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Abstract Recent diffusion-based human image animation techniques have demonstrated impressive success in synthesizing

videos that faithfully follow a given reference identity and a sequence of desired movement poses. Despite this, there are

still two limitations: (i) an extra reference model is required to align the identity image with the main video branch, which

significantly increases the optimization burden and model parameters; (ii) the generated video is usually short in time

(e.g., 24 frames), hampering practical applications. To address these shortcomings, we present a UniAnimate framework to

enable efficient and long-term human video generation. First, to reduce the optimization difficulty and ensure temporal

coherence, we map the reference image along with the posture guidance and noise video into a common feature space by

incorporating a unified video diffusion model. Second, we propose a unified noise input that supports random noised input

as well as first frame conditioned input, which enhances the ability to generate long-term video. Finally, to further efficiently

handle long sequences, we explore an alternative temporal modeling architecture based on a state space model to replace

the original computation-consuming temporal Transformer. Extensive experimental results indicate that UniAnimate achieves

superior synthesis results over existing state-of-the-art counterparts in both quantitative and qualitative evaluations. Notably,

UniAnimate can even generate highly consistent one-minute videos by iteratively employing the first frame conditioning

strategy. Code and models are publicly available at https://unianimate.github.io/.
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1 Introduction

Human image animation [1, 2] is an attractive and challenging task that aims to generate lifelike and
high-quality videos in accordance with the input reference image and target pose sequence. This task
has made unprecedented progress and showcased the potential for broad applications [3–6] with the
rapid advancement of video generation methods [4, 7–13], especially the iterative evolution of generative
models [14–22].

Existing methods can be broadly categorized into two groups. The first group [1, 2, 23, 24] usually
leverages an intermediate pose-guided representation to warp the reference appearance and subsequently
utilizes a generative adversarial network (GAN) [25] for plausible frame prediction conditioning on pre-
viously warped subjects. However, GAN-based approaches generally suffer from training instability and
poor generalization issues [3,26], resulting in non-negligible artifacts and inter-frame jitters. The second
group [3–5, 26–29] employs diffusion models to synthesize photo-realistic videos. For instance, Disco [26]
disentangles the control signals into three conditions, i.e., subjects, backgrounds, and dance moves, and
applies a ControlNet-like architecture [30] for holistic background modeling and human pose transfer.
Animate Anyone [3] and MagicAnimate [4] utilize a 3D-UNet model [31] for video denoising and exploit
an additional reference network mirrors from the main 3D-UNet branch, excluding temporal Transformer
modules, to extract reference image features for appearance alignment. To encode target pose infor-
mation, a lightweight pose encoder is also utilized to capture desired motion characterizations. These
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methods inherit the advantages of stable training and strong transferable capabilities of diffusion models,
demonstrating superior performance to GAN-based approaches [3, 4, 26].

Despite these advancements, the existing diffusion-based methods still have two limitations: (i) they
require an extra reference network to encode reference image features and align them with the main branch
of the 3D-UNet, resulting in increased training difficulty and model parameter count; (ii) they usually
employ temporal Transformers to model the temporal information, but Transformers require quadratic
computations in the temporal dimension, which limits the generated video length. Typical methods [3,27]
can only generate 24 frames, restricting practical deployment. Although the slide window strategy [4]
that employs temporally overlapped local windows to synthesize videos and average the intersection parts
is able to generate longer videos, we empirically observed that there are usually non-smooth transitions
and appearance inconsistencies at the segment connections with the reference image.

To address the aforementioned limitations, we propose the UniAnimate framework for consistent hu-
man image animation. Specifically, we leverage a unified video diffusion model to simultaneously handle
the reference image and noised video, facilitating feature alignment and ensuring temporally coherent
video generation. Additionally, to generate smooth and continuous video sequences, we design a unified
noised input that allows random noised video or first frame conditioned video as input for video syn-
thesis. The first frame conditioning strategy can generate subsequent frames based on the final frame
of the previously generated video, ensuring smooth transitions. Moreover, to alleviate the constraints
of generating long videos at once, we utilize temporal Mamba [32–34] to replace the original temporal
Transformer, significantly improving the efficiency. By this means, UniAnimate can enable highly con-
sistent human image animation and is able to synthesize long-term videos with smooth transitions, as
displayed in Figure 1. We conduct a comprehensive quantitative analysis and qualitative evaluation to
verify the effectiveness of our UniAnimate, highlighting its superior performance compared to existing
state-of-the-art methods.

