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Abstract Compared to traditional sentiment analysis, which only considers text, multimodal sentiment analysis needs

to consider emotional signals from multimodal sources simultaneously and is therefore more consistent with the way how

humans process sentiment in real-world scenarios. It involves processing emotional information from various sources such as

natural language, images, videos, audio, and physiological signals. However, although other modalities also contain diverse

emotional cues, natural language usually contains richer contextual information and therefore always occupies a crucial

position in multimodal sentiment analysis. The emergence of ChatGPT has opened up immense potential for applying large

language models (LLMs) to text-centric multimodal tasks. However, it is still unclear how existing LLMs can adapt better to

text-centric multimodal sentiment analysis tasks. This survey aims to (1) present a comprehensive review of recent research in

text-centric multimodal sentiment analysis tasks, (2) examine the potential of LLMs for text-centric multimodal sentiment

analysis, outlining their approaches, advantages, and limitations, (3) summarize the application scenarios of LLM-based

multimodal sentiment analysis technology, and (4) explore the challenges and potential research directions for multimodal

sentiment analysis in the future.
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1 Introduction

Text-based sentiment analysis is a crucial research task in the field of natural language processing, aiming
at automatically uncovering the underlying attitude that we hold towards textual content. However,
humans often process emotions in a multi-modal environment, which differs from text-based scenarios in
the following ways.

(1) Humans have the ability to acquire and integrate multimodal fine-grained signals.
Humans often find themselves in multimodal scenarios, manifested as seamlessly understanding others’
intentions and emotions through the combined effects of language, images, sound, and physiological
signals. When processing emotions, humans have the ability to sensitively capture and integrate fine-
grained sentiment signals from multiple modalities, and correlate them for emotional reasoning.

(2) Multimodal expression ability. The ways in which humans express emotions include language,
facial expressions, body movements, and speech. For example, in daily conversations, our natural lan-
guage expressions may be vague (such as someone saying “okay”), but when combined with other modal
information, like visual modalities (e.g., a happy facial expression) or audio modalities (e.g., a prolonged
intonation), the emotions expressed are different.

It is evident that the study of sentiment analysis within a multimodal context brings us closer to
authentic human emotion processing. Research into multimodal sentiment analysis technologies [1,2] with
human-like emotion processing capabilities will provide technical support for real-world applications such
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Figure 1 (Color online) Organization of the review article.

as high-quality intelligent companions, customer service, e-commerce, and depression detection. In recent
years, large language models (LLMs) [3–5] have demonstrated astonishing human-machine conversational
capabilities and showcased impressive performance across a wide range of natural language processing
tasks, indicating their rich knowledge and powerful reasoning abilities. At the same time, large multimodal
models (LMM) that increase the ability to understand modalities such as images also provide new ideas for
multimodal-related tasks. They can directly perform tasks with zero-shot or few-shot context learning,
requiring no supervised training [6–9]. While there have been some attempts to apply LLMs in text-
based sentiment analysis [6, 10–13], there is a lack of systematic and comprehensive analysis regarding
the application of LLMs and LMMs in multimodal sentiment analysis. Therefore, it remains unclear to
what extent existing LLMs and LMMs can be used for multimodal sentiment analysis.

Given the crucial role of natural language in multi-modal sentiment analysis and its essential input for
current LLMs and LMMs, we concentrate on text-centric multimodal sentiment analysis tasks that can
leverage LLMs to enhance performance, such as image-text sentiment classification, image-text emotion
classification, and audio-image-text (video) sentiment classification. In this work, we aim to provide a
comprehensive review of the current state of text-centric multimodal sentiment analysis methods based
on LLMs and LMMs. Specifically, we focus on the following questions. (1) How do LLMs and LMMs per-
form in a variety of multimodal sentiment analysis tasks? (2) What are the differences among approaches
to utilize LLMs and LMMs in various multimodal sentiment analysis tasks, and what are their respec-
tive strengths and limitations? (3) What are the future application scenarios of multimodal sentiment
analysis?

To this end, we first introduce the tasks and the most recent advancements in text-centric multimodal
sentiment analysis. We also outline the primary challenges faced by current technologies and propose
potential solutions. We examine a total of 14 multimodal sentiment analysis tasks, which have tradi-
tionally been studied independently. We analyze the distinct characteristics and commonalities of each
task. The structure of the review study is depicted in Figure 1. Since LMMs are also based on LLMs,
for convenience of presentation, the methods based on LLMs below include methods based on LMMs.

The rest of the sections of this paper are organized as follows. Section 2 introduces the background of
LLMs and LMMs. In Section 3, we conduct an extensive survey on a wide range of text-centric multimodal
sentiment analysis tasks, detailing the task definitions, related datasets and the latest methods. We also
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summarize the advantages and advancements of LLM compared to previous techniques in multimodal
sentiment analysis tasks in Section 4, as well as the challenges still faced. In Section 5, we introduced
the prompt settings, evaluation metrics, and reference results related to LLM-based text-centric multi-
modal sentiment analysis methods. In Section 6, we look forward to the future application scenarios of
multimodal sentiment analysis, followed by concluding remarks in Section 7.

2 Large language models background

2.1 Large language models

Generally, LLMs refer to transformer models with hundreds of billions (or more) of parameters, which
are trained on large amounts of text data at a high cost, such as GPT-3 [3], PaLM [14], Galactica [15],
and LLaMA2 [16]. LLMs typically possess extensive knowledge and demonstrate strong abilities in
understanding, generating natural language, and solving complex tasks in practice. LLMs exhibit some
abilities that are not present in small models, which is the most prominent feature that distinguishes
LLM from previous pre-trained language models (PLMs), for example, in-context learning (ICL) capacity.
Assuming that the language model has been provided with natural language instructions and several task
demonstrations, it can generate the expected output of the test instance by completing the word sequence
of the input text without additional training or gradient updates. Instruction following. By fine-tuning
the mixture of multi-task datasets formatted through natural language descriptions (known as instruction
adaptation), LLM performs well on unseen tasks also described in instruction form. Through fine-tuning
instructions, LLM is able to follow task instructions for new tasks without using explicit examples,
thus improving generalization ability. Step-by-step reasoning. For small language models (SLMs), it
is often difficult to solve complex tasks involving multiple reasoning steps, such as mathematical word
problems. Instead, using the chain-of-thought (CoT) cueing strategy [17–19], LLMs can solve such tasks
by leveraging a cueing mechanism that involves intermediate reasoning steps to derive the final answer.

