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Abstract Multimodal large language models (MLLMs) have recently demonstrated notable progress in understanding

diverse visual context. Nevertheless, the overall performance of these large vision-language connecting models is highly

related to a smaller vision-language pre-trained (CLIP) model at low resolution. Currently, this nesting vision-language

alignment paradigm has hindered the development of a distinct vision foundation model for domain-specific multimodal

tasks (e.g., OCR and document perception). In this paper, we explore a native high-resolution vision foundation model

that is specifically designed for both image-level and region-level multimodal language tasks, clearly substituting the low-

resolution CLIP models. Specifically, we introduce TAP-v2, a novel visual tokenizer that encodes general-purpose contextual

information to enable comprehensive perception across diverse visual content.
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1 Introduction

A key design of multimodal understanding is to efficiently and effectively abstract the visual context for
language models. It demands a single vision encoder that is capable of tokenizing excessive regions for
any subsequent visual or language prompts. However, existing methods often focus on either transferring
performant CLIP [1] variants (e.g., SigLIP [2], EVACLIP [3], and InternViT [4]) at low resolution [5–7],
or additionally combing features from the vision-centric encoders (e.g., DINOv2 [8] and SAM [9]) at high
resolution [10–12]. But nevertheless, the CLIP-style pre-trained vision encoders have been examined to
be indispensable [13,14] for visually-conditioned language models (VLMs); even the corresponding visual
representation could hardly capture the small or crowded objects for language understanding.

To enable the fine-grained CLIP visual features at low resolution, recent studies [15–17] coincidentally
focused on split-encode-merge operation to gather the features of cropped sub-images. However,
this revision is cumbersome and poses a new challenge for large language models (LLMs). Specifically,
Refs. [15,17] concatenated features along the sequence dimension, resulting 2k–8k visual tokens to heavily
occupy the multimodal context sequence. On the other hand, Ref. [16] concatenated features along the
embedding dimension, demanding a larger number of attention heads to integrate the incomplete visual
information.

In this work, we explore a native high-resolution and general-purpose visual tokenizer for both image-
level and region-level multimodal language tasks, clearly substituting the coarse-grained CLIP models.
This is achieved by simultaneously enhancing a pre-trained promptable model with curated region and
image captions for language-guided visual tokenization. By leveraging the accurate visual prompting and
versatile language prompting, the massive tokens (∼4k) output from the vision encoder can naturally
gather the high-density and comprehensive visual information for flexible visual and language prompts.

We start by introducing a novel promptable tokenization framework for segmentation, recognition, and
captioning. This requires a unified model capable of abstracting two general-purpose representations, i.e.,
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Figure 1 (Color online) TAPv2 is a unified foundation model capable of understanding any regions or images through flexible

prompts, including points, bounding boxes, sketches, and texts. To achieve region-level understanding, we employ a versatile image

decoder by integrating a single mask token and a corresponding semantic token per predicted mask. For image-level understanding,

we utilize an image projector and an LLM to transform the model into a vision assistant. The model is pre-trained initially on

SA-1B segmentation masks combined with semantic priors derived from an EVACLIP-5B, followed by fine-tuning on a combination

of pre-trained and Visual Genome (VG) data. It is subsequently pre-trained using an LLM on synthetic image captions collected

from LLaVA, SVIT, and ShareGPT4V, and finally fine-tuned on instruction-following data collected by Bunny.

the mask token and semantic token, given flexible prompting that cues any region of interest. We follow
SAM’s architecture, but upgrade the mask decoder into a generic decoder, where an additional semantic
token is produced for each predicted mask. The mask token contributes to pixel-wise segmentation, similar
to SAM, while the semantic token is responsible for region-level semantic prediction. By leveraging a
semantic token, the model can concurrently address an open-vocabulary classification task through an
MLP head, and a promptable captioning task with an auto-regressive text decoder. We refer to this
model as TAP-v2-Base, an acronym for tokenize anything via prompting, as illustrated in Figure 1.

Training such a highly performant and generalizable model necessitates a diverse, large-scale dataset.
Currently, there is no web-scale data source available for simultaneous segmentation and recognition.
SA-1B [9] constructs 1.1 B high-quality mask annotations on 11M images for training a segmentation
foundation model, e.g., SAM. On the other hand, LAION-2B [18] collects 2 B image-text pairs from the
web, facilitating the training of generalizable recognition models, e.g., CLIP. To address the challenge
posed by the lack of aligned data, we introduce the SemanticSA-1B dataset (see Figure 1(c)). This dataset
implicitly integrates web-scale semantics from LAION-2B into SA-1B. Specifically, for each segmentation
mask within SA-1B, we extract its concept distribution over a concept vocabulary as its semantic prior,
which is predicted by a powerful CLIP model trained on massive LAION image-text pairs. As a result,
the SA-1B data, along with LAION-2B priors, contribute to our initial pre-training dataset.

Using the SemanticSA-1B dataset, we firstly pre-train our model with the ground-truth masks and
associated semantics from scratch, effectively integrating CLIP’s capabilities within the TAPv2 archi-
tecture. This is achieved by pre-training a promptable tokenizer simultaneously for segmentation and
concept prediction. To predict the semantic concept for each masked image, we further propose minimiz-
ing the KL divergence loss between the predicted concept distribution and the target distribution, aiming
to maximize the transfer of CLIP knowledge. This joint training loss enables powerful generalization in
both localization and recognition, thereby facilitating general-purpose vision tasks.