2 Related work

This work is highly relevant to the fields of video generation, human image animation, and temporal
coherence modeling. We will give a brief discussion of them below.

Video generation. Recent success in the diffusion models has remarkably boosted the progress of text-
to-image generation [14, 30, 35–42]. However, generating videos from input conditions is a considerably
more challenging task than its image counterpart due to the higher dimensional properties of video [8,9].
Different from static images, video exhibits an additional temporal dimension, comprising a sequence
of frames, which is crucial for understanding dynamic visual content and textual input. In order to
model spatio-temporal dependencies, Make-A-Video [8] and ModelscopeT2V [43] adopt the 3D-UNet
framework, which is a temporal extension of 2D-UNet [44] by integrating temporal layers such as temporal
Transformers. This paradigm has also been widely followed in subsequent work [15,18,45–57]. SEINE [57]
leverages random mask strategy to interpolate videos and can be extended to image-to-video generation.
However, SEINE does not support the coordination of the first frame with the reference frame and poses
during image-to-video generation. In pursuit of higher controllability both spatially and temporally,
some techniques such as Gen-1 [58] and VideoComposer [16] attempt to introduce additional guided
conditions, e.g., depth maps and motion vectors, for controllable general video synthesis [20, 21, 59–61].
In this work, we concentrate on the human-centered image animation task, which requires precise control
of both human-related appearance attributes and the desired target pose motion to create plausible
videos.

Human image animation. Animating human images along with the driving pose sequence is a
challenging yet useful video creation task. With the rapid development of generative networks, vari-
ous approaches have been proposed. Previous studies [62–65] mainly focused on exploring GAN-based
generation, typically leveraging a motion network to predict dense appearance flows and perform fea-
ture warping on reference inputs to synthesize realistic images that follow the target poses. However,
these techniques often suffer from instability training and mode collapse issues [3], struggling to precisely
control the generated human motions and yield sub-optimal synthesis quality. As a result, extensive
efforts [3–5, 26, 27, 29, 66, 67] start to establish image animation architectures on diffusion models [14, 40]
due to their superior training stability and impressive high-fidelity results through an iterative refining
process. For instance, Disco [26] develops a hybrid diffusion architecture based on ControlNet [30] with
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Figure 1 (Color online) Example videos synthesized by the proposed UniAnimate. Given a reference image and a target pose

sequence, UniAnimate can generate temporally consistent and high-quality character videos that seamlessly adhere to the input

conditional guidance. Note that our method is not trained on any cartoon character dancing videos, displaying excellent cross-

domain transfer capability. In addition, by iteratively employing the first frame conditioning strategy, UniAnimate can generate

high-fidelity one-minute videos.