There have been some preliminary attempts to evaluate LLMs for text sentiment analysis tasks. In [6],
the authors observed that the zero-shot performance of LLMs can be compared with fine-tuning BERT
models [20]. In addition, in [11], the authors conducted preliminary research on some sentiment analysis
tasks using ChatGPT, specifically studying its ability to handle polarity changes, open-domain scenarios,
and emotional reasoning problems. In [12], the authors comprehensively tested the effectiveness of LLMs
in text sentiment analysis datasets. In [21], the authors tested the effectiveness of commercial LLMs
on a multimodal video-based sentiment analysis dataset. Despite these existing efforts, their scope is
often limited to partial tasks and involves different datasets and experimental designs. Our goal is to
comprehensively summarize the performance of LLMs in the field of multimodal sentiment analysis.

2.2 Large multimodal models

Large multimodal models (LMMs) are created to handle and integrate various data types, such as text,
images, audio, and video. LMMs extend the capabilities of LLMs by incorporating additional modalities,
allowing for a more comprehensive understanding and generation of diverse content. The development of
LMMs is driven by the need to more accurately reflect the multimodal nature of human communication
and perception. While traditional LLMs like GPT-4 are primarily text-based, LMMs are capable of
processing and generating outputs across various data types. For instance, they can interpret visual
inputs, generate textual descriptions from images, and even handle audio data, thus bridging the gap
between different forms of information. One of the critical advancements in LMMs is the ability to create a
unified multimodal embedding space. This involves using separate encoders for each modality to generate
data-specific representations, which are then aligned into a cohesive multimodal space. This unified
approach allows the models to integrate and correlate information from different sources seamlessly.

Notable examples include Gemini [22], GPT-4V, and ImageBind [23]. These models showcase the
ability to process text, images, audio, and video, enhancing functionalities such as translation, image
recognition, and more. In addition to these well-known models, other emerging models are also making
significant strides: BLIP-2 [24] introduces a novel approach to integrate a frozen pre-trained visual encoder
with a frozen large language model using a Q-former module. This module employs learnable input queries
that interact with image features and the LLM, allowing for effective cross-modal learning. This setup
helps maintain the versatility of the LLM while incorporating visual information effectively. LLaVA [25]



Yang H, et al. Sci China Inf Sci October 2025, Vol. 68, Iss. 10, 200101:4

is a represent large multimodal model integrating a pre-trained CLIP [26] visual encoder (ViT-L/14),
the Vicuna [27] language model, and a simple linear projection layer. Its training involves two stages:
feature alignment pre-training, where only the projection layer is trained using 595k image-text pairs
from Conceptual Captions dataset [28], and end-to-end fine-tuning, where the projection layer and LLM
are fine-tuned using 158k instruction-following data and the ScienceQA dataset [29]. This setup ensures
effective integration of visual and textual information, enabling LLaVA to excel in image captioning, visual
question answering, and visual reasoning tasks. Qwen-VL [30] is a strong performer in the multimodal
domain. Qwen-VL excels in tasks such as zero-shot image captioning and visual question answering,
supporting both English and Chinese text recognition. Qwen-VL-Chat enhances interaction capabilities
with multi-image inputs and multi-round question answering, showcasing significant improvements in
understanding and generating multimodal content.

2.3 Usage of large language models

In [31], the authors summarized two paradigms for utilizing LLMs. Parameter-frozen application
directly applies the prompting approach on LLMs without the need for parameter tuning. This category
includes zero-shot and few-shot learning, depending on whether the few-shot demonstrations are required.
Parameter-tuning application refers to the need for tuning parameters of LLMs. This category includes
both full-parameter and parameter-efficient tuning, depending on whether fine-tuning is required for all
model parameters.

In zero-shot learning, LLMs leverage the instruction following capabilities to solve downstream tasks
based on a given instruction prompt, which is defined as

P = Prompt(I), (1)

where I and P denote the input and output of prompting, respectively.
Few-shot learning uses in-context learning capabilities to solve the downstream tasks imitating few-

shot demonstrations. Formally, given some demonstrations E, the process of few-shot learning is defined
as

P = Prompt(E, I). (2)

In the full-parameter tuning approach, all parameters of the model M are fine-tuned on the training
dataset D

M̂ = Fine-tune(M |D), (3)

where M̂ is the fine-tuned model with the updated parameters.
Parameter-efficient tuning (PET) involves adjusting a set of existing parameters or incorporating

additional tunable parameters (like bottleneck adapter [32], low-rank adaptation (LoRA) [33], prefix-
tuning [34], and QLoRA [35]) to efficiently adapt models for specific downstream tasks. Formally,
parameter-efficient tuning first tunes a set of parameters W , denoting as

Ŵ = Fine-tune(W |D,M), (4)

where Ŵ stands for the trained parameters.

3 Text-centric multimodal sentiment analysis tasks

Text-centric multimodal sentiment analysis mainly includes image-text sentiment analysis and audio-
image-text (video) sentiment analysis. Among them, according to different emotional annotations, the
two most common tasks are sentiment classification tasks (such as the most common three label clas-
sification tasks of positive, neutral, and negative) and emotion classification tasks (including emotional
labels such as happy, sad, and angry). Similar to text-based sentiment classification, text-centered multi-
modal sentiment analysis can also be categorized into coarse-grained multimodal sentiment analysis (e.g.,
sentence-level) and fine-grained multimodal sentiment analysis (e.g., aspect-level) based on the granularity
of the opinion targets. Existing fine-grained multimodal sentiment analysis usually focuses on image-text
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Table 1 Categorization and representative methods for text-centric multimodal sentiment analysis.

Category Task Datasets Methods

Image-text

Coarse-grained

Image-text sentiment classification MVSA [36], MEMOTION 2 [37], MSED [38] [39–49]

Image-text emotion classification TumEoM [51], MEMOTION 2 [37], MSED [38] [47–51]

Image-text sarcasm detection MMSD [52], MMSD2.0 [53] [52–64]

Fine-grained

Multimodal aspect term extraction Twitter-15 [65], Twitter-17 [65] [66–72]

Multimodal aspect sentiment classification Multi-ZOL [73], Twitter-15 [65], Twitter-17 [65] [48,49, 65,73–77]

Joint multimodal aspect-sentiment analysis Twitter-15 [65], Twitter-17 [65] [78–87]

Audio-image-text

Video-based sentiment classification

ICT-MMMO [88], CMU-MOSI [89],

CMU-MOSEI [90], CMU-MOSEAS [91],

CH-SIMS [92], CH-SIMS 2 [93], MELD [94]

[58, 95–114]

Video-based emotion classification

MELD [94], IEMOCAP [115], CMU-MOSEI [90],

M3ED [116], MER2023 [117],

EMER [118], ER2024 [119]

[94, 108–113]

[115–119]

Video-based sarcasm detection MUStARD [120] [120–122]

pair data, and includes multimodal aspect term extraction (MATE), multimodal aspect-based sentiment
classification (MASC), and joint multimodal aspect-sentiment analysis (JMASA). Additionally, multi-
modal sarcasm detection has also become a widely discussed task in recent years. Due to the need
to analyze conflicts between different modalities of sentiment, it highlights the importance of non-text
modalities in sentiment judgment in real-world scenarios. We will introduce these tasks in the following
subsections, and summarize them in Table 1 [36–122].