We then introduce a region-level multimodal pre-training stage, that enables end-to-end vision-language
binding across supervised region descriptions (e.g., Visual Genome [19] dataset), weakly supervised CLIP
semantics (e.g., EVACLIP-5B [3]), and semi-supervised segmentation masks (e.g., SA-1B [9] dataset).
The mixed supervision can be evenly employed within TAPv2 architecture, performing the unified opti-
mization through versatile and promptable tokenization experts. Consequently, we create the CaptionSA-
400M dataset, a mixture of 40% SemanticSA-1B data and 400% Visual Genome data for pre-training.
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Figure 2 (Color online) The two-stage multimodal pre-training consistently improves TAPv2’s semantic representation at scale.

With the help of CaptionSA-400M dataset, we significantly improve the open-vocabulary classification
and region-level caption performance (Figure 2). This unlocks a promising pathway towards powerful
zero-shot region understanding without unbalanced and handcrafted semantic tags [20, 21].

We introduce an image-level multimodal pre-training stage that enables visual reasoning capabilities
for subsequent visual instruction-tuning (e.g., LLaVA [22]) stage. We refer to this model as TAP-v2-Chat.
Building on recent practices in constructing high-quality image caption datasets [23, 24], we opt for pre-
training TAPv2 on the detailed image caption data, but merely use the COCO [25], Visual Genome [19]
and SA-1B [9] images. To be specific, we collect 232K image captions synthesized by GPT4 [26] or
generated by GPT4-V [27], sourcing from [22, 23, 28]. We train an image captioning model by jointly
optimizing the vision components and language model. This optimal captioning task effectively translates
the region-level visual tokens for text tokens, demonstrating the redundancy of the pre-aligned CLIP
model.

We extensively evaluated our TAPv2 model and its components. TAPv2 demonstrates the strong
zero-shot performance in instance classification, e.g., 67.2 AP on the challenging LVIS [29] benchmark,
while maintaining competitive zero-shot segmentation performance, e.g., 42.6 vs. 43.1 AP for TAPv2 and
SAM. Notably, we set a new record with a CIDEr score of 163.8 in the region caption task on Visual
Genome [19], using significantly fewer parameters compared to the prior studies. When connected with
large language models, TAP shows comparable or even better performance as CLIP, e.g., 62.8 score on the
GQA [30] benchmark and 63.7 score on the SEED-Bench [31]. Our findings demonstrate that tokenized
region-level features are generalizable across both localization and semantic understanding, and can be
directly transferred for image-level comprehension. Above all, we believe the TAPv2 model can be a
versatile image tokenizer, capable of encoding context for a broad range of visual perception tasks (see
Figure 3).

2 Related work

2.1 Vision foundation models

Vision foundation models aim to achieve strong zero and few-shot generalization capabilities across a
broad range of vision tasks. Starting with CLIP [1], which simultaneously trains image and text encoders
with massive image-text pairs to align two modalities, numerous efforts have emerged to train a general-
purpose vision-language representation at scale [3, 32, 33]. In addition, some studies aim to build vision
generalist models [9, 21, 34–36]. For example, SAM [9] introduces a large-scale dataset and trains a
model for promptable segmentation. Concurrent to SAM, SegGPT [35] unifies a variety of segmentation
tasks into one in-context segmentation problem. Some other studies seek to build a generalist model by
leveraging multi-modality datasets [5, 37, 38]. In this work, we aim to build a vision foundation model
that serves as a tokenizer to encode general-purpose visual context for a broad range of multimodal tasks.

2.2 Zero-shot region understanding

Recent studies [39, 40] aim to merge CLIP’s proficiency in open-vocabulary classification with SAM’s
capability in segmentation. For instance, RegionSpot [40] unifies prompting by adding an adapter trained
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Figure 3 (Color online) TAP-v2 accepts flexible prompts and outputs mask, category, caption, and chat response at once.

on detection datasets, enabling SAM’s mask tokens to interact with CLIP’s features derived from masked
image segments. SAM-CLIP [39] distills knowledge from both SAM and CLIP by retraining the visual
encoder with a portion of data sampled for two teachers, retaining the original strengths of both CLIP
and SAM. Some other studies [21, 36, 41] attempted to construct unified models capable of recognizing
objects in arbitrary regions. For example, SEEM [36] is built upon X-Decoder [42], excelling in handling
various types of prompts, including clicks, bounding boxes, scribbles, text, and referring image segments.
Following SAM [9], ASM [21] created a new dataset (AS-1B) for SA-1B [9], constructing rich annotations
of semantic tags, question-answering pairs, and detailed captions. Leveraging this dataset, they develop
a new model, ASM, for panoptic visual recognition. Unlike these models relying on multi-modal datasets,
we leverage segmentation masks from SA-1B and semantic priors from a high-performing CLIP model,
aiming to develop a promptable tokenizer that can understand semantic context for any given region.

2.3 Multimodal visual understanding

With the success of LLMs, many recent studies [12,22–24,37,43,44] shifted toward the multimodal large
language models (MLLMs) for unified visual understanding and reasoning. Flamingo [37], BLIP-2 [43],
and MiniGPT-4 [44] propose to fuse visual tokens to frozen large language models through gated attention
or query transformers. Building upon the pre-trained LLMs with the affordable fine-tuning cost, e.g.,
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Figure 4 (Color online) Overview of promptable tokenization. Building upon SAM’s architecture, we develop a decoder, adding

a semantic token to each predicted mask. Our model is pre-trained on SemanticSA-1B, jointly optimized for concept prediction

and promptable segmentation. Subsequently, the pre-trained tokenizer (in dotted box) is employed for region captioning.