disentangled control of human foreground, background, and poses to allow composable human dance
generation. MagicAnimate [4] and Animate Anyone [3] take advantage of video diffusion models for
enhanced temporal consistency and introduce a two-stage learning strategy to decouple appearance align-
ment and motion guidance respectively. Commonly, existing diffusion-based frameworks usually build
on a ControlNet-like 3D-UNet model [3, 15, 30] to maintain temporal coherence and introduce a refer-
ence encoder, which is a replica of 3D-UNet excluding the temporal Transformer layers, to preserve the
intricate appearance of the reference image. Although promising, these advances often require multiple
separate networks with non-negligible parameters, leading to increasing optimization difficulties, and face
challenges in long-term video generation due to the quadratic complexity of the temporal Transformer.
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Temporal coherence modeling. Temporal dynamics analysis plays a pivotal role in many video
understanding tasks [68–70]. Previous work on temporal modeling broadly falls into two categories:
convolution-based [68, 71, 72] and RNN-based [12, 73, 74]. However, convolution-based approaches suffer
from limited receptive fields [75], leading to difficulty in modeling long-range temporal dependencies.
Although RNN-based methods can perceive long-term relations, they encounter the dilemma of unparal-
leled calculation, causing computational inefficiency. To capture non-local associations and enable parallel
calculation, many recent researches [8, 16, 45, 69, 70, 75–83] seek to employ Transformers for sequential
modeling, displaying remarkable performance in various downstream applications, e.g., action recogni-
tion [70,75], action detection [69], and video generation [15,16,43]. Nevertheless, temporal Transformers
still face huge computational costs due to the quadratic complexity, especially when dealing with long se-
quences. Mamba [32], a type of fundamental state space models (SSMs) [84], which conceptually merges
the merits of parallelism and non-locality, has demonstrated convincing potential in a wide range of
downstream natural language processing [32] and computer vision fields [33,85]. Inspired by the excellent
performance and linear time efficiency of Mamba in long sequence processing [33, 34, 85–87], this paper
attempts to introduce Mamba into the human image animation task as a strong and promising alternative
for temporal coherence modeling.

3 Method

Human image animation aims to generate a high-quality and temporally consistent video based on the
input reference image and target pose sequence. The challenges in this task involve maintaining temporal
consistency and natural appearance throughout the generated video. To this end, we present our proposed
UniAnimate, which addresses the limitations of existing diffusion-based methods for consistent and long-
term human image animation. We will first briefly introduce the basic concepts of the latent diffusion
model. Subsequently, the detailed pipeline of UniAnimate will be described.

3.1 Preliminaries of latent diffusion model

The optimization and inference of traditional pixel-level diffusion models [9, 37, 40] require prohibitive
calculations in the high-dimensional RGB image space. To reduce the computational cost, latent diffusion
models [11, 13, 35, 49, 53] propose employing denoising procedures in the latent space of a pre-trained
variational autoencoder (VAE). In particular, a VAE encoder is first employed to embed the input sample
to the down-sampled latent data z0. Subsequently, a Markov chain of forward diffusion process q is defined
to progressively add stochastic Gaussian noise of T steps to the clean latent data z0. The forward diffusion
step can be formulated as

q(zt|zt−1) = N (zt;
√

1− βtzt−1, βtI), t = 1, 2, . . . , T, (1)

where βt ∈ (0, 1) denotes the noise schedule. As t gradually increases, the total noise imposed on the
original z0 becomes more intense, and eventually zt tends to be a random Gaussian noise. The objective
of the diffusion model ǫθ is to learn a reversed denoising process p that aims to recover the desired clean
sample z0 from the noised data zt. The denoising process p(zt−1|zt) can be estimated by ǫθ as the
following form:

pθ(zt−1|zt) = N (zt−1;µθ(zt, t),Σθ(zt, t)), (2)

where µθ(zt, t) is the approximated objective of the reverse diffusion process, and θ means the parameters
of the denoising model ǫθ. In many video generation techniques [3, 16, 31], the denoising model is a 3D-
UNet model [31]. In the optimization stage, a simplified L2 loss is usually applied to minimize the
discrepancies between predicted noise and real ground-truth noise:

L = Eθ

[

‖ǫ− ǫθ(zt, t, c)‖
2
]

(3)

in which c is the input conditional guidance. After the reversed denoising stage, the predicted clean latent
is fed into the VAE decoder to reconstruct the predicted video in the pixel space.
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Figure 2 (Color online) The overall architecture of the proposed UniAnimate. Firstly, we utilize the CLIP encoder and VAE

encoder to extract latent features of the given reference image. To facilitate the learning of the human body structure in the

reference image, we also incorporate the representation of the reference pose into the final reference guidance. Subsequently, we

employ a pose encoder to encode the target driven pose sequence and concatenate it with the noised input along the channel

dimension. The noised input is derived from the first frame conditioned video or a noised video. Then, the concatenated noised

input is stacked with the reference guidance along the temporal dimension and fed into the unified video diffusion model to remove

noise. The temporal module in the unified video diffusion model can be the temporal Transformer or temporal Mamba. Finally, a

VAE decoder is adopted to map the generated latent video to the pixel space.