3.1 Basic concepts of multimodal sentiment analysis

Multimodal sentiment analysis (MSA) differs from traditional text-based sentiment analysis in that it
combines multiple modalities, such as images and speech, to enhance the accuracy of sentiment classifi-
cation. The most common multimodal sentiment analysis scenarios include “image-text”, “audio-image”
and “audio-image-text” (video). For example, the sentence “That’s great!” expresses a positive emotion
when analyzed as text alone, but when combined with an eye-rolling expression and a sharp tone of
voice, the overall sentiment is sarcastically negative. Additionally, multimodal scenarios can also extend
to more modalities that can reflect human emotions, such as “physiological signals” (skin conductance,
electromyography, blood pressure, electroencephalography, respiration, pulse, electrocardiogram, etc.).
In the following chapters of this paper, we will primarily focus on key tasks and techniques for text-
centric multimodal sentiment analysis in “image-text” and “audio-image-text” (video) scenarios that can
leverage LLMs. Since the “physiological signals” modality is interdisciplinary, encompassing fields like
neuroscience and psychology, and has wide-ranging application potential, we will also provide a brief
overview of it.

Although multimodal data contains richer information, effectively integrating multimodal information
is a key challenge in current multimodal sentiment analysis tasks. Unlike sentiment expression in text-
only modalities, sentiment expression in a multimodal context has its own particularities. (1) Complexity
of sentiment semantic representation. In multimodal scenarios, sentiment semantics are derived from the
representations of each participating modality. However, each single modality can have various represen-
tation methods, making the selection of which representation to use and how to fuse the representations
from multiple modalities complex. (2) Complementarity of sentiment elements. Due to the participation
of other modalities, the textual modality often has shorter and less informative expressions. Fine-grained
sentiment elements from other modalities can provide effective supplements. (3) Inconsistency in senti-
ment expression. There can be conflicts in sentiment expressions among different modalities in the same
scenario, with irony being the most common example.

Therefore, the core of multimodal sentiment analysis includes independent representation of single-
modal sentiment semantics and fusion of multimodal sentiment semantic representations.

Independent representation of multimodal semantics refers to encoding each type of modality data
separately. The encoding for each modality may take different forms and may not exist in the same
semantic space. With the development of deep learning, deep learning techniques have shown outstanding
performance in fields such as natural language processing, computer vision, and speech recognition. One
of the greatest advantages is that many deep learning models (such as convolutional neural network
(CNN) [123]) and concepts can be used across these three research areas, significantly lowering the
research threshold for researchers and breaking down the barriers to joint representation of multimodal
semantics. Each modality can be represented as vector information through deep learning models, and
simple vector concatenation and addition can achieve the most basic multimodal semantic fusion, which
serves as the basis for completing other multimodal downstream tasks. Additionally, researchers have
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Table 2 Datasets of the text-centric multimodal sentiment analysis task. We use ‘Emotions’ to indicate that the dataset includes

emotional labels, for example, happy, surprise, sad, and angry, and numeric intervals to represent the sentiment scoring annotations

of the dataset.

Dataset Language Source Year Size Modalities Labels

ICT-MMMO [88] English YouTube 2011 340 A+V+T [−2, 2]

IEMOCAP [115] English Shows 2008 10039 A+V+T Emotions

CMU-MOSI [89] English YouTube 2016 2199 A+V+T Neg, Neu, Pos

CMU-MOSEI [90] English YouTube 2018 23453 A+V+T Neg, Neu, Pos and emotions

MELD [94] English Movies, TVs 2019 1443 A+V+T Neg, Neu, Pos and emotions

CH-SIMS [92] Chinese Movies, TVs 2020 2281 A+V+T [−1, 1]

CH-SIMS 2 [93] Chinese Movies, TVs 2022 4406 A+V+T [−1, 1]

M3ED [116] Chinese Movies, TVs 2022 24449 A+V+T Emotions

MER2023 [117] Chinese Movies, TVs 2023 3784 A+V+T Emotions

EMER [118] Chinese Movies, TVs 2023 100 A+V+T Emotions, reasoning

MER2024 [119] Chinese Movies, TVs 2024 6199 A+V+T Emotions

CMU-MOSEAS [91]
Spanish, Portuguese,

German, French
YouTube 2021 40000 A+V+T [−3, 3], [0,3]

UR-FUNNY [125] English Speech video 2023 16514 A+V+T Funny

TumEoM [51] English Tumblr 2020 195264 V+T Emotions

MVSA [36] English Twitter 2021 19598 V+T Neg, Neu, Pos

Multi-ZOL [73] Chinese ZOL.com 2019 5288 V+T [1,10]

MEMOTION 2 [37] English Reddit, Facebook 2022 10000 V+T Neg, Neu, Pos

MSED [38] English
Getty Image, Flickr

and Twitter
2022 9190 V+T Neg, Neu, Pos and emotions

Twitter-2015 [65] English Twitter 2019 5338 V+T Neg, Neu, Pos

Twitter-2017 [65] English Twitter 2019 5972 V+T Neg, Neu, Pos

MMSD [52] English Twitter 2019 24635 V+T Neg, Pos

MMSD2.0 [53] English Twitter 2023 24635 V+T Neg, Pos

MUStARD [120] English Movies, TVs 2021 690 A+V+T Neg, Pos

found that each modality’s representation is an independent modality space representation, residing
in different vector spaces. Although rigid concatenation and addition have shown some effects, their
theoretical significance is hard to justify. Therefore, scholars have begun to think about how to unify
multiple modality representations into the same semantic space. For example, CLIP [26] uses techniques
like contrastive learning and pre-training to obtain unified representations of images and text. This
unified representation of multimodal semantics is also referred to as multimodal semantic fusion.

The fusion of multimodal sentiment semantic representation typically includes feature layer fusion,
algorithm layer fusion, and decision layer fusion [124]. (1) Feature layer fusion (early fusion). This
refers to the straightforward method of feature concatenation directly after extracting features from each
modality. (2) Algorithm layer fusion (model-level fusion). This refers to thoroughly integrating each
modality within different algorithmic frameworks. For example, two modalities can undergo nonlinear
transformations through their respective deep learning models to achieve more abstract representations,
sharing the same loss function to achieve comprehensive modality fusion. (3) Decision layer fusion
(late fusion). This refers to combining each modality’s representations with specific classification tasks to
obtain independent representations for each modality and then using these to make the final classification
decision. These approaches aim to address how to eliminate conflicts between modalities and how to
achieve information complementarity among them.