Phi-2 [45] and Vicuna-7B [46], LLaVA [22] and its data-centric variants [12,23,24] directly concatenate the
CLIP visual tokens with language instruction tokens into the LLM, demonstrating remarkable success.
In addition, some other studies [13,14] explored the key design of visual components in MLLMs, mainly
including architecture and optimization. The purpose of this work is to reveal that a region-level visual
tokenizer could naturally be pre-trained into a strong image-level tokenizer for various multimodal tasks.

3 Approach

We emphatically introduce a promptable framework that efficiently enables the segmentation, recog-
nition, and captioning of arbitrary regions of interest. This is achieved by pre-training a promptable
tokenizer that utilizes extensive segmentation masks with CLIP priors, and subsequently expanding the
model’s capabilities to include generative abilities for promptable captioning (Subsection 3.1). We con-
currently introduce a descriptive framework that effectively enables the reasoning of entire regions. This
is achieved by pre-training a captioner that describes massive visual elements with detailed captions, and
subsequently expanding the captioner to follow the complex visual instructions (Subsection 3.2).

3.1 Promptable tokenization

Our primary objective is to align vision and language within a promptable segmentation model to enhance
the model with region-level semantic awareness. To achieve this goal, we introduce our model architecture,
pre-training dataset, and learning method involving concept prediction, promptable segmentation, and
promptable captioning, as well as the pre-training loss, in this subsection.

Model architecture. The region-level tokenizer model comprises three essential modules: an image
encoder, a prompt encoder, and an image decoder (see Figure 4). We maintain SAM’s architecture but
upgrade its mask decoder to a generic decoder. To more efficiently and effectively achieve our objectives,
we make several modifications to SAM’s architecture. Specifically, the image encoder adopts a standard
vision transformer (ViT) [47], where a 16×16 non-overlapping attention window is employed. To alleviate
computational intensity, we substitute the global attention in the image encoder with 3 × 3 residual
convolution blocks [48] and replace the query-based relative position embedding [49] with an index-based
version. Regarding the prompt encoder, we do not add the mask prediction from the previous stage
to the image embeddings, as it introduces discrepancies between the prior prompts (e.g., sketch points)
and advanced prompts (e.g., interactive points). Consequently, all mask embedding layers in the prompt
encoder are removed. In the image decoder, we add an additional semantic token to each predicted mask,
where the mask token is employed for pixel-wise segmentation, and the semantic token contributes to
region-level recognition. Therefore, the image decoder produces a total of 4 masks and 9 tokens: 4 mask
tokens, 4 semantic tokens, and an IoU token.

Pre-training dataset. In contrast to prior methods [21,36,50] reliant on paired or synthetic region-
text data, we align the image segments with language mainly using segmentation data and CLIP priors.
As SA-1B is a class-agnostic dataset, we utilize the high-performing CLIP model, EVA-CLIP [3], to
compute the concept distribution Ptarget as the semantic prior for each image segment within SA-1B. We
first create a label list consisting of 2560 categories collected from various popular image datasets. Then,
we employ a simple prompt template: ‘a {}’ or ‘a photo of a {}’ to generate the text embeddings TC
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using CLIP. Meanwhile, for each masked image segment from SA-1B, we obtain its visual embeddings
VC generated by CLIP. The concept distribution can be defined as

Ptarget = Softmax

(

VC · TC/τ

‖VC‖ · ‖TC‖

)

, (1)

where τ denotes the temperature parameter. Consequently, the segmentation data along with their off-
the-shelf CLIP priors (VC , TC , Ptarget) are stored, constituting our first pre-training dataset, SemanticSA-
1B. To leverage the high-quality but limited region-text data, we further construct another pre-training
dataset for a two-stage pre-training. Specifically, we adopt a mixing recipe that merges ∼4M regions in
the Visual Genome dataset with ∼96M regions in the SA-1B dataset, initiating a core subset CaptionSA-
100M. We randomly sample the full SA-1B dataset to roll out 4 subsets, finally resulting in CaptionSA-
400M for an appropriate pre-training cost (i.e., approximate one epoch SemnaticSA-1B pre-training).

Concept prediction. To enhance our model with semantic awareness, we propose to predict region
concepts using the semantic token. Concretely, we employ the semantic token to obtain the predicted
visual embedding VP , which is further projected to the concept distribution Ppred,

Ppred = Softmax

(

VP · TC/τ

‖VP ‖ · ‖TC‖

)

. (2)

We propose to align the concept distribution between the model’s prediction and CLIP’s target. The
concept alignment loss can be defined as the KL divergence loss between Ppred and Ptarget, represented
as

Lconcept = LKL(Ppred || Ptarget). (3)

Different from feature alignment that typically minimizes the negative cosine similarity between the
predicted visual embedding and CLIP visual embedding, formed as Lfeat=− VP ·VC

‖VP ‖
2

·‖VC ‖
2
, our concept

alignment minimizes Lconcept between two distributions. It measures the similarity between VP and TC ,
drawing VP closer to positive TC , while pushing it away from negative TC . This encourages VP to be
orthogonal, maximizing the transfer of CLIP knowledge.