3.2 UniAnimate

UniAnimate aims to create visually appealing and temporally coherent videos that correspond to the given
reference image and pose sequence. To align the appearance between the given image and the generated
video, we design a unified video diffusion model to embed the reference information and estimated video
content in the shared feature space. In addition to the driving pose sequence, the source pose of the
reference image is also incorporated to provide corresponding spatial position and layout information of
the human body. To ensure long-term video generation, a first frame conditioning strategy is introduced,
and we explore an alternative based on Mamba [32] for temporal coherence modeling. The overall
framework of the proposed UniAnimate is displayed in Figure 2.

Unified video diffusion model. To tackle the problem of temporally consistent human image
animation, we leverage the widely used 3D-UNet structure [16,31,43] for video creation. Unlike previous
human image animation methods that employ two separate networks, namely a referenceNet for encoding
the appearance of the reference image and a main 3D-UNet branch for synthesizing human motion videos,
UniAnimate proposes to take advantage of a unified video diffusion model. This unified structure is able
to jointly encode the appearance of the reference image and synthesize the motion of the generated video.
The advantages of this strategy are twofold: (1) the feature representations of the reference image and the
generated video exist in the same feature space, facilitating appearance alignment, and (2) the parameters
of the framework are reduced, making optimization more feasible. Additionally, different from previous
methods [3, 4], which need to learn character structure information implicitly from the reference image,
we propose to extract the reference skeletal pose from the reference image, explicitly incorporating the
position and layout information of the reference human. Specifically, the reference image is first encoded
into latent space using a VAE encoder, resulting in a feature representation of size C1×h×w, where C1, h,
and w represent the channel, width, and height, respectively. The reference pose is also processed through
a pose encoder, extracting layout information. The reference image and pose features are then fused to
obtain the final reference representation fref with a shape of C × h × w. To incorporate target pose
information, we use a pose encoder to encode the driving pose sequence and concatenate the resulting
driving pose features and the input noised latent to obtain the fused features fv ∈ R

t×C×h×w, where t

means the temporal length. Subsequently, the reference representation fref and the fused features fv are
stacked along the temporal dimension, resulting in combined features fmerge ∈ R

(t+1)×C×h×w. Finally,
the combined features are then fed into the unified video diffusion model for jointly appearance alignment
and motion modeling.

Unified noised input. Due to memory limitations, it is not possible to generate a long video in
a single pass. Instead, multiple short video segments need to be synthesized separately and eventually
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merged into one long video. Typically, existing methods [3, 4] utilize the slide window strategy that
employs temporally overlapped local windows to synthesize short videos and average the intersection
parts to generate longer videos. However, in our experiments (Section 5), we empirically find that this
slide window strategy may suffer from discontinuities between segments and usually cannot preserve
appearance consistency with the reference image. To address this issue, we propose a unified noised
input that allows random noised video or first frame conditioned video as input for video synthesis. The
first frame conditioning manner takes the beginning frame of a video as the condition for generating
videos starting from the frame. By leveraging this strategy, the last frame of the previous short video
segment can be used as the first frame of the next segment, enabling seamless and visually coherent long-
term animation. The first frame conditioning strategy offers two advantages: (1) it supports user-defined
input images as the starting frame, combined with the target pose sequence for human image animation,
and (2) it is able to generate consistent long videos with smooth transitions by iteratively employing the
first frame conditioning strategy.

Temporal modeling manners. Previous methods [3,4,16,31] usually employ temporal Transformers
to model the motion patterns in the video. While these methods have shown impressive progress, the
quadratic complexity relationship between temporal Transformers and input video length limits the video
length that can be generated in a single segment. In this paper, we explore a new temporal modeling
approach called temporal Mamba [32–34] for the human image animation task. Mamba [32] is commonly
treated as a type of linear time-invariant system that can map a sequential input x(s) ∈ R

L to a response
state y(s) ∈ R

L and can be typically formulated as

h′(s) = Ah(s) +Bx(s),

y(s) = Ch(s),
(4)

where A, B, and C are parameter matrices, and h(s) is a hidden state. In the application, a discretized
version of Mamba that adopts a bidirectional scanning mechanism [33] is leveraged by us to handle
temporal dependencies. Temporal Mamba exhibits a linear complexity relationship with the generated
video length. As will be demonstrated in the experimental section, performance of temporal Mamba
surpasses or matches that of temporal Transformers, while requiring less memory consumption.