Table 2 [36–38,51–53,65,73,88–94,115–120,125] provides an overview of 23 widely used datasets related
to text-centric multimodal sentiment analysis. Each dataset is summarized based on aspects such as its
modality composition, scale, and annotation type. This summary offers a comprehensive reference for
understanding the characteristics and applicability of existing multimodal sentiment analysis datasets.

3.2 Image-text sentiment analysis

3.2.1 Coarse-grained level

Image-text coarse-grained sentiment analysis primarily encompasses two tasks: emotion classification
and sentiment classification. Given an image-text pair, the emotion classification task aims to identify
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emotional labels such as happiness, sadness, and surprise, inspired by the text-based emotion classification
task. Sentiment classification aims to identify the sentiment label, which usually includes three categories
(positive, neutral, negative). Problem formalization is as follows.

Given a set of multimodal posts from social media, P = {(T1, V1), . . . , (TN , VN )}, where Ti is the text
modality and Vi is the corresponding visual information, N represents the number of posts. We need to
learn the model f : P −→ L to classify each post (Ti, Vi) into the predefined categories Li. For polarity clas-
sification, Li ∈ {Positive,Neutral,Negative}; for emotion classification, Li ∈ {Angry,Bored,Calm,Fear,
Happy,Love, Sad}.

The earliest image-text sentiment classification models were feature-based. In [40], the authors used
SentiBank to extract 1200 adjective-noun pairs (ANPs) as visual semantic features and employed Sen-
tiStrength [126] to compute text sentiment features for handling multimodal tweet sentiment analysis.
In [41], the authors presented a cross-media bag-of-words model to represent the text and image of a
Weibo tweet as a unified bag-of-words representation. Then some neural network models showed better
performance. In [42, 43], the authors used CNN models to get the representation of text and image.
In [44], the authors believed that more detailed semantic information in the image is important and
constructed HSAN, a hierarchical semantic attentional network based on image caption for coarse-level
multimodal sentiment analysis. MultiSentiNet [45] focused on the correlation between images and text,
aggregating the representation of informative words with visual semantic features, objects, and scenes.
Considering the mutual influence between image and text, Co-Mem [46] is designed to iteratively model
the interactions between visual contents and textual words for multimodal sentiment analysis.

In [39], the authors found that images play a supporting role to text in many sentiment detection cases,
and proposed VistaNet, which instead of using visual information as features only rely on visual informa-
tion as alignment for pointing out the important sentences of a document using attention. With respect
to each image representation fv

j , the goal is to learn the attention weights βj,i for text representations
f t
j :

pj = tanh(Wpf
v
j + bp), (5)

qi = tanh(Wqf
t
i + bq), (6)

vj,i = V ⊤(pj ⊙ qi + qi), (7)

βj,i =
exp(vj,i)∑
i exp(vj,i)

, (8)

where Wp, Wq, bp, bq are learnable parameters, firstly, projecting both image representation and text
representation onto an attention space followed by a non-linear activation function tanh. Then, let the
image projection pj interact with the sentence projection qi in two ways: element-wise multiplication and
summation. The learned vector V plays the role of global attention context.

CLMLF [127] applies contrastive learning and data augmentation to align and fuse the token-level
features of text and image. In addition to focusing on sentiment, emotions are equally important. In [51],
the authors built an image-text emotion dataset, named TumEmo, and further proposed MVAN for
multi-modal emotion analysis. In [47], the authors observed that multimodal emotion expressions have
specific global features and introduced a graph neural network, proposing an emotion-aware multichannel
graph neural network method called MGNNS. MULSER [50] is also a graph-based fusion method that
not only investigates the semantic relationship among objects and words respectively, but also explores
the semantic relationship between regional objects and global concepts, which has also yielded effective
results.

Traditional non-LLM multimodal sentiment analysis methods typically rely on feature fusion. How-
ever, these methods often use lightweight models for textual feature extraction, which lack the ability to
capture deep contextual information and world knowledge. As a result, they face limitations in accurately
interpreting the emotions conveyed by multimodal content such as images and text. The emergence of
large models has significantly improved the understanding capabilities for the text modality and demon-
strated stronger generalization abilities. Multimodal sentiment analysis approaches that leverage LLMs
and LMMs have shown superior performance. For example, WisdoM [128] leverages the contextual world
knowledge induced from the LMMs for enhanced multimodal sentiment analysis. The process involves
three stages. (1) Prompt templates generation. Using ChatGPT to create templates that help LMMs un-
derstand the context better. (2) Context generation. Feeding these templates into LMMs along with the
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sentence and image to generate rich contextual information. (3) Contextual fusion. Combining this con-
textual information with the original sentiment predictions to enhance accuracy, particularly for difficult
samples. A training-free module called contextual fusion is introduced to minimize noise in the contextual
data, ensuring that only relevant information is considered during sentiment analysis. WisdoM signif-
icantly outperforms existing state-of-the-art methods in MSED dataset, demonstrating its effectiveness
in integrating contextual knowledge for improved sentiment classification. In addition, inspired by the
success of textual prompt-based fine-tuning approaches in few-shot scenario, the authors [48] introduced a
multi-modal prompt-based fine-tuning approach UP-MPF, and the authors [49] proposed a prompt-based
vision-aware language modeling (PVLM) for multimodal sentiment analysis.

We summarize the commonly used datasets for coarse-grained image-text sentiment and emotion anal-
ysis, including TumEom, MVSA, MEMOTION 2, and MSED.

TumEmo is a multimodal weak-supervision emotion dataset containing a large amount of image-text
data crawled from Tumblr. The dataset contains 195265 image-text pairs with 7 emotion labels: angry,
bored, calm, fearful, happy, loving, and sad.

MVSA dataset is collected from image-text pairs on the Twitter platform and is manually annotated
with three sentiment labels: positive, neutral, and negative. The MVSA dataset consists of two parts:
MVSA-Single, where each sample is annotated by a single annotator, comprising 4869 image-text pairs,
and MVSA-Multiple, where each sample is annotated by three annotators with three emotion labels,
totaling 19598 image-text pairs. The MVSA corpus is another example of coarse-grained multimodal
sentiment classification dataset.

MEMOTION 2 is a dataset focused on classifying emotions and their intensities into discrete labels.
It includes 10000 memes collected from various social media sites. These memes are typically humorous
and aim to evoke a response. Overall sentiment (positive, neutral, negative), emotion (humour, sarcasm,
offence, motivation), and scale of emotion are all annotated for each meme (0–4 levels).

MSED comprises 9190 pairs of text and images sourced from diverse social media platforms, including
but not limited to Twitter, Getty Images, and Flickr. Each piece of multi-modal sample is manually
annotated with desire category, sentiment category (i.e., positive, neutral and negative) and emotion
category (happiness, sad, neutral, disgust, anger and fear).

