize

computational efficiency; (c) product alignment (normal): aligning the product during computation to ensure accuracy.

process, including shift calculations, which increases area and energy consumption but offers much higher
precision. Achieving greater energy and area efficiency is essential for compute-intensive CIM, but the
appropriate precision must be selected based on task requirements. Further research is necessary to
develop better floating-point solutions for in-memory computing.

Supporting multiple operators and operator fusion in compute-intensive CIM is a significant challenge.
Multiple operators are essential for handling complex AI scenarios, while operator fusion enhances effi-
ciency by performing more operations on data during each read. However, most current architectures are
limited to MAC or simple logical operations and need more flexibility of digital architectures to support
configurable operators and fusion. Achieving this flexibility is crucial for improving overall system energy
efficiency.

5.1.3 System performance

In compute-intensive CIM/NMC, system performance is heavily influenced by architectural design. Be-
yond the CIM macro, a complete AI acceleration core requires memory hierarchy, data flow, and instruc-
tion design support. Performance hinges on the design of the external memory hierarchy and overall
data flow. More significant external memory facilitates data reuse and reduces energy for data updates,
enhancing performance, though it increases area overhead.

Optimizing system efficiency involves selecting data flow methods tailored to the operational char-
acteristics and data features of different network operators. Lightweight neural network architectures
are relatively simple and have fewer parameters [90]. The computational bottleneck in these networks
lies in how to efficiently handle input data, emphasizing operations such as data shifting and transmis-
sion. In contrast, deep convolutional neural networks have a larger depth and more parameters [91].
For hardware, the focus is on reducing the scheduling of weight data or efficiently updating weights. In
multi-reuse convolution operations, the choice of computation dimension affects system design and power
consumption. Channel-based accumulation operations allow data accumulation but demand more input
data, straining input bandwidth. Kernel-based operations reuse input data but incur storage overhead
for partial sums. Effective data flow scheduling is crucial for multi-task scheduling in multi-operator op-
eration reconstruction, ensuring high computational power and energy efficiency in data-intensive tasks.
Additionally, in-memory computing requires well-aligned software and hardware interfaces to maximize
efficiency.

5.1.4 Advanced material

For compute-intensive CIM, the predominant technologies are SRAM-CIM and eDRAM-CIM, owing
to their mature storage media, which offer high durability, low write energy consumption, and fast
read/write speeds. However, these media also suffer from data loss upon power failure and low storage
density. Though less efficient in read/write time and energy, emerging storage media like PCM, RRAM,
and MRAM provide higher storage density and non-volatility, making them better suited for high-density
computing [92]. Figure 7 shows the comparison of various features of different memory technologies.
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Figure 7 Key feature comparison of different memory technologies.

The high storage density and low power consumption of ReRAM reduce data transfer bottlenecks,
enhancing computational efficiency. With its phase-change properties, PCM enables high-speed access
and persistence, ideal for rapid data access and large-scale storage. The 3D XPoint technology based on
PCM is already used as non-volatile memory, offering storage density several times higher than DRAM.
MRAM, utilizing magnetic materials, combines fast read/write speeds with high durability and low power
consumption, making it suitable for frequent data access scenarios. FeFET also supports efficient data
access with low power consumption, while STT-MRAM, leveraging spin-transfer torque, offers high speed
and durability for high-frequency data access applications.

Selecting the appropriate storage media depends on the specific AI application. Emerging storage media
are less favorable for training, which involves frequent weight updates, due to their limited durability and
expensive write operations. In contrast, inference operations are mostly read-based, allowing new storage
media to store more data and enhance computational power. Given the complexity of processing large
AI models, loading the entire model into memory at once is impractical, so data are processed layer by
layer. As volatile memory, SRAM avoids the memory management challenges of non-volatile media due
to its unlimited write endurance. However, for inference, where data retention upon power loss is critical,
new storage media like PCM and RRAM offer more promise than SRAM and DRAM.

5.2 Memory-intensive CIM/NMC

Memory-intensive computing is primarily near-memory computing, characterized by high storage density
and sufficient bandwidth, making it highly compatible with data-intensive operators. In previous neural
networks, most data-intensive operators, such as activation functions, were optimized through operator
fusion, which reduced the demand for high storage density computing. However, with the explosive growth
of LLMs, the decoder section has introduced significant data-intensive computing requirements. For data-
intensive in-memory computing, architectural design and storage medium technology breakthroughs are
crucial for development. This section analyzes the architectural-level challenges of data-intensive in-
memory computing and provides an outlook on future development trends.