Training and inference. During training, we follow the conventional video generation paradigm [16,
31] and train the model to generate clean videos by estimating the imposed noise. To facilitate the multi-
condition generation, we introduce random dropout to the input conditions (e.g., the first frame and
reference image) at a certain ratio (e.g., 0.5). At the inference stage, our UniAnimate supports human
video animation using only a reference image and a target pose sequence, as well as the input of a first
frame. To generate long videos composed of multiple segments, we utilize the reference image for the first
segment. For subsequent segments, we use the reference image along with the first frame of the previous
segment to initiate the next generation.

4 Experiments

In this section, we first describe the experimental setups of UniAnimate. Afterward, a comprehensive
qualitative and quantitative evaluation with existing state-of-the-art techniques will be implemented to
validate the effectiveness of the proposed method in generating temporally smooth videos for the human
image animation task.

4.1 Experimental setups

Datasets. Following previous studies [2, 3, 88], the comparative experiments are conducted on two
standard and widely-used datasets, namely TikTok [88] and Fashion [2]. The TikTok dataset consists
of 340 training videos and 100 testing videos. Each video has a duration of 10–15 s. To ensure a fair
comparison, we follow the settings of prior methods [3,4,26], where 10 videos from the test set are selected
for both qualitative and quantitative comparisons. Fashion is a dataset with simple and clean backgrounds,
containing 500 training videos and 100 testing videos, with each video covering approximately 350 frames.
To enhance the robustness and generalization of our model, similar to [3, 27], we additionally collect
around 10k TikTok-like internal videos. It is worth noting that, to enable fair comparisons with existing
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Table 1 Quantitative comparison with existing methods on the TikTok dataset. “PSNR*” indicates that the modified metric is

applied to avoid numerical overflow. The best results are in bold. ↑ means the higher the better and ↓ means the opposite. The

second best results are underlined. The modified metric is at https://github.com/Wangt-CN/DisCo/issues/86.

Method L1 ↓ PSNR ↑ PSNR* ↑ SSIM ↑ LPIPS ↓ FVD ↓

FOMM [62] (NeurIPS19) 3.61E−04 – 17.26 0.648 0.335 405.22

MRAA [64] (CVPR21) 3.21E−04 – 18.14 0.672 0.296 284.82

TPS [65] (CVPR22) 3.23E−04 – 18.32 0.673 0.299 306.17

DreamPose [29] (ICCV23) 6.88E−04 28.11 12.82 0.511 0.442 551.02

DisCo [26] (CVPR24) 3.78E−04 29.03 16.55 0.668 0.292 292.80

MagicAnimate [4] (CVPR24) 3.13E-04 29.16 – 0.714 0.239 179.07

Animate Anyone [3] (CVPR24) – 29.56 – 0.718 0.285 171.90

Champ [27] (ArXiv24) 2.94E-04 29.91 – 0.802 0.234 160.82

UniAnimate 2.66E−04 30.77 20.58 0.811 0.231 148.06

methods, we train our UniAnimate solely on the TikTok and Fashion benchmarks without incorporating
extra videos and report experimental results in Subsections 4.2 and 4.3.