3.2.2 Fine-grained level

Image-text fine-grained sentiment analysis focuses on analyzing sentiment elements that are finer than
sentence-level, such as aspect term (a) and sentiment polarity (p), or their combinations. It has received
widespread attention in recent years and mainly includes three subtasks: multimodal aspect term extrac-
tion (MATE), multimodal aspect-based sentiment classification (MASC) and joint multimodal aspect-
sentiment analysis (JMASA). We illustrate the definitions of all the sub-tasks with a specific example in
Figure 2.

Multimodal aspect term extraction. As shown in Figure 2, MATE aims to extract all the as-
pect terms mentioned in a sentence. Given the multimodal input includes a n-words sentence S =
(w1, w2, . . . , wn) and a corresponding image I, the goal of MATE is to predict the label of each word in
scheme yi ∈ {B, I,O}, where B indicates the beginning, I indicates the inside and the end of an aspect
term, O means non-target words.

Inspired by text-based aspect term extraction methods [129–131], MATE approaches usually view
this task as a sequence labeling problem. How to utilize visual information to improve the accuracy of
aspect term recognition is the key to this task. Some studies [67,71] focused on named entity recognition
suggest using ResNet encoding to leverage whole image information to enhance the representation of
each word. Various neural network-based methods have been developed, including those using recurrent
neural networks [67, 68], Transformers [66, 69, 70], and graph neural networks [72]. Conditional random
fields (CRF) are widely used in sequence labeling tasks because CRF considers the correlations between
labels in neighborhoods. For example, an adjective has a greater probability of being followed by a noun
than a verb in POS tagging task. Using Y = (y1, y2, . . . , yn) represents a generic sequence of labels for
input S. Given sequence S, all the possible label sequences Y can be calculated by the following equation:

p(Y |S) =
∏n

i=1 Ω(yi−1, yi, X)∑
y′∈Y

∏n
i=1 Ω(y

′
i−1, y

′
i, X)

, (9)

where Ω(yi−1, yi, X) and Ω(y′i−1, y
′
i, X) are potential functions.
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Figure 2 (Color online) Image-text fine-grained sentiment analysis tasks. The case is sourced from the publicly available Twitter-

2015 [65] dataset, which was collected and released solely for research purposes.

However, these methods are relatively independent and often focus more on entity information while
neglecting the emotional information of the target. Therefore, as research progresses, more scholars in
multimodal scenarios are not only extracting aspect terms but also jointly performing corresponding
sentiment classification.

For example, inspired by the fuzzy span universal information extraction (FSUIE) framework [132],
which emphasizes the representation of short span-length features, DQPSA [133] formulates MATE and
MASC as span recognition tasks within a unified framework, thereby avoiding the complexity of tra-
ditional sequence generation approaches. Rather than relying solely on exact boundary labels, FSUIE
introduces a fuzzy span mechanism, in which span boundaries are represented as probability distributions
instead of fixed positions. Under this formulation, the model produces a distribution q̂ over potential
boundary positions (termed fuzzy boundaries), capturing uncertainty and contextual ambiguity.

The fuzzy span loss is defined as the Kullback-Leibler divergence between the predicted distribution p
and the fuzzy gold distribution q̂, and is integrated into the overall training objective:

LFS = DKL(q̂‖p) =
N∑

i=1

q̂(xi) log
q̂(xi)

p(xi)
, (10)

where p denotes the model’s predicted boundary distribution and q̂ is derived from annotations via the
fuzzy span distribution generator (FSDG). The total loss function combines the original binary cross-
entropy (BCE) loss Lori with the fuzzy span loss, scaled by a weighting coefficient λ:

L = Lori + λLFS. (11)

This approach enables the model to better capture soft boundary information by treating span boundaries
as probabilistic regions rather than fixed points.

As described in [133], the DQPSA framework comprises four main components: a frozen image encoder,
a prompt-as-dual-query module, a text encoder, and an energy-based pairwise expert. To enhance align-
ment between visual input and the analysis target, the prompt-as dual-query module allows prompts to
interact with both image and text modalities, facilitating more accurate information extraction through
visual-textual fusion.
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Furthermore, to capture the semantic dependency between start and end positions within a span,
DQPSA leverages an energy-based model [134] implemented via the energy-based pairwise expert. Rather
than predicting boundary positions independently, this module evaluates spans through pairwise scor-
ing, measuring the stability and compatibility of boundary pairs. By incorporating global span-level
interactions, this design leads to more coherent and accurate span prediction.

Multimodal aspect-based sentiment classification. As shown in Figure 2, MASC aims to identify
the sentiment polarity of a given aspect term in a sentence. Problem formalization as follows: given a
set of multimodal samples S = {X1, X2, . . . , X|S|}, where |S| is the number of samples. And for each
sample, we are given an image V ∈ R

3×H×W where 3, H and W represent the number of channels, height
and width of the image, and an N -word textual content T = (w1, w2, . . . , wN ) which contains an M -word
sub-sequence as target aspect A = (w1, w2, . . . , wM ). The goal of MASC is to learn a sentiment classifier
to predict a sentiment label y ∈ {Positive,Negative,Neutral} for each sample X = (V, T,A).

Different from text-based aspect sentiment classification [135–137], it is challenging to effectively dis-
cover visual sentiment information and fuse it with textual sentiment information. In [73], the authors
constructed the Multi-ZOL dataset for the MASC task. This dataset collects and organizes comments
about smartphones from the ZOL.com business portal website. At the same time, they proposed a multi-
modal interactive memory network (MIMN) based on an attention mechanism to capture the information
interaction between different modalities. In addition, other researchers [65,75] have proposed models like
the LSTM-based ESAFN model and the Transformer-based TomBERT model for the MASC task, en-
hancing the interaction of inter-modal and intra-modal sentiment information is the core of these models.
The TomBERT model treats the hidden states of the target aspect A as queries, and the regional image
features HV as keys and values, such that the target is leveraged to guide the model to align it with the
appropriate regions.

ATTi(A,H
V ) = softmax

(
[WQi

A]T [WKi
HV ]√

d//m

)
[WVi

HV ]T , (12)

where WQi
,WKi

,WVi
∈ Rd/m×d are parameters, m represent the attention head number, d is the input

embeddings dimension.
Compared with other multimodal tasks such as image and text retrieval, the sentiment annotation

used in the MASC task lack strong supervision signals for cross-modal alignment. This issue makes it
difficult for MASC models to learn cross-modal interactions and causes models to learn the bias brought
by the image. In [74], the authors proposed a new method to utilize visual modalities, the image caption
generation module in their model undertakes the task of cross-modal alignment. They convert images
into text descriptions based on the idea of cross-modal translation.