Promptable segmentation. The mask decoder in SAM’s architecture responds to input prompts to
generate segmentations. We thus consider promptable segmentation as a necessary prelude to unsealing
the semantic capabilities. Following SAM, our model defaults to predicting four masks for each prompt;
yet a routing strategy selects one to resolve the ambiguity. To improve training efficiency on the large-
scale SA-1B dataset, we employ a two-stage sampling strategy with maximal 9 prompt points, as it is
performed within 11 interactive stages in the original SAM. In the first stage, we sample a box or point
with equal probability from the ground-truth mask. In the second stage, we uniformly sample 1–8 points
from the error region between predicted and ground-truth masks. To enable mask as the prompt at the
first stage, an aspect unexplored in SAM, we introduce a non-interactive sampling method with a 50%
probability in the second stage. This sampling uniformly fetches 1–9 points from the ground-truth mask,
providing a wider prompt space. As for mask supervision, a linear combination of focal loss [51] and dice
loss [52] is employed at a 20:1 ratio, following SAM [9].

Promptable captioning. In order to employ the promptable semantic tokens to describe any region,
we append an additional lightweight text decoder at the top of the model. An overview of our text
generation architecture is depicted in Figure 5. We utilize a standard Transformer with an embedding
dimension of 512 to yield the brief region descriptions. This lightweight text decoder is sufficient to
perform mask-to-text translation if prompted with semantic context. Given semantic tokens generated
by the promptable tokenizer (refer to Figure 4), we apply a linear projection to these semantic tokens,
aligning their dimensions with text embeddings (see Figure 5). Subsequently, we place the semantic token
at the leading position of a sequence, followed by a [BOS] token and word tokens. Rotary embedding [53] is
utilized to integrate the positional encoding for multi-modal sequences. We adopt byte-pair encoding [54]
with a 32k token vocabulary. Eventually, we perform the next token prediction through causal language
modeling, employing the cross-entropy loss for the region-level captioning task, denoted as Lcap.

Pre-training loss. Our pre-training loss is the joint loss combining concept prediction, promptable
segmentation and captioning: L = Lconcept + αLseg + βLcap. With this loss, we initiate a promptable
tokenizer on SemanticSA-1B from scratch at the first pre-training stage by setting β to 0. In the second
stage, we experimentally set α, β to (5, 1) on CaptionSA-400M. An overview of our method is illustrated
in Figure 4.
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Figure 5 (Color online) Promptable captioning. A semantic token is used to prompt text generation.

Figure 6 (Color online) Overview of TAPv2-Chat architecture. We append an image projector on top of the image encoder to

connect a large language model (LLM). The model is pre-trained on detailed image caption data, conversationally describing each

visual element in the image. Subsequently, the pre-trained descriptive tokenizer (in dotted box) is employed for instruction-following.

3.2 Descriptive tokenization

Our secondary objective is to straightly align the pre-trained image encoder with a large language model.
In other words, we pursue simultaneous vision and language prompts with two individual decoders, by
seamlessly learning an image-level tokenization space from the original region-level tokenization space. In
this subsection, we introduce the connecting architecture, training methods, and corresponding datasets.

Connecting architecture. Following [55, 56], we append a lightweight convolutional projector on
top of the image encoder for image-level tokenization (Figure 6). This projector employs three 3 × 3
residual blocks to (i) parameter-efficiently merge the 2×2 neighboring patch tokens and (ii) progressively
propagate information across the 4 × 4 partitioned patch windows. The last layer of each residual block
is initialized as zero, such that the initial region-level tokenization is not compromised. The output layer
of projector is a two-layer MLP that is introduced to match the embedding dimension of vision and
language modalities. Training datasets. Since the image encoder is originally pre-trained on high-
resolution images for perceiving diverse visual objects, it becomes clear that it should be further trained
with similar data. In the pre-training stage, we follow this guideline and collect 232k detailed image
captions from three publicly available data sources: LLaVA-Instruct-150K [22], SVIT-core-150K [28],
and ShareGPT4V [23]. Our pre-training dataset includes 118k/70k/20k images from COCO [25], Visual
Genome [19], and SA-1B [9], omitting the low quality data that are learned in EVACLIP-5B priors (e.g.,
LAION-2B [18]). Moving to the supervised fine-tuning stage, we utilize Bunny-695K [24] dataset to
dive into the GPT-4’s open-world knowledge on the abundant objects and regions in the Visual Genome
dataset.

Training methods. We employ a two-stage training strategy. Initially, we prompt a large language
model with only the visual tokens output from the projector, pre-training a universal captioning model.
Subsequently, we concatenate visual tokens and task instruction tokens, tuning the pre-trained cap-
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tioner into a generalist model to harness the multimodal capabilities across conversational and reasoning
tasks. We adopt the cross-entropy loss during both two stages for the next token prediction. Follow-
ing [6,23,56], we optimize the identical components for both the captioning model and generalist model,
including (1) the last k layers of image-encoder, (2) the image projector, and (3) the large language
model. Specifically, we leverage LoRA [57] to consistently fine-tune the large language model for these
longer training schedules.

3.3 Capabilities for inference

After training visual perception on CaptionSA-400M and visual reasoning on Bunny-695K, our model is
capable of conducting classification, segmentation, captioning, and instruction-following simultaneously.
The following outlines the inference pipeline of all TAP’s capabilities.