Detailed implementation. In the experiments, we use DWpose [89] to extract pose sequences for
model optimization. The visual encoder of the multi-modal CLIP-Huge model [90] in Stable Diffusion
v2.1 [35] is used to encode the CLIP embedding of the reference image. The pose encoder is composed
of several convolution layers and has a similar structure as STC-encoder in VideoComposer [16]. Like
previous approaches [3,4,27], we employ a pre-trained video generation model [18] for model initialization.
In our experiments, the temporal Mamba architecture is initialized with pre-trained weights derived from
the foundational video model [18] trained on the WebVid10M dataset. The experiments are conducted
on 8–16 NVIDIA A100 GPUs. During the training phase, videos are resized to a spatial resolution of
768×512. We randomly input video segments of uniformly sampled 16 or 32 frames into the model
to learn temporal consistency. We utilize the AdamW optimizer [91] with a learning rate of 5E−5 to
optimize the network. For noise sampling, DDPM [14] with 1000 steps is performed during training. In
the inference stage, we warp the length of the driving pose to roughly align with the reference pose and
adopt the DDIM sampler [40] with 50 steps for accelerated sampling.

Evaluation metrics. We quantitatively evaluate our method using various metrics. In particular,
four widely-used image metrics, namely L1, PSNR [92], SSIM [93], and LPIPS [94], are applied to measure
the visual quality of the generated results. Besides these image metrics, we also leverage the Fréchet video
distance (FVD) [95] as a video evaluation metric, which quantifies the discrepancy between the generated
video distribution and the real video distribution.

4.2 Comparisons with state-of-the-art methods

For a comprehensive evaluation, we compare our proposed method with existing approaches in terms of
both quantitative and qualitative measures. Additionally, a human evaluation is further conducted to
verify the efficacy.

Quantitative comparisons. To validate the effectiveness of our proposed method, we compare it
with existing state-of-the-art approaches, including Disco [26], MagicAnimate [4], Animate Anyone [3],
and Champ [27]. These methods adopt ControlNet-like structures to achieve appearance alignment. As
shown in Table 1, our UniAnimate outperforms existing state-of-the-art competitors across all the evalua-
tion metrics on the TikTok dataset. For example, UniAnimate reaches a FVD of 148.06, achieving the best
video fidelity among recent studies. The quantitative results of both image and video metrics demon-
strate our model’s excellent ability to learn and generate realistic content, highlighting the capability
of UniAnimate to effectively capture and reproduce the underlying data distribution of training samples.
The experiment on the Fashion dataset is also conducted, as illustrated in Table 2 [3,23,24,29,64,65,96,97].
From the comparison, we can observe that UniAnimate exhibits superior structural preservation capacity,
obtaining the best SSIM of 0.940. UniAnimate also achieves impressive performance on other metrics,
and these results collectively reaffirm the ability of UniAnimate to synthesize visually fidelity animations
in the fashion video domain. In addition, unlike other methods that require an extra reference model,
such as Animate Anyone, which requires about 2.1 B parameters, our method only requires about 1.4 B
model parameters, which greatly reduces the model complexity and optimization burden.

Qualitative comparisons. In addition to quantitative measures, we also provide a qualitative com-
parison in Figure 3. We showcase the comparison of UniAnimate with other competitive methods on
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Table 2 Quantitative comparison with existing methods on the Fashion dataset. “w/o finetune” represents the method without

additional finetuning on the fashion dataset. “PSNR*” indicates that the modified metric1) is applied to avoid numerical overflow.

The best results are in bold. The second best results are underlined. ↑ means the higher the better and ↓ means the opposite.

Method PSNR ↑ PSNR* ↑ SSIM ↑ LPIPS ↓ FVD ↓

MRAA [64] (CVPR21) – – 0.749 0.212 253.6

TPS [65] (CVPR22) – – 0.746 0.213 247.5

DPTN [24] (CVPR22) – 24.00 0.907 0.060 215.1

NTED [96] (CVPR22) – 22.03 0.890 0.073 278.9

PIDM [97] (CVPR23) – – 0.713 0.288 1197.4

DBMM [23] (ICCV23) – 24.07 0.918 0.048 168.3

DreamPose [29] (ICCV23) – – 0.885 0.068 238.7

DreamPose w/o finetune [29] (ICCV23) 34.75 – 0.879 0.111 279.6

Animate Anyone [3] (CVPR24) 38.49 – 0.931 0.044 81.6

UniAnimate 37.92 27.56 0.940 0.031 68.1

Figure 3 (Color online) Qualitative comparison with existing state-of-the-art methods on the TikTok dataset. Three typical

state-of-the-art methods namely MagicAnimate [4], Anymate Anyone [3], and Champ [27] are compared.