C = Caption Transformer(V ), (13)

where C and Caption transformer denote the output image captions and the transformer-based image
caption generator, respectively. In sentence-pair classification mode, input to pre-trained language model
takes the sentence-pair form

[CLS]wT
1 , w

T
2 , . . . , w

T
T.len[SEP]w

C
1 , w

C
2 , . . . , w

C
C.len[PAD], . . . , [PAD], (14)

where wT
i are the tokens of the input text, and wC

i are the tokens of the image caption. In [76], the
authors continued with the idea of modal transformation and employed facial emotions as a supervised
signal for learning visual emotions.

The pre-trained model SMP [138] employs a pre-training task that considers fine-grained emotional
information. Compared to previous studies that only used single-modal models or fine-tuned multimodal
models without considering emotional information during the pre-training phase, it achieves significant
performance improvements.

As large language models evolve, LLMs and LMMs have been adapted to various tasks [17, 139–141],
yet their application to the MASC task remains at an early stage. In [77], the authors proposed A2II, a
multimodal sentiment analysis model based on instruction tuning. A2II takes a sentence, an associated
image, and an aspect term as input, and aims to predict the sentiment polarity toward the given aspect.

To improve the alignment between visual content and textual aspect, the model first encodes the image
using a visual encoder to obtain global visual features. Then, a Q-Former module is employed to align
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these features with the aspect term, producing a unified multimodal representation. Recognizing that the
image may not always be relevant to the aspect, A2II introduces a plug-and-play instruction selector that
dynamically chooses the most appropriate instruction from a predefined instruction pool based on the
multimodal context. This selected instruction is combined with the input sentence to form an enriched
textual prompt.

Finally, the model fuses the multimodal representation with the instruction-augmented text and feeds
the combined input into a language model to generate the sentiment prediction. This framework enhances
robustness by filtering out irrelevant visual information and tailoring the instruction to the input context,
thereby improving performance in aspect-level multimodal sentiment classification.

Joint multimodal aspect-sentiment analysis. As shown in Figure 2, JMASA aims to extract
all aspect terms and their corresponding sentiment polarities simultaneously. Problem formalization
as follows: given a collection of multimodal sentence-image pairs, denoted as M . Each pair mi ∈ M
comprises a sentence Si = (w1, w2, . . . , wn) and a corresponding image vi. The objective of JMASA is to
predict the corresponding aspect-sentiment pair y = (y1, y2, . . . , yn) for each sentence-image pair. Here,
yi ∈ {B-POS, I-POS, B-NEG, I-NEG, B-NEU, I-NEU} ∪ O. In this case, B refers to the initial token
of the aspect term, I indicates tokens within the specific aspect term and O indicates words “outside”
the specific aspect. Moreover, POS, NEU, and NEG are abbreviations for positive, neutral, and negative
sentiments associated with the specific aspect.

As a pioneer, in [79], the authors proposed joint multimodal aspect-sentiment analysis, which jointly
performs multimodal aspect term extraction and multimodal aspect sentiment classification. Since it is
a joint task with aspect terms extraction and aspect sentiment classification, the authors calculate two
different sets of loss simultaneously as follows:

L = −
k∑

i=1

ysi log p
str
i −

k∑

i=1

yei log p
end
i −

m∑

t=1

ǫ∑

i=1

ypti log p
p
ti, (15)

where ys, ye, yp are one-hot labels indicating golden start, end positions, true sentiment polarity sepa-
rately, and a, m are the number of sentence tokens, aspects respectively.

Benefiting from the advancements in visual-language pre-train models, in [78], the authors have de-
signed multimodal sentiment pre-training tasks and developed a unified multimodal encoder-decoder
architecture pre-training model for JMASA. In [80], the authors utilized a cross-modal multi-task trans-
former (CMMT) to derive sentiment-aware features for each modality and dynamically control the impact
of visual information on textual content during inter-modal interaction. However, the innate semantic
gap between visual and language modalities remains a huge challenge for the use of these methods, in [81],
the authors believed that the aesthetic attributes of images potentially convey a more profound emotional
expression than basic image features and proposed Atlantis. Some scholars [82] have also noticed the
impact of image-text pair quality, finding that many studies have overestimated the importance of images
due to the presence of many noise images unrelated to text in the datasets. Drawing from the concept
of curriculum learning, they proposed a multi-grained multi-curriculum denoising framework (M2DF),
which achieves denoising by adjusting the order of the training data. AOM [83] is designed with an
aspect-aware attention module that simultaneously selects text tokens and image blocks semantically
related to the aspect to detect semantic and emotional information related to the aspect, thereby re-
ducing noise introduced during the cross-modal alignment process. RNG [84] to simultaneously reduce
multi-level modality noise and multi-grained semantic gap, design three constraints: (i) global relevance
constraint (GR-Con) based on text-image similarity for instance-level noise reduction, (ii) information
bottleneck constraint (IB-Con) based on the information bottleneck (IB) principle for feature-level noise
reduction, and (iii) semantic consistency constraint (SC-Con) based on mutual information maximiza-
tion in a contrastive learning way for multi-grained semantic gap reduction. To bridge the semantic gap
between modal spaces and address the interference of irrelevant visual objects at different scales, in [85],
the authors proposed a multi-level text-visual alignment and fusion network (MTVAF).

With the help of LLMs, the JMASA task has also seen further development in recent years. In [86],
the authors observed that converting MASC into a masked language modeling (MLM) task, as done
in PVLM [49] and UP-MPF [48], was not well suited to JMASA and MATE tasks. In response, they
proposed the generative multimodal prompt (GMP) model. More recently, Ref. [87] explored the use of
ChatGPT for in-context learning (ICL) on the JMASA task and proposed a versatile ICL framework to
support both zero-shot and few-shot learning.
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Specifically, the framework includes three key modules: input construction, in-context learning, and a
demonstration exemplar retriever. To prepare inputs, the model first transforms visual content into tex-
tual form by generating image captions and extracting visual entities, entity types, and visual sentiments.
These visual texts are then combined with the original input text. For few-shot scenarios, the framework
employs an entity-aware contrastive learning model to retrieve top-K training samples most similar to the
test instance. This retriever is trained using a scoring function that computes semantic similarity among
samples, allowing for the creation of positive and negative instance pairs used in contrastive learning.

Once the most relevant samples are retrieved, they are used as demonstrations in the ICL prompts,
improving the alignment between the current input and the contextual examples. Compared to ran-
dom demonstration selection, this entity-aware method leads to more effective prompt construction and
ultimately improves performance within multimodal sentiment analysis.

We summarize the commonly used datasets for fine-grained image-text sentiment analysis, including
Multi-ZOL, Twitter-15 and Twitter-17.