Mask selection. Given a visual prompt, our image decoder produces 4 masks and 9 tokens. The final
mask and the associated semantic token are selected using a heuristic strategy. Specifically, we choose
the first mask if prompted with a boundary box, and select the top-ranked remainder if prompted with
loose points, akin to a simplified implementation of the mixture-of-experts (MoE) [58].

Concept prediction. The selected semantic token is then utilized for predicting concepts on a
dataset-specific concept vocabulary (e.g., COCO and LVIS). Concretely, we employ the semantic token
to obtain a 1024-dimensional visual embedding through a 3-layer MLP (256→1024→1024). This visual
embedding is further projected to the concept distribution logits (i.e., Ppred) for classification.

Region captioning. We generate up to 40 word tokens with the greedy sampling strategy prompted
by the selected semantic token. To speed up attention computation, we follow a standard practice for
auto-regressive decoding, caching the key and value pairs for the previous generation.

Instruction following. If given the instruction, we prompt a large language model with pre-computed
visual tokens and corresponding instruction tokens to generate answer tokens. We attach each pair of
instruction-answer with the roles USER and ASSISTANT to organize the multi-turn conversations.

4 Experiments

4.1 Experiments setup

Pre-training. We pre-train the region-level tokenizer on SemanticSA-1B and CaptionSA-400M datasets,
which include the SA-1B data along with associated CLIP priors and Visual Genome region captions.
The SA-1B data comprise 11M high-resolution images with around 100 regions per image, totaling
1.1 B segmentation masks. To obtain CLIP priors for SA-1B data, inspired by [50, 59, 60], we uti-
lize EVA-CLIP [3] to generate text embeddings on a curated label space, merging from COCO [25],
ADE20K [61], LVIS [29], Objects365 [62], Visual Genome [19], and OpenImagesV4 [63]. This results in
a concept list spanning 2560 categories. We pre-train the image-level tokenizer with 232k detailed image
captions, sourcing the 208k images from [9,22,25] that contain common objects in their natural context.

Evaluation. We assess zero-shot instance segmentation performance on COCO and LVIS. For zero-
shot instance classification, we prioritize LVIS due to its broader range of 1203 categories compared to
COCO, which covers only 80 common categories, diverging from the open-world assumption. In the
region-level captioning task, regarding the domain gap between SA-1B and Visual Genome (VG) [19], we
evaluate the models that fully fine-tune the text decoder on VG v1.0 train set. We report the following
metrics on the VG test set and RefCOCOg [64] validation set: BLEU@4, METEOR, ROUGE, and
CIDEr. We evaluate multimodal understanding performance on popular benchmarks: VQA-v2 [65] test-
dev split, GQA [30] test-dev-balanced split, TextVQA [66] validation split, MMBench [67] dev split, and
SEED-Bench [31].

Implementation details for TAP-v2-Base. We utilize the AdamW [68] optimizer (β1 = 0.9,
β2 = 0.999) with a base learning rate of 1E−3/1E−4 in all stage1/stage2 experiments. A cosine
learning rate schedule [69] is implemented. During pre-training on SemanticSA-1B/CaptionSA-400M,
scale jitter [70] is applied with a range of [0.5, 2.0] for 180k/45k iterations, using a batch size of
256 across 256 GPUs. We fine-tune VG without augmentation for 60k/36k iterations, with a batch
size of 64 across 64 GPUs. The training experiments were conducted on Cambrion MLU370 devices,
with stage 1 and stage 2 taking approximately 300/80 A100 days. Additional hyper-parameters include
a weight decay of 0.1, a drop path [71] rate of 0.1/0.2/0.2 for ViT-B/ViT-L/ViT-XL, and a dropout [72]
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Table 1 Zero-shot instance classification on LVIS. The supervised training results are italic for reference. We evaluate all entries

using GT boxes to fairly compare detection-based and detection-free methods. The model suffixes ‘-B’, ‘-R50x4’, ‘-L’, ‘-BL’, ‘-XL’,

and ‘-E’ correspond to vision backbone with approximately 0.1, 0.1, 0.3, 0.4, 0.4, and 5 B parameters, respectively. The best results

are in bold.

Model Params (B) Training data AP APR APC APF

Supervised detector:

ViTDet-B 0.1 LVIS 61.9 40.8 58.5 74.9

ViTDet-L 0.3 LVIS 68.8 51.5 65.6 79.9

Image-level CLIP:

CLIP-L 0.3 WIT-400M 48.8 52.8 50.0 45.6

EVA-CLIP-E 5 LAION-2B 64.3 72.4 65.3 59.7

Region-level CLIP:

RegionCLIP-R50x4 0.1 CC-3M 50.7 50.1 50.1 51.7

RegionSpot-BL 0.4 O365, OI, V3D 56.6 50.6 50.2 68.8

Promptable tokenizer with concept prediction:

TAPv2-B 0.1 SemanticSA-1B 57.4 58.6 56.8 57.5

TAPv2-L 0.3 SemanticSA-1B 59.1 61.7 58.9 58.3

Promptable tokenizer with region description:

TAPv2-B 0.1 CaptionSA-400M 61.5 60.6 61.2 62.3

TAPv2-L 0.3 CaptionSA-400M 65.2 66.1 65.3 64.7

TAPv2-XL 0.4 CaptionSA-400M 67.2 69.2 67.4 66.1

rate of 0.1/0.4 for the image/text decoder. The image encoder is initialized from MAE [73] pre-trained
weights, while all other layers are from scratch. For all experiments, we adopt up to 64 prompts per GPU
at each sampling stage.