the TikTok test set. The results of Animate Anyone [3] are obtained by leveraging the publicly available
reproduced code1). From the visualizations, we can observe that MagicAnimate [4] exhibits instances of
limb generation and appearance misalignment, while Animate Anyone introduces undesirable artifacts.
Champ [27] may produce some artifacts that are discordant, such as unreasonable hand counts. These

1) https://github.com/MooreThreads/Moore-AnimateAnyone.
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Table 3 User study. We ask users to rate the generated video results on the TikTok dataset in terms of visual quality, identity

preservation, and temporal consistency. The best results are in bold. ↑ means the higher the better.

Method Visual quality (%) ↑ Identity preservation (%) ↑ Temporal consistency (%) ↑

MagicAnimate [4] 76 81 82

Animate Anyone [3] 67 84 71

Champ [27] 74 77 85

UniAnimate 85 89 91

Table 4 Ablation study on the TikTok dataset. “PSNR*” indicates that the modified metric is applied to avoid numerical

overflow. “UniAnimate w/o unified VDM” implies a ControlNet-like structure, i.e., two separate networks to encode the appearance

and temporal coherence, respectively. The best results are in bold. ↑ means the higher the better and ↓ means the opposite.

Method L1 ↓ PSNR* ↑ SSIM ↑ LPIPS ↓ FVD ↓

UniAnimate w/o reference pose 3.07E−04 18.45 0.735 0.276 182.41

UniAnimate w/o unified VDM 3.12E−04 18.09 0.712 0.291 205.28

UniAnimate 2.66E−04 20.58 0.811 0.231 148.06

Table 5 Quantitative comparison of different temporal modeling manners on the TikTok dataset. The best results are in bold. ↑

means the higher the better and ↓ means the opposite.

Method L1 ↓ PSNR* ↑ SSIM ↑ LPIPS ↓ FVD ↓

Temporal Mamba 2.47E−04 20.81 0.804 0.222 156.26

Temporal Transformer (default) 2.66E−04 20.58 0.811 0.231 148.06

methods fail to produce satisfactory results. In contrast, the proposed UniAnimate consistently gener-
ates high-quality and coherent pose transfer results that adhere to the input conditions, demonstrating
remarkable controllability. We attribute our advanced performance to the use of a unified video diffusion
model to handle both reference image and noised video simultaneously, resulting in a common feature
space for appearance alignment and motion modeling, facilitating model optimization.

Human evaluation. In order to further assess the performance of our method, we incorporate an
additional human evaluation. We randomly sampled 50 images and pose sequences and used them to
generate videos. The videos are evaluated by 4 different human raters. Each rater is asked to score
based on visual quality, identity preservation, and temporal consistency, with scores ranging from 0.2,
0.4, 0.6, 0.8, and 1.0, with 1.0 (i.e., 100%) being best and 0.2 (i.e., 20%) being very poor. We averaged
the obtained scores to get the final results. The evaluation results are shown in Table 3. The human
evaluation results indicate that our method displays favorable visual aesthetics, reliable controllability,
and enhanced temporal consistency.

4.3 Ablation study

Analysis of network components. To generate temporally consistent videos that are visually aligned
with the given reference image, we introduce a unified video diffusion model. This architecture employs
a shared 3D-UNet to handle both appearance alignment and motion modeling. To further improve the
appearance alignment, we incorporate a reference pose to facilitate understanding of the reference image’s
layout and human structure. We conduct an ablation study on the proposed unified video diffusion model
architecture and the effect of reference pose, as shown in Table 4. The results indicate that each module
contributes significantly to the overall performance improvement. Example cases in Figure 4 further
demonstrate the crucial roles of each module. For instance, removing the reference pose may result in
undesired artifacts such as “disconnected limbs.” On the other hand, the synthesized results may display
appearance inconsistencies (e.g., mismatched backgrounds) with the reference image without the unified
video diffusion model. This can be attributed to the fact that aligning features into the same space
becomes a challenging task with two separate networks. In contrast, our method exhibits remarkable
results in appearance alignment.