Multi-ZOL collects and organizes comments about smartphones from the ZOL.com business portal
website. Multi-ZOL dataset includes sentiment ratings for six aspects, such as price-performance ratio,
performance configuration, battery life, appearance and feeling, photographing effect, and screen. For
each aspect, the comment has an integer sentiment score from 1 to 10, which is used as the sentiment
label.

Twitter-2015 and Twitter-2017 datasets are commonly used datasets for fine-grained image-text
sentiment analysis tasks. These datasets are collected from English tweets on the social media platform
Twitter and are in the form of image-text pairs. The datasets provide annotations for aspects mentioned
in the text. Sentiment labels are categorized into three classes: positive, neutral and negative. Specifically,
the Twitter-2015 dataset contains 5338 tweets with images, while the Twitter-2017 dataset contains 5972
tweets with images.

However, existing benchmark datasets used in the MASC task, such as Twitter-2015 and Twitter-
2017, have shown limitations in supporting true multimodal learning. Recent work by Ye et al. [142]
conducted a comprehensive empirical study and analysis of these datasets. Their findings reveal that the
sentiment polarity of most targets can be determined solely by the text, rendering the visual modality
less informative. Furthermore, a large portion of images in these datasets either lack the target object or
provide noisy, irrelevant visual content. As a result, multimodal models fail to significantly outperform
strong text-only baselines. The authors highlight the urgent need for better-curated datasets where visual
information contributes essential complementary sentiment cues to the textual context.

3.3 Audio-image-text sentiment analysis

Audio-image-text (video) sentiment analysis differs from image-text sentiment analysis in two main as-
pects. (1) Different data emphasis. Existing text-image sentiment datasets are drawn from social media
and e-commerce platforms, covering a wide range of content. In contrast, visual information in video sen-
timent datasets often focuses on the facial expressions and body movements of speakers. (2) Videos can
be considered as temporal sequences of text-image pairs, necessitating considerations of intra-modal emo-
tional factors in audio sequences and video frame sequences, as well as alignment relationships between
text, video frames, and audio over time. Video-based sentiment analysis primarily includes sentiment clas-
sification and emotion classification tasks. Sentiment classification involves three, five, or seven-category
classification tasks, while emotion classification comprises multi-label emotion recognition (where each
sample corresponds to multiple emotion labels) and single-label emotion recognition. Common emotion
labels include happiness, surprise, and anger. Problem formalization as follows.

In audio-image-text sentiment analysis tasks, the input is utterance consisting of three modalities:
textual, acoustic and visual modality, where m ∈ {t, a, v}. The sequences of these three modalities
are represented as triplet (T,A, V ), including T ∈ R

Nt×dt , A ∈ R
Na×da and V ∈ R

Nv×dv where Nm

denotes the sequence length of corresponding modality and dm denotes the dimensionality. The goal of
audio-image-text sentiment analysis tasks is to learn a mapping f(T,A, V ) to infer the sentiment score
ŷ ∈ R.

As the audio-image-text sentiment analysis methods proposed by scholars in recent years generally
cater to both sentiment classification and emotion classification tasks, this paper will review the exist-
ing multimodal sentiment analysis methods around two core themes: cross-modal sentiment semantic
alignment and multimodal sentiment semantic fusion.
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3.3.1 Cross-modal sentiment semantic alignment

Cross-modal sentiment semantic alignment methods aim to explore the associations between emotional
information across different modalities, analyze the corresponding relationships between them (align-
ment relationship modeling), and reduce the semantic distance between representations across modalities
(semantic representation alignment). Cross-modal sentiment semantic alignment methods can help over-
come the challenges brought by the semantic gap of heterogeneous modalities and are a prerequisite for
multimodal sentiment semantic fusion methods. Specifically, by exploring the alignment relationships
between different modal sentient semantic representations, these methods can help the fusion model ig-
nore irrelevant information and focus on modeling effective information. By bringing emotional semantic
representations closer in the representation space, these methods can reduce modal differences between
representations, lower the difficulty of fusion, and increase fusion efficiency. This paper surveys existing
cross-modal sentiment semantic alignment methods and categorizes them into three types based on differ-
ent alignment strategies and purposes: attention-based alignment, contrastive learning-based alignment,
and cross-domain transfer learning-based alignment.

Attention-based alignment. The attention mechanism has been proven to be an effective method
for cross-modal semantic alignment in the field of multimodal learning [143]. Not only can the attention
mechanism learn to adapt the alignment relationships for specific tasks through the optimization of task-
specific objective functions, but it can also provide a degree of interpretability by outputting attention
weights. For example, in the field of image captioning, the attention mechanism focuses on relevant areas
when generating text words [144], demonstrating the alignment relationship between words and image
regions. Inspired by related research in the multimodal learning field, in [104], the authors proposed using
a cross-modal attention mechanism to learn the alignment relationships between pairs of modalities and
developed a transformer-based multimodal sentiment analysis model named MulT. The core of the MulT
model lies in modeling cross-modal alignment relationships by inserting cross-modal attention layers into
the transformer module, allowing dynamic alignment and fusion of fine-grained sentiment information
from various modalities. First, use α and β to represent two different modalities, define the Querys
as Qα = XαWQα

, Keys as Kβ = XβWKβ
, and Values as Vβ = XβWVβ

, where WQα
∈ R

dα×dk ,WKβ
∈

R
dβ×dk and WVβ

∈ R
dβ×dv are weights. The latent adaptation from β to α is presented as the crossmodal

attention Yα := CMβ→α(Xα, XB) ∈ R
Tα×dv :

Yα = CMβ→α(Xα, Xβ) = softmax

(
QαK

⊤
β√

dk

)
Vβ = softmax

(
XαWQα

W⊤
Kβ

X⊤
β√

dk

)
XβWVβ

. (16)

Note that Yα has the same length as Qα, but is meanwhile represented in the feature space of Vβ .
Specifically, the scaled (by

√
dk) softmax computes a score matrix softmax (·) ∈ R

Tα×Tβ , whose (i, j)-th
entry measures the attention given by the i-th time step of modality α to the j-th time step of modality
β. Hence, the i-th time step of Yα is a weighted summary of Vβ , with the weight determined by i-th row
in softmax(·).

Building on the cross-modal attention mechanism designed in MulT, in [105], the authors introduced
the cubic attention mechanism, which generates a three-dimensional attention tensor through parameter
computations, representing the alignment information among the three modal representations.