Implementation details for TAP-v2-Chat. We utilize the AdamW optimizer (β1 = 0.9, β2 =
0.95) with a base learning rate of 1E−3/2E−4 in all stage1/stage2 experiments. A cosine learning rate
schedule is implemented. We pre-train and fine-tune the multimodal data for 2/1 epochs, with a batch
size of 128 across 8 A100 GPUs over the course of 2 days. No weight decay or dropout is applied. The
image projector’s residual blocks are initialized as identities, and the LLM is initialized with pre-trained
weights. We fine-tune the last 4 blocks of the image encoder to reach a satisfactory level of training
efficiency.

4.2 Main results

Zero-shot instance classification. We prompt our model with ground-truth (GT) boxes to evaluate
the recognition capability on LVIS. With GT boxes as visual prompts, our model substantially surpasses
RegionCLIP [60] and RegionSpot [40], which are trained on limited image regions. These promising results
suggest that employing concept prediction on exhaustive image regions can effectively empower SAM with
semantic awareness. As shown in Table 1, the highly performant EVA-CLIP [3] achieves an impressive
AP on rare and common objects. Nonetheless, deploying a standalone CLIP (5 B) model is impractical
for real-time vision systems. We demonstrate that the knowledge of large CLIP models can be integrated
into a compact tokenizer (0.1 B) with acceptable performance. Furthermore, by simultaneously learning
the open-world knowledge from VG captions, TAPv2 achieves significant and consistent improvement on
all object categories, showing a light to resolve the long-tailed classification problem elegantly.

Region-level captioning. We assess our model on Visual Genome [19] and RefCOCOg [64]. Initially,
we utilize GT boxes to prompt the image decoder, and subsequently, we employ the resulting semantic to-
kens to prompt the text decoder. The evaluation results are presented in Table 2 [19,64,74]. Surprisingly,
our model achieves a CIDEr score of 154.7 on Visual Genome, even with a frozen image encoder-decoder
that is pre-trained on SA-1B and has not seen VG images before (‘Stage1-PT’). By adopting a two-stage
multimodal pre-training strategy (‘Stage2-PT’), we achieve a new record with a CIDEr score of 163.9,
only using a lightweight text decoder, while previous approaches [75,76] rely on LLMs such as [46,77,78].
It is noteworthy that the concurrent work ASM [21] is trained on a multi-modal dataset, including a vast
repository of synthetic region-text pairs. In contrast, the semantic knowledge of our model is learnt from
a CLIP model. Another concurrent work, SCA [79], additionally trains a 12-layer image decoder to learn
caption tokens for text prompting. These results suggest that our semantic token effectively encodes
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Table 2 Region captioning on Visual Genome [19] and RefCOCOg [64]. Following [74], we evaluate the generated captions using

GT boxes as the crowded caption regions are out-of-domain for the detection models. The model suffixes ‘-B’, ‘-L’, ‘-XL’, ‘-H’, and

‘-g’ correspond to the vision encoder with approximately 0.1, 0.3, 0.4, 0.6, and 1 B parameters, respectively. The best results are

in bold.

Method VisionEncoder TextDecoder TextPrompt
Visual Genome RefCOCOg

METEOR CIDEr METEOR CIDEr

GRiT ViT-B Small-43M BoxFeature 17.1 142.0 15.2 71.6

GPT4ROI CLIP-H Vicuna-7B BoxFeature 17.4 145.2 – –

ASM ViT-g Husky-7B BoxFeature 18.0 145.1 20.8 103.0

AlphaCLIP ViT-L Vicuna-7B BoxFeature 18.9 160.3 16.7 109.2

SCA SAM-H Llama-3B CaptionToken 17.4 149.8 15.6 74.0

TAPv2 (Stage1-PT) ViT-B Small-38M SemanticToken 17.7 152.3 19.2 93.5

TAPv2 (Stage1-PT) ViT-L Small-38M SemanticToken 17.9 154.7 19.5 95.6

TAPv2 (Stage2-PT) ViT-B Small-38M SemanticToken 18.3 160.2 19.7 97.8

TAPv2 (Stage2-PT) ViT-L Small-38M SemanticToken 18.6 162.9 19.9 99.3

TAPv2 (Stage2-PT) ViT-XL Small-38M SemanticToken 18.6 163.9 20.0 100.2

Table 3 (Color online) Zero-shot instance segmentation on COCO and LVIS. The supervised training results are displayed in

bronze. We evaluate the segmentation masks using the detection boxes from the ViTDet-H model, as outlined in [9]. The suffixes

‘-B’, ‘-L’, ‘-XL’, and ‘-H’ indicate backbones of approximately 0.1, 0.3, 0.4, and 0.6 B parameters, respectively. The best results

are in bold.