5.2.1 Circuit architecture application level

Numerous memory-intensive CIM circuits have reached a level of maturity in both design and fabrica-
tion processes. Nonetheless, the effective integration of such data-intensive methodologies into existing
computer architectures while maintaining high performance continues to present substantial challenges.
This issue has garnered attention within the academic community, with several studies investigating po-
tential solutions. As shown in Figure 8(a), Zhao et al. [93] explored the design of DRAM-based PIM
systems with a unified memory space alongside the CPU. Typically, CPUs optimize memory bandwidth
by reading and writing data across different banks to exploit the increased bandwidth offered by multiple
banks.

In contrast, PIM relies heavily on data centralization to enhance computational efficiency. However,
if separate DRAM spaces are employed to satisfy the distinct requirements of the CPU and PIM, data
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Figure 8 (Color online) Two studies for memory-intensive methodologies into existing computer architectures. (a) Conflict

between CPU data read/write operations and the utilization of data in PIM; (b) DRAM-based PIM system to address the challenges

associated with cross-bank data interactions.

transfers between these spaces would still be necessary, thereby undermining the primary objective of
PIM. Consequently, developing a unified memory space that can accommodate both divergent demands
is paramount. Moreover, as mentioned in Figure 8(b), Tian et al. [94] have investigated optimizations to
DRAM-based PIM systems to address the challenges associated with cross-bank data interactions. These
studies contribute substantially to the advancement of knowledge regarding the effective integration
of storage-intensive in-memory computing into modern computer architectures and the management
of complex applications within these systems. Further architectural research is imperative to identify
optimal solutions for managing data and control flow within storage-intensive in-memory computing
circuits.

5.2.2 Dedicated software architecture

To effectively leverage computational memory, several unique challenges and opportunities emerge for
software architecture, particularly in mapping computational demands to the execution units within
memory. Realizing the potential of memory-integrated computing capabilities requires adaptive adjust-
ments and optimizations in critical areas such as parallelization, algorithm design, memory management,
and programming models. Traditional centralized computing methods must be better suited for har-
nessing the parallel processing capabilities of PIM systems. Therefore, developing innovative parallel
processing strategies that facilitate the equitable distribution of computational tasks across the diverse
memory-resident processing units is imperative.

Moreover, traditional algorithms are generally designed under the assumption of the von Neumann
architecture, where computing and storage resources are separate. In contrast, PIM architectures inte-
grate computing and storage resources, opening up new opportunities for algorithm optimization. To
fully capitalize on the performance benefits of PIM, it is essential to optimize algorithms to minimize
data movement and enable the execution of most computational tasks directly within the memory itself.

Regarding programming models, new frameworks and tools are necessary to simplify the utilization of
PIM hardware for developers. Existing artificial intelligence frameworks, such as Pytorch and Tensorflow,
must be extended to support PIM functionalities, including providing runtime libraries that optimize
task execution during PIM operations. Developing specialized PIM compilers can also enable graph-level
optimizations during end-to-end execution, effectively mapping complex computational demands to the
memory’s processing units.

Standardization plays a critical role in the future development of PIM technology. As this technology
matures, establishing unified standards and interfaces and developing a shared software ecosystem across
different hardware platforms will be essential for promoting the widespread adoption of PIM. Figure 9 pro-
poses an improved CIM-based software and hardware architecture based on traditional architecture. The
current technological landscape remains dominated by traditional computing models, with a significant
gap in comprehensive software ecosystem support for PIM. Therefore, advancing the standardization of
PIM technology is imperative for enabling developers to fully exploit this innovative memory architecture,
ultimately leading to more efficient computing.
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Figure 9 Computer architecture from CIM AI core to dedicated software.

5.3 Development trend of CIM/NMC in LLMs

The rapid development of LLMs has substantially increased the demand for computational power, pre-
senting significant challenges in data-intensive and compute-intensive application scenarios. This has led
to the necessity for in-memory computing chips that deliver higher energy efficiency and greater versa-
tility. In-memory computing solutions currently demonstrate substantial efficiency advantages in these
scenarios. However, it is crucial to consider how to enhance computational efficiency from the kernel level
to the system level and improve chip performance through coordinated design across upstream and down-
stream processes for LLM applications. This section focuses on analyzing in-memory computing in the
context of LLMs, with particular emphasis on heterogeneous architecture and heterogeneous integration,
while also exploring future development trends.

The heterogeneous architecture integrates diverse computing architectures and hardware units with
distinct functionalities, allowing the system to leverage the strengths and compensate for the weaknesses
of each component to achieve enhanced overall performance. Compute-intensive CIM offers notable
precision and energy efficiency advantages, whereas memory-intensive CIM excels in storage density and
bandwidth.

For current LLM applications, relying on a single architecture may only adequately satisfy some per-
formance requirements. A heterogeneous architecture can facilitate a balanced trade-off among precision,
energy efficiency, and area metrics. Several studies have already explored heterogeneous integration in
hybrid architectures, demonstrating its potential for LLM. Cambricon-LLM [95] introduces a hybrid ar-
chitecture based on chip-let technology, integrating high-performance NPUs with NAND flash chips that
offer limited in-die computation capabilities to achieve efficient hardware resource utilization for large
model acceleration. Cambricon-LLM demonstrates 22× to 45× speedups over existing flash offloading
techniques, showcasing its potential for deploying powerful LLMs on edge devices. NeuPIMs [96] address
the challenge of accelerating both memory-intensive GEMV and compute-intensive GEMM operators
in LLM, which traditional NPU and PIM methods struggle to handle simultaneously. Compared to
GPU-only, NPU-only, and a näıve NPU+PIM integrated acceleration approach, NeuPIMs achieve 3×,
2.4×, and 1.6× throughput improvements, respectively. SpecPIM [97] proposes a heterogeneous accel-
erator architecture with software-hardware co-design based on a near-DRAM computing architecture to
address the difficulty of simultaneously accelerating compute-intensive and memory-intensive operators
in large models. Compared to speculative inference on GPUs and existing PIM-based LLM accelerators,
SpecPIM achieves 1.52×/2.02× geomean speedup and 6.67×/2.68× geomean higher energy efficiency.
Additionally, the implementation of heterogeneous architecture necessitates support from heterogeneous
integration technologies. With advancements in advanced packaging technologies, CIM chips integrated
with 2.5D/3D/Chiplet packaging techniques can achieve superior performance. Furthermore, it is imper-
ative to ensure the compatibility of new memory device processes with advanced integrated packaging
processes to enable the integration of in-memory computing chips across different media, thereby fully
harnessing the strengths of various media in multiple aspects.

The relationship among different memory-based CIM solutions is more complementary than competi-
tive. These solutions possess distinct characteristics and realize functions with corresponding features at
different levels within the memory hierarchy. Different CIM solutions can be employed at various levels
of the memory hierarchy, akin to the harmony achieved by SRAM, DRAM, and Flash in the evolution of
modern computing. By coordinating task allocation during computation, general tasks with lower reuse
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and computational intensity can be managed by traditional architectures. In contrast, tasks characterized
by high data reuse and computational intensity can be assigned to compute-intensive CIM. Large-scale
data access and processing tasks, which are data-intensive, can be delegated to in-memory computing
units, thereby achieving a balance and optimizing overall performance. The heterogeneous integration
of compute-intensive and memory-intensive CIM architectures within traditional architectures for LLM
computing applications represents a promising direction for future development.

6 Conclusion

The advent of the era of large models has imposed new demands for high computational power and
throughput on existing AI chips. CIM architecture is one of the potential solutions to address current
chip bottlenecks effectively. This study redefines the traditional computer architecture pyramid based
on storage media, creating the CIM pyramid. The study categorizes current CIM works into two types:
compute-intensive CIM, which is primarily based on SRAM and eDRAM, and memory-intensive CIM,
which is mainly based on DRAM and NVM. This research summarizes the related studies of these
two types of in-memory computing, analyzing and discussing the development trends and challenges
faced by both compute-intensive and memory-intensive CIM. Additionally, the study proposes a hybrid
heterogeneous future development trend that integrates compute-intensive CIM, memory-intensive CIM,
and traditional computer architectures to meet the demands of both types of operators in the era of large
models.
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25 Gómez-Luna J, Hajj I E, Fernandez I, et al. Benchmarking memory-centric computing systems: analysis of real processing-

in-memory hardware. In: Proceedings of IEEE 12th International Green and Sustainable Computing Conference (IGSC),

2021. 1–7

26 Lee J H, Zhang H, Lagrange V, et al. SmartSSD: FPGA accelerated near-storage data analytics on SSD. IEEE Comput

Arch Lett, 2020, 19: 110–113

27 An Y, Tang Y, Yi S, et al. StreamPIM: streaming matrix computation in racetrack memory. In: Proceedings of IEEE

International Symposium on High-Performance Computer Architecture (HPCA), 2024. 297–311

28 Sridharan S, Stevens J R, Roy K, et al. X-Former: in-memory acceleration of transformers. IEEE Trans VLSI Syst, 2023,

31: 1223–1233

29 Li W J, Lyu D X, Wang G, et al. Hardware-oriented algorithms for softmax and layer normalization of large language

models. Sci China Inf Sci, 2024, 67: 200404

30 Liu Y F, Li X Y, Yin S Y. Review of chiplet-based design: system architecture and interconnection. Sci China Inf Sci, 2024,

67: 200401

31 Choi J, Park J, Kyung K, et al. Unleashing the potential of PIM: accelerating large batched inference of transformer-based

generative models. IEEE Comput Arch Lett, 2023, 22: 113–116

32 Chen L, Chen Y Q, Chu Z F, et al. Large circuit models: opportunities and challenges. Sci China Inf Sci, 2024, 67: 200402

33 Han S H, Liu S S, Du S C, et al. CMN: a co-designed neural architecture search for efficient computing-in-memory-based

mixture-of-experts. Sci China Inf Sci, 2024, 67: 200405

34 Shin Y, Park J, Cho S, et al. PIMFlow: compiler and runtime support for CNN models on processing-in-memory DRAM.

In: Proceedings of the 21st ACM/IEEE International Symposium on Code Generation and Optimization, 2023. 249–262

35 Wu P-C, Su J-W, Chung Y-L, et al. A 28 nm 1 Mb time-domain computing-in-memory 6T-SRAM macro with a 6.6 ns

latency, 1241 GOPS and 37.01 TOPS/W for 8b-MAC operations for edge-AI devices. In: Proceedings of IEEE International

Solid-State Circuits Conference (ISSCC), San Francisco, 2022. 1–3

36 Yang J, Kong Y, Zhang Z, et al. TIMAQ: a time-domain computing-in-memory-based processor using predictable decomposed

convolution for arbitrary quantized DNNs. IEEE J Solid-State Circuits, 2021, 56: 3021–3038

37 Dorrance R, Dasalukunte D, Wang H, et al. An energy-efficient Bayesian neural network accelerator with CiM and a

time-interleaved Hadamard digital GRNG using 22-nm FinFET. IEEE J Solid-State Circuits, 2023, 58: 2826–2838

38 Yang J, Kong Y, Wang Z, et al. Sandwich-RAM: an energy-efficient in-memory BWN architecture with pulse-width modu-

lation. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, 2019. 394–396

39 Miyashita D, Kousai S, Suzuki T, et al. A neuromorphic chip optimized for deep learning and CMOS technology with

time-domain analog and digital mixed-signal processing. IEEE J Solid-State Circuits, 2017, 52: 2679–2689

40 Wu P-C, Su J-W, Hong L-Y, et al. A 22 nm 832 Kb hybrid-domain floating-point SRAM in-memory-compute macro

with 16.2–70.2 TFLOPS/W for high-accuracy AI-edge devices. In: Proceedings of IEEE International Solid-State Circuits

Conference (ISSCC), San Francisco, 2023. 126–128

41 Guo A, Xi C, Dong F, et al. A 28-nm 64-kb 31.6-TFLOPS/W digital-domain floating-point-computing-unit and double-bit

6T-SRAM computing-in-memory macro for floating-point CNNs. IEEE J Solid-State Circuits, 2024, 59: 3032–3044

42 Guo A, Chen X, Dong F, et al. A 22 nm 64 kb lightning-like hybrid computing-in-memory macro with a compressed adder

tree and analog-storage quantizers for transformer and CNNs. In: Proceedings of IEEE International Solid-State Circuits

Conference (ISSCC), San Francisco, 2024. 570–572

43 Jeong S, Oh J, Jeon D. A 28 nm 157TOPS/W 446.9 Kb/mm2 compute-in-memory SRAM macro with analog-digital hybrid

computing for deep neural network inference. In: Proceedings of IEEE Custom Integrated Circuits Conference (CICC),

Denver, 2024. 1–2

44 Chiu Y C, Zhang Z, Chen J J, et al. A 4-Kb 1-to-8-bit configurable 6T SRAM-based computation-in-memory unit-macro

for CNN-based AI edge processors. IEEE J Solid-State Circuits, 2020, 55: 2790–2801

45 Ali M, Chakraborty I, Saxena U, et al. A 35.5–127.2 TOPS/W dynamic sparsity-aware reconfigurable-precision compute-in-

memory SRAM macro for machine learning. IEEE Solid-State Circuits Lett, 2021, 4: 129–132

46 Guo R, Yue Z, Si X, et al. A 5.99-to-691.1 TOPS/W tensor-train in-memory-computing processor using bit-level-sparsity-

based optimization and variable-precision quantization. In: Proceedings of IEEE International Solid-State Circuits Confer-

ence (ISSCC), 2021. 242–244

47 Kneip A, Lefebvre M, Verecken J, et al. IMPACT: a 1-to-4b 813-TOPS/W 22-nm FD-SOI compute-in-memory CNN acceler-

ator featuring a 4.2-POPS/W 146-TOPS/mm2 CIM-SRAM with multi-bit analog batch-normalization. IEEE J Solid-State

https://doi.org/10.1038/s41586-024-07230-5
https://doi.org/10.1109/TED.2020.2965403
https://doi.org/10.1109/LCA.2020.3009347
https://doi.org/10.1109/TVLSI.2023.3282046
https://doi.org/10.1007/s11432-024-4137-4
https://doi.org/10.1007/s11432-023-3926-8
https://doi.org/10.1109/LCA.2023.3305386
https://doi.org/10.1007/s11432-024-4155-7
https://doi.org/10.1007/s11432-024-4144-y
https://doi.org/10.1109/JSSC.2021.3095232
https://doi.org/10.1109/JSSC.2023.3283186
https://doi.org/10.1109/JSSC.2017.2712626
https://doi.org/10.1109/JSSC.2024.3375359
https://doi.org/10.1109/JSSC.2020.3005754
https://doi.org/10.1109/LSSC.2021.3093354


Liu Z C, et al. Sci China Inf Sci October 2025, Vol. 68, Iss. 10, 201401:20

Circuits, 2023, 58: 1871–1884

48 Su J W, Si X, Chou Y C, et al. Two-way transpose multibit 6T SRAM computing-in-memory macro for inference-training

AI edge chips. IEEE J Solid-State Circuits, 2022, 57: 609–624

49 Si X, Tu Y N, Huang W H, et al. A local computing cell and 6T SRAM-based computing-in-memory macro with 8-b MAC

operation for edge AI chips. IEEE J Solid-State Circuits, 2021, 56: 2817–2831

50 Wang H, Liu R, Dorrance R, et al. A charge domain SRAM compute-in-memory macro with C-2C ladder-based 8-bit MAC

unit in 22-nm FinFET process for edge inference. IEEE J Solid-State Circuits, 2023, 58: 1037–1050

51 Chen Z, Yu Z, Jin Q, et al. CAP-RAM: a charge-domain in-memory computing 6T-SRAM for accurate and precision-

programmable CNN inference. IEEE J Solid-State Circuits, 2021, 56: 1924–1935

52 Biswas A, Chandrakasan A P. CONV-SRAM: an energy-efficient SRAM with in-memory dot-product computation for low-

power convolutional neural networks. IEEE J Solid-State Circuits, 2019, 54: 217–230

53 Yang X, Zhu K, Tang X, et al. An in-memory-computing charge-domain ternary CNN classifier. In: Proceedings of IEEE

Custom Integrated Circuits Conference (CICC), Austin, 2021. 1–2

54 Jiang Z, Yin S, Seo J S, et al. C3SRAM: an in-memory-computing SRAM macro based on robust capacitive coupling

computing mechanism. IEEE J Solid-State Circuits, 2020, 55: 1888–1897

55 Zhang Z, Liu Z, Liu F, et al. A 28 nm 16 kb aggregation and combination computing-in-memory macro with dual-level

sparsity modulation and sparse-tracking ADCs for GCNs. In: Proceedings of IEEE Custom Integrated Circuits Conference

(CICC), Denver, 2024. 1–2

56 Tu F, Wang Y, Wu Z, et al. ReDCIM: reconfigurable digital computing- in-memory processor with unified FP/INT pipeline

for cloud AI acceleration. IEEE J Solid-State Circuits, 2023, 58: 243–255

57 Chih Y D, Lee P H, Fujiwara H, et al. An 89 TOPS/W and 16.3 TOPS/mm2 all-digital SRAM-based full-precision compute-

in-memory macro in 22 nm for machine-learning edge applications. In: Proceedings of IEEE International Solid-State Circuits

Conference (ISSCC), San Francisco, 2021. 252–254

58 Tu F, Wang Y, Wu Z, et al. TensorCIM: a 28 nm 3.7 nJ/Gather and 8.3 TFLOPS/W FP32 digital-CIM tensor processor for

MCM-CIM-based beyond-NN acceleration. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC),

San Francisco, 2023. 254–256

59 Wang J, Wang X, Eckert C, et al. A 28-nm compute SRAM with bit-serial logic/arithmetic operations for programmable

in-memory vector computing. IEEE J Solid-State Circuits, 2020, 55: 76–86

60 Fujiwara H, Mori H, Zhao W-C, et al. A 5-nm 254-TOPS/W 221-TOPS/mm2 fully-digital computing-in-memory macro

supporting wide-range dynamic-voltage-frequency scaling and simultaneous MAC and write operations. In: Proceedings of

IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, 2022. 1–3

61 Xie S, Ni C, Jain P, et al. Gain-cell CIM: leakage and bitline swing aware 2T1C gain-cell eDRAM compute in memory design

with bitline precharge DACs and compact Schmitt trigger ADCs. In: Proceedings of IEEE Symposium on VLSI Technology

and Circuits, Honolulu, 2022. 112–113

62 Kim S, Li Z, Um S, et al. DynaPlasia: an eDRAM in-memory-computing-based reconfigurable spatial accelerator with triple-

mode cell for dynamic resource switching. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC),

San Francisco, 2023. 256–258

63 Khwa W S, Wu P C, Wu J J, et al. A 16 nm 96 Kb integer/floating-point dual-mode-gain-cell-computing-in-memory macro

achieving 73.3–163.3 TOPS/W and 33.2–91.2 TFLOPS/W for AI-edge devices. In: Proceedings of IEEE International

Solid-State Circuits Conference (ISSCC), San Francisco, 2024. 568–570

64 Chen Z, Chen X, Gu J. A 65 nm 3T dynamic analog RAM-based computing-in-memory macro and CNN accelerator with

retention enhancement, adaptive analog sparsity and 44 TOPS/W system energy efficiency. In: Proceedings of IEEE Inter-

national Solid-State Circuits Conference (ISSCC), San Francisco, 2021. 240–242

65 Zhou R, Tabrizchi S, Morsali M, et al. P-PIM: a parallel processing-in-DRAM framework enabling row hammer protection.

In: Proceedings of Design, Automation & Test in Europe Conference & Exhibition (DATE), 2023. 1–6

66 Heo J, Shin Y, Choi S, et al. PRIMO: a full-stack processing-in-DRAM emulation framework for machine learning workloads.

In: Proceedings of IEEE/ACM International Conference on Computer Aided Design (ICCAD), 2023. 1–9

67 Wang J, Ge M, Ding B, et al. NicePIM: design space exploration for processing-in-memory DNN accelerators with 3-D

stacked-DRAM. IEEE Trans Comput-Aided Des Integr Circuits Syst, 2024, 43: 1456–1469

68 Li C, Zhou Z, Wang Y, et al. PIM-DL: expanding the applicability of commodity DRAM-PIMs for deep learning via

algorithm-system co-optimization. In: Proceedings of the 29th ACM International Conference on Architectural Support for

Programming Languages and Operating Systems, 2024. 879–896

69 Kim H, Lee H, Kim J, et al. Cache register sharing structure for channel-level near-memory processing in NAND flash

memory. In: Proceedings of the 24th International Symposium on Quality Electronic Design (ISQED), 2023. 1–6

70 Lee H, Kim M, Min D, et al. 3D-FPIM: an extreme energy-efficient DNN acceleration system using 3D NAND flash-based

in-situ PIM unit. In: Proceedings of the 55th IEEE/ACM International Symposium on Microarchitecture (MICRO), 2022.

1359–1376

71 Kang M, Kim H, Shin H, et al. S-FLASH: a NAND flash-based deep neural network accelerator exploiting bit-level sparsity.

IEEE Trans Comput, 2021, 71: 1291–1304

72 Yang T, Li D, Ma F, et al. PASGCN: an ReRAM-based PIM design for GCN with adaptively sparsified graphs. IEEE Trans

Comput-Aided Des Integr Circuits Syst, 2023, 42: 150–163

73 Li B, Wang Y, Chen Y. HitM: high-throughput ReRAM-based PIM for multi-modal neural networks. In: Proceedings of the

39th International Conference on Computer-Aided Design, 2020. 1–7

74 Jin H, Liu C, Liu H, et al. ReHy: a ReRAM-based digital/analog hybrid PIM architecture for accelerating CNN training.

IEEE Trans Parallel Distrib Syst, 2021, 33: 2872–2884

75 Yang T, Li D, Han Y, et al. PIMGCN: a ReRAM-based PIM design for graph convolutional network acceleration. In:

Proceedings of the 58th ACM/IEEE Design Automation Conference (DAC), 2021. 583–588

https://doi.org/10.1109/JSSC.2023.3269098
https://doi.org/10.1109/JSSC.2021.3108344
https://doi.org/10.1109/JSSC.2021.3073254
https://doi.org/10.1109/JSSC.2022.3232601
https://doi.org/10.1109/JSSC.2021.3056447
https://doi.org/10.1109/JSSC.2018.2880918
https://doi.org/10.1109/JSSC.2020.2992886
https://doi.org/10.1109/JSSC.2022.3222059
https://doi.org/10.1109/JSSC.2019.2939682
https://doi.org/10.1109/TCAD.2023.3342605
https://doi.org/10.1109/TC.2021.3082003
https://doi.org/10.1109/TCAD.2022.3175031
https://doi.org/10.1109/TPDS.2021.3138087


Liu Z C, et al. Sci China Inf Sci October 2025, Vol. 68, Iss. 10, 201401:21

76 Liu F, Zhao W, Chen Y, et al. PIM-DH: ReRAM-based processing-in-memory architecture for deep hashing acceleration.

In: Proceedings of the 59th ACM/IEEE Design Automation Conference (DAC), 2022. 1087–1092

77 Mamdouh A, Geng H, Niemier M, et al. Shared-PIM: enabling concurrent computation and data flow for faster processing-

in-DRAM. 2024. ArXiv:2408.15489

78 Kim J H, Kang S H, Lee S, et al. Aquabolt-XL HBM2-PIM, LPDDR5-PIM with in-memory processing, and AXDIMM with

acceleration buffer. IEEE Micro, 2022, 42: 20–30

79 Chi P, Li S, Xu C, et al. Prime: a novel processing-in-memory architecture for neural network computation in ReRAM-based

main memory. ACM SIGARCH Comput Archit News, 2016, 44: 27–39

80 Wang Y, Han Y, Zhang L, et al. ProPRAM: exploiting the transparent logic resources in non-volatile memory for near data

computing. In: Proceedings of the 52nd IEEE Design Automation Conference (DAC), 2015. 1–6

81 Chiang H W, Nien C F, Cheng H Y, et al. ReAIM: a ReRAM-based adaptive ising machine for solving combinatorial

optimization problems. In: Proceedings of the 51st ACM/IEEE Annual International Symposium on Computer Architecture

(ISCA), 2024. 58–72

82 Li S, Xu C, Zou Q, et al. Pinatubo: a processing-in-memory architecture for bulk bitwise operations in emerging non-volatile

memories. In: Proceedings of the 53rd IEEE Design Automation Conference (DAC), 2016. 1–6

83 Bavikadi S, Sutradhar P R, Ganguly A, et al. UPIM: performance-aware online learning capable processing-in-memory. In:

Proceedings of IEEE 3rd International Conference on Artificial Intelligence Circuits and Systems (AICAS), 2021. 1–4

84 Sharma H, Mandal S K, Doppa J R, et al. SWAP: a server-scale communication-aware chiplet-based manycore PIM accel-

erator. IEEE Trans Comput-Aided Des Integr Circuits Syst, 2022, 41: 4145–4156

85 Angizi S, Sun J, Zhang W, et al. PIM-Aligner: a processing-in-MRAM platform for biological sequence alignment. In:

Proceedings of Design, Automation & Test in Europe Conference & Exhibition (DATE), 2020. 1265–1270

86 Shan W W, Cui Y Q, Dai W T, et al. An efficient path delay variability model for wide-voltage-range digital circuits. Sci

China Inf Sci, 2023, 66: 129401

87 Luo X, Zhang C, Geng C B, et al. TSCompiler: efficient compilation framework for dynamic-shape models. Sci China Inf

Sci, 2024, 67: 200403

88 Zhang J Y, Shen J R, Wang Z K, et al. SpikingMiniLM: energy-efficient spiking transformer for natural language under-

standing. Sci China Inf Sci, 2024, 67: 200406

89 Xia Z H, Wan R, Chen J N, et al. Reconfigurable spatial-parallel stochastic computing for accelerating sparse convolutional

neural networks. Sci China Inf Sci, 2023, 66: 162404

90 Sandler M, Howard A, Zhu M, et al. MobileNetV2: inverted residuals and linear bottlenecks. In: Proceedings of Conference

on Computer Vision and Pattern Recognition (CVPR), 2018. 4510–4520

91 He K, Zhang X, Ren S, et al. Deep residual learning for image recognition. In: Proceedings of Conference on Computer

Vision and Pattern Recognition (CVPR), 2016. 770–778

92 Tong W, Liu Y. Recent progress of layered memristors based on two-dimensional MoS2. Sci China Inf Sci, 2023, 66: 160402

93 Zhao Y, Gao M, Liu F, et al. UM-PIM: DRAM-based PIM with uniform & shared memory space. In: Proceedings of

ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA), 2024

94 Tian B, Li Y, Jiang L, et al. NDPBridge: enabling cross-bank coordination in near-DRAM-bank processing architectures. In:

Proceedings of ACM/IEEE 51st International Symposium on Computer Architecture (ISCA), Buenos Aires, 2024. 628–643

95 Yu Z, Liang S, Ma T, et al. Cambricon-LLM: a chiplet-based hybrid architecture for on-device inference of 70B LLM. In:

Proceedings of the 57th IEEE/ACM International Symposium on Microarchitecture (MICRO), 2024, 1474–1488

96 Heo G, Lee S, Cho J, et al. NeuPIMs: NPU-PIM heterogeneous acceleration for batched LLM inferencing. In: Proceedings

of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating, 2024.

722–737

97 Li C, Zhou Z, Zheng S, et al. SpecPIM: accelerating speculative inference on PIM-enabled system via architecture-dataflow

co-exploration. In: Proceedings of the 29th ACM International Conference on Architectural Support for Programming

Languages and Operating, 2024. 950–965

https://arxiv.org/abs/2408.15489
https://doi.org/10.1109/MM.2022.3164651
https://doi.org/10.1109/TCAD.2022.3197500
https://doi.org/10.1007/s11432-021-3407-2
https://doi.org/10.1007/s11432-024-4071-6
https://doi.org/10.1007/s11432-024-4101-6
https://doi.org/10.1007/s11432-021-3519-1
https://doi.org/10.1007/s11432-023-3751-y

	Introduction
	Challenges posed by AI and large models to hardware design
	Compute-intensive operators and memory-intensive operators
	Demands and challenges of large models

	Compute-intensive CIM
	SRAM-CIM
	TranCIM: full-digital bitline-transpose CIM-based sparse transformer accelerator
	A 28 nm 64-kb digital-domain floating-point SRAM-CIM macro
	CR-CIM: a capacitor-reconfigured CIM macro for CNNs and transformers

	eDRAM-CIM
	eDRAM CIM: a 1T1C eDRAM CIM macro
	Calibration-free 15-level/cell eDRAM CIM macro
	eDRAM-LUT-based DCIM macro


	Memory-intensive CIM/NMC
	DRAM NMC
	HBM-PIM
	GDDR6-AiM
	UPMEM PIM

	NVM CIM/NMC
	Samsung smartSSD
	StreamPIM: streaming matrix computation in racetrack memory
	X-Former: in-memory acceleration of transformers


	Challenges and development trends of CIM/NMC in large language model
	Compute-intensive CIM
	Energy efficiency
	Operator types
	System performance
	Advanced material

	Memory-intensive CIM/NMC
	Circuit architecture application level
	Dedicated software architecture

	Development trend of CIM/NMC in LLMs

	Conclusion