Contrastive learning-based alignment. Contrastive learning achieves cross-modal representation
alignment by bringing the representations of positive examples closer together and pushing the represen-
tations of negative examples farther apart. A classic model in the field of multimodal learning, CLIP [26],
uses contrastive learning to align the semantic representations of text and image modalities, significantly
enhancing the quality of image representations and achieving excellent results in tasks such as zero-shot
image classification. Inspired by this, the field of audio-image-text sentiment analysis has adopted con-
trastive learning methods for sentiment semantic representation alignment. In [106], the authors proposed
achieving cross-modal emotional semantic alignment by bringing closer the representations of different
modalities within the same sample. In [107], the authors suggested using the text-audio and text-image
modal information of input samples to predict the corresponding image and audio representations of the
samples, then aligning the predicted representations with the actual ones and distancing representations
from different samples, thereby aligning the semantic representations of different modalities within the
same sample. The proposed model contains two key modules, the uni-modal coding drive the model
to focus on informative features, which then implicitly filter out inherent noise and produce robust and
effective uni-modal representation for acoustic and visual modalities.
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Given a batch set Funi = {F 0
u , F

1
u , . . . , F

n−1
u }, noted that there is a single positive key F †

u (as k+)
that each encoded query F i

u (as q, i ∈ [1, n]) matches, while the other representations F j
u (j ∈ [0, n] and

j 6= i) in the same batch are considered as negative key samples k−. With the similarity measured by
dot product, the uni-modal instance contrastive loss Luni in

Lu
uni , − log

exp(q · k+/τ)∑n
i=1 exp(q · qi/τ)

= − E
Funi

[
log

exp(Fu · F †
u/τ)∑n

i=1 exp(Fu · F i
u/τ)

]
, (17)

where τ is a temperature hyper-parameter that controls the probability distribution over distinct in-
stances. Due to u ∈ {a, v}, the final uni-modal instance contrastive loss Luni = La

uni + Lv
uni.

The cross-modal prediction captures commonalities among different modalities and outputs predictive
representation full of interaction dynamics. Each query q has a corresponding key as k+ while the other
representations in the same batch are seen as k−. Similar with uni-modal instance contrastive loss Luni,
the cross-modal instance contrastive loss Lcross is presented as

Lcross , − E
Fcross

[
log

exp(Fc · F+
c /τ)∑n

i=1 exp(Fc · F i
c/τ)

]
, (18)

where Fc\F+
c ∈ {Pu, Gu}, Pu represent the prediction while Gu represent the target, u ∈ {a, v} and

Fcross = {F 1
c , . . . , F

n
c }.

Cross-domain transfer learning-based alignment. The field of cross-domain transfer learning
primarily studies how to align the sample spaces of target domains with those of source domains so that
classifiers trained in the source domains can be directly reused in the target domains. The objectives
of this field align broadly with those of cross-modal sentiment representation alignment, hence some
studies have explored using cross-domain transfer learning methods for sentiment semantic representation
alignment. In [108], considering the rich information content of textual representations, the authors
proposed using deep canonical correlation analysis (DCCA) to align audio and visual representations
with textual representations, thereby enhancing the audio and visual representations. In [97], the authors
explored using a metric-based domain transfer method, utilizing central moment discrepancy (CMD) to
design a loss function that aligns the representations of the three modalities within the same sample. The
overall learning of the model is performed by minimizing

L = Ltask + αLsim + β Ldiff + γ Lrecon, (19)

where α, β, γ are the interaction weights that determine the contribution of each regularization com-
ponent to the overall loss L. Minimizing the similarity loss Lsim reduces the discrepancy between the
shared representations of each modality. This helps the common cross-modal features to be aligned to-
gether in the shared subspace. Difference loss Ldiff is to ensure that the modality-invariant and -specific
representations capture different aspects of the input. As the difference loss is enforced, there remains
a risk of learning trivial representations by the modality-specific encoders. To avoid this situation, the
authors add a reconstruction loss Lrecon that ensures the hidden representations to capture details of
their respective modality. The task-specific loss Ltask estimates the quality of prediction during training.

In [109], the authors have employed adversarial learning methods to align sentiment semantic repre-
sentations across different modalities.

3.3.2 Multimodal sentiment semantic fusion

Multimodal sentiment semantic fusion aims to efficiently aggregate sentiment information from different
modalities to achieve comprehensive and accurate sentiment understanding. The challenge of fusion
lies in how to fully capture the complex interactions among multimodal sentiment semantic information,
thereby facilitating sentiment reasoning and prediction. This paper surveys existing multimodal sentiment
semantic fusion methods and categorizes them into three types: tensor-based fusion, fine-grained temporal
interaction modeling fusion, and pre-trained model-based fusion.

Tensor-based fusion. In the early stages of audio-image-text sentiment analysis research, consid-
ering the small scale of datasets and limited computational resources, researchers represented the raw
inputs of each modality as a single emotional semantic representation before proceeding to multimodal
emotional semantic representation fusion. The simplest fusion strategy was to directly concatenate the
emotional semantic representations of different modalities, but this method did not explicitly model the
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higher-order interactions between emotional information from different modalities. To address this issue,
in [95], the authors proposed using the outer product of vectors to fuse different modal representations,
thereby modeling interactions among unimodal, bimodal, and trimodal emotional semantic representa-
tions simultaneously. However, this method, due to the complexity of the outer product operation being
tied to the product of input vector dimensions, resulted in high computational costs and slow efficiency.

To improve computational efficiency, the authors in [110] proposed the low-rank multimodal fusion
(LMF) method. Instead of directly learning the high-dimensional weight tensor used for modality fusion,
LMF factorizes this tensor into a sum of outer products of low-rank modality-specific matrices. Specif-
ically, the high-order weight tensor is decomposed into several sets of vectors, each corresponding to a
modality, and parameterized with a fixed number of decomposition factors (i.e., rank-r factors). These
modality-specific low-rank factors are then combined using outer products to reconstruct a low-rank
approximation of the original fusion tensor. During forward computation, the fusion result is obtained
by applying this approximated tensor to the modality features. This approach significantly reduces the
number of parameters and computational cost, while still modeling multimodal interactions.

In [111], the authors introduced a three-stage multimodal emotional representation fusion strategy con-
sisting of representation slice grouping, intra-group representation slice fusion, and global representation
fusion. Representation slice grouping involves splitting the representations of each modality into the same
fixed number of small groups, numbering them, and then locally fusing representation slices of the same
number from different modalities together. This approach reduces the dimensions of representations to
be fused later, thereby enhancing fusion efficiency. Intra-group representation slice fusion uses the outer
product method to fuse the representation slices of the three modalities within the group, which, due
to the smaller feature dimensions, significantly speeds up the fusion process. Finally, long short-term
memory (LSTM) networks are used to perform global representation fusion of the different groups after
fusion. This method reduces the computational complexity of the tensor outer product fusion method to
some extent through block processing.

Fine-grained temporal interaction modeling fusion. This type of fusion method focuses on
capturing more localized, fine-grained interactions of multimodal information. These methods first