Model
COCO LVIS

AP APS APM APL AP APS APM APL APR APC APF

ViTDet-H 51.0 32.0 54.3 68.9 46.6 35.0 58.0 66.3 35.9 46.8 51.1

SAM-B 41.1 28.3 45.6 53.7 40.8 30.1 53.0 58.5 32.6 41.9 43.3

SAM-L 45.5 30.2 50.1 60.4 43.8 31.9 56.7 64.2 34.3 44.7 46.9

SAM-H 46.5 30.8 51.0 61.7 44.7 32.5 57.6 65.5 34.6 45.5 47.8

SAM-B (our impl.) 45.1 28.1 50.1 61.4 42.1 29.3 54.9 64.2 33.2 43.2 44.7

SAM-L (our impl.) 46.0 29.0 50.7 62.2 43.1 30.2 56.0 65.3 33.4 44.2 46.1

TAPv2-B (Stage1-PT) 45.1 28.7 50.1 60.6 42.2 29.5 55.0 64.0 33.6 43.1 45.0

TAPv2-L (Stage1-PT) 46.0 29.1 50.9 62.2 43.0 30.2 55.9 65.1 33.7 44.1 46.0

TAPv2-B (Stage2-PT) 45.9 28.7 50.9 62.2 42.1 28.9 55.1 64.7 33.4 43.2 44.8

TAPv2-L (Stage2-PT) 46.6 29.1 51.9 63.5 42.9 29.4 56.0 65.8 34.1 44.0 45.7

TAPv2-XL (Stage2-PT) 46.9 29.0 52.0 64.1 42.7 29.0 55.8 65.9 33.6 43.7 45.5

sufficient region-level information during pre-training for captioning, supporting our earlier claim that
TAPv2 can function as a location-aware image tokenizer.

Zero-shot instance segmentation. We evaluate our model in zero-shot instance segmentation, a
task at which the original SAM excels. Following a common practice [9, 40], we first obtain detection
boxes from a ViTDet-H model [48]. And subsequently, we utilize these boxes to prompt the image decoder
and compare the segmentation performance (i.e., using the box category) on COCO and LVIS. For a fair
comparison, we report results from both SAM and our reproduction (denoted as our impl.). As depicted
in Table 3, our model achieves comparable segmentation results with SAM across different model scales.
This demonstrates that additional concept prediction tasks do not compromise SAM’s original capability.
Moreover, when the region captioning task is simultaneously introduced (i.e., Stage2-PT), the mask AP
has an increase on the large instances. But in general, segmentation, being an elementary and geometric
task, may not fully exploit the semantic representation in vision foundation models.

Multimodal understanding. We evaluate model’s multimodal perception and reasoning capabilities
across three visual question answering (VQA) benchmarks: VQA-v2 [65], GQA [30], and TextVQA [66],
as well as recently introduced benchmarks MMBench [67] and SEED-Bench [31], which are tailored for
large multimodal models. As shown in Table 4, our pre-trained image encoder can achieve comparable
performance as CLIP and its variants on benchmarks such as VQA-v2 and GQA. However, when applied
to text-rich images in TextVQA and MMBench, our model exhibits inferior performance. We hypoth-
esize that CLIP’s vision encoder has effectively aligned extensive textual content with images, thereby
circumventing the suboptimal data composition of LLaVA-v1.5-mix [15]. When benchmarked on high-
resolution visual understanding tasks, our model outperforms CLIP and its variants on SEED-Bench,
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Table 4 Multimodal understanding performance on popular benchmarks. The model suffixes ‘-L’, ‘-XL’, ‘-SO’, ‘-H’, and ‘-g’

correspond to vision encoders with approximately 0.3, 0.4, 0.4, 0.6, and 1 B parameters, respectively.

Pre-training VisionEncoder LLM VQAv2 GQA VQAT MMB SEED

LLaVA-v1.5 SAM-H Vicuna-7B 57.7 57.0 43.9 – –

LLaVA-v1.5 DINOv2-g Vicuna-7B 76.2 61.9 47.2 – –

LLaVA-v1.5 (LoRA) CLIP-L Vicuna-7B 79.1 63.0 58.2 66.1 60.1

Bunny (LoRA) CLIP-L Phi-2 77.0 60.7 52.6 67.2 61.3

Bunny (LoRA) EVACLIP-L Phi-2 78.9 62.3 49.4 67.4 62.2

Bunny (LoRA) SigLIP-SO Phi-2 79.8 62.5 – 68.6 62.5

TAPv2 (LoRA) CLIP-L Phi-2 79.0 62.0 52.4 65.5 61.2

TAPv2 (LoRA) TAP-L Phi-2 78.5 62.5 47.6 59.8 63.3

TAPv2 (LoRA) TAP-XL Phi-2 79.0 62.8 49.0 60.4 63.7

Table 5 Ablation study on pre-training loss and text prompt. Default settings are italic. The best results are in bold.

Model Pre-train TextPrompt
VG Caption Segmentation

BLEU@4 METEOR ROUGE CIDEr APCOCO APLVIS

Model A Lseg MaskToken 8.8 13.2 29.0 105.2 46.1 43.2

Model B Lseg, Lconcept MaskToken 11.1 16.6 34.0 138.9 46.0 43.0

Model C Lseg, Lfeat SemanticToken 11.4 16.9 34.7 143.1 46.0 43.1

Model D Lseg, Lconcept SemanticToken 12.4 17.9 36.2 154.7 46.0 43.0

Table 6 (Color online) Ablations on pre-training tasks for zero-shot classification. Default tasks are italic. The best results are

in bold. The magnitude of the increase relative to the baseline is shown in green.