Varying temporal modeling manners. In our UniAnimate, we introduce the temporal Mamba as
an alternative component for temporal modeling in the human image animation model. As illustrated
in Table 5, we find that temporal Mamba achieves comparable performance to temporal Transformer,
both providing effective temporal modeling. From the comparative results in Figure 5, we notice that
both temporal Mamba and temporal Transformer exhibit excellent visually appealing results under our
UniAnimate framework, and the generated results are basically close to real videos without any obvious
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Figure 4 (Color online) Ablation study. To ensure a fair comparison, the same random noise is imposed on the baseline methods

and UniAnimate.

Figure 5 (Color online) Generated video examples on the Fashion dataset. Results are generated by UniAnimate with temporal

Mamba and temporal Transformer.

Figure 6 (Color online) Quantitative comparison of different temporal modeling manners about inference memory cost (GB).

“OOM” is short for out of memory. Experiments are conducted on NVIDIA 80G A100 GPUs. Note that inference memory and

training memory are not the same, and training memory will be much larger since extra gradient calculations are involved. The

inference overhead is for the entire framework, including the CLIP encoder and pose encoder.
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Figure 7 (Color online) Qualitative comparison of different long video generation strategies. Existing methods using the slide

window strategy may straggle to synthesize smooth transitions, resulting in discontinuous appearance and inconsistent background.

Figure 8 (Color online) Failure cases. If the person in the reference image is holding objects, the generated video may contain

artifacts or cause objects to be missing. We attribute this to (1) the scarcity of training videos in which people hold objects in

their hands and (2) the lack of explicit conditional guidance to control human-object interactions.

artifacts. Notably, we observe experimentally that temporal Mamba is particularly suitable for handling
long sequences in terms of memory cost, as the computational resource overhead grows linearly with time,
as shown in Figure 6. We hope that this proposed temporal modeling mechanism can lay the foundation
for future research in this domain, especially long-range temporal modeling.

5 Long video generation with smooth transitions

To enable the generation of long videos, we incorporate the unified noised input that supports first frame
conditioning, which allows us to continue generating subsequent video frames by leveraging the final frame
of the previously generated segment and the reference image. As illustrated in Figure 7, we compare our
first frame conditioning solution with the slide window strategy used in [4] and observe that the slide
window strategy may suffer from unsatisfactory transition results, such as discontinuous appearance and
inconsistent background. We attribute this to the fact that the input pose sequence and the difficulty of
denoising are different between two adjacent windows, so directly averaging the intersecting parts may
damage the generated results and bring in artifacts. In contrast, the first frame conditioning technique
used in our UniAnimate can keep the last frame of the previous segment the same as the beginning frame
of the following segment, thus achieving a smooth transition.
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6 Limitations

Although UniAnimate achieves superior results compared to existing state-of-the-art approaches, there
are still some limitations. (i) Generating realistic and fine-grained details in facial and hand regions
(see the second line of Figure 8) remains challenging. (ii) During the long video generation process, the
completion of invisible parts by different video segments may be inconsistent. This inconsistency can
occasionally lead to temporal artifacts, disrupting the overall continuity of the generated videos. (iii) If
the character in the reference image is holding objects, the generated video may contain artifacts or cause
objects to be missing, as displayed in Figure 8. We attribute this to the scarcity of training videos in which
people hold objects in their hands and the lack of explicit conditional guidance to control human-object
interactions. In the future, we will focus on collecting high-quality HD videos and designing cross-segment
interaction strategies to achieve more consistent human image animation results.

7 Conclusion

In this paper, we presented UniAnimate, a novel approach for generating high-fidelity, temporally smooth
videos for human image animation. By introducing the unified video diffusion model, the unified noised
input, and temporal Mamba, we address the appearance misalignment limitation of existing methods and
achieve improved video generation quality and efficiency. Extensive experimental results quantitatively
and qualitatively validate the effectiveness of the proposed UniAnimate and highlight its potential for
practical application deployment.
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