VisionEncoder Pre-train
COCO LVIS

AP APS APM APL AP APR APC APF

ViT-L Lseg, Lfeat 62.0 44.5 69.9 75.4 39.1 35.5 37.4 42.7

ViT-L Lseg, Lconcept 77.0 (+15.0) 60.0 83.7 90.0 59.1 (+20.0) 61.7 58.9 58.3

highlighting the image encoder’s effectiveness in capturing fine-grained visual details.

4.3 Ablation study

Pre-training loss. Ablation studies on pre-training loss are shown in Tables 5 and 6, where Lseg, Lfeat

and Lconcept represent the pre-training with segmentation, feature prediction, and concept prediction, re-
spectively (Subsection 3.1). As presented in Table 5, caption metrics are remarkably low when pre-trained
with Lseg alone (Model A). When combined with semantic prediction (Model B/C), caption performance
sees a significant improvement. Despite showing semantic awareness, feature prediction is inferior to con-
cept prediction in both classification and captioning tasks. These findings indicate that a concept space
is crucial for acquiring CLIP priors. We consider that the concept space has efficiently facilitated the
model’s learning of negative text embeddings (i.e., TC) from CLIP. In addition, the segmentation results
presented in Table 5 indicate that pre-training with additional semantic prediction neither enhances nor
compromises the mask AP on COCO and LVIS. This observation also suggests that the SAM’s decoder
architecture could incorporate more task supervision beyond the segmentation mask.

Semantic token. To verify the effectiveness of semantic tokens, we conduct four experiments. First,
we pre-train our model using the loss listed in the ‘Pre-train’ column. Subsequently, we fine-tune the text
decoder using the items outlined in ‘TextPrompt’, generated from the frozen pre-trained model. Model
A serves as our baseline, pre-trained with only Lseg. Here, the mask token is directly used for the region-
level captioning task, akin to using the original SAM’s output to train the text decoder. Model D is our
default model, jointly optimized with promptable segmentation and concept prediction. The semantic
token is used to prompt the text decoder. As demonstrated in Table 5, semantic tokens consistently
outperform mask tokens in the captioning task while achieving comparable AP in the segmentation task.
Eventually, the semantic token proves to be the most effective. This suggests that semantic tokenization
significantly unlocks the potential of the foundation model, facilitating more perception tasks.

Scaling text decoder. We scale up the text decoder along the depth and embedding dimension to
ablate the caption bottleneck. As shown in Table 7, there is no substantial improvement with an increased
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Table 7 Ablation on the model scale of the text decoder. Default configurations are italic. The best results are in bold.

VisionEncoder
TextDecoder VG caption

Params Depth Dim BLEU@4 METEOR ROUGE CIDEr

ViT-L 20M 6 512 12.0 17.6 35.9 153.2

ViT-L 25M 8 512 12.2 17.7 36.0 153.9

ViT-L 38M 12 512 12.4 17.9 36.2 154.7

ViT-L 43M 6 768 12.3 17.8 36.0 154.2

Figure 7 (Color online) Visualization of understanding open-world knowledge.

Figure 8 (Color online) Visualization of crowd understanding. Best viewed in color with zoom.

model scale on the VG dataset. This suggests that employing larger decoders for region captioning may
not be necessary unless the text length and quantity can be further increased.

4.4 Qualitative results

We qualitatively evaluate TAPv2 using point-based prompts. By simply clicking or prompting with a
grid of points, our model can simultaneously generate the segmentation, category, and description.

Open-world knowledge. Figure 7 showcases the instances that pose challenges in open-world sce-
narios. Due to the subjective nature of vocabulary design, concepts such as ‘pepsi’, ‘cocacola’, ‘dragon’,
‘spider-man’ and ‘whisky’ could hardly be selected via classification. However, our model demonstrates
proficiency in handling these instances, indicating its capability to deal with open-world knowledge.

Crowd understanding. Figure 8 visualizes the crowd regions. Our model can accurately identify and
segment various elements within crowded or bustling environments. The segmentation masks precisely
outline the distinct regions occupied by people, food as well as various uncommon commodities and
stationeries. Furthermore, the accompanying caption provides an overall summary.

5 Conclusion

In this study, we propose two models: TAPv2-Base and TAPv2-Chat. The first one is a promptable
model capable of segmenting, recognizing, and captioning objects within arbitrary regions. To build
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Figure 9 (Color online) Visualization of two failure cases. The first instance demonstrates inconsistent ordering of analogous

concepts, whereas the second highlights a failure in accurate object enumeration.

such a model, we explore a systematic solution that includes (1) two new datasets: SemanticSA-1B and
CaptionSA-400M, (2) a novel framework: promptable tokenization, and (3) an effective learning method:
concept prediction. We then successfully extend it to a descriptive model for general visual perception
and reasoning tasks, and investigate its integration with a large language model to leverage synergies.
As a unified framework, TAPv2 aims to advance segmenting anything towards perceiving anything via
visual prompting and language instruction. We hope this work could inspire the community to develop
more compact and significant vision-language foundation models.

Limitations. Despite its advancements, TAPv2 has two main constraints. It is trained using a human-
curated label space, which still falls short of an open-world assumption. This constraint also leads to
an unstable ranking of similar concepts during inference (Figure 9 left). Additionally, the text decoder,
fine-tuned on a constrained set of region caption data, may limit the model’s scalability and breadth of
vision-language understanding. For example, the object counting cannot be well solved (Figure 9 right).
Expanding the caption data is anticipated to instruct models for complex understandings.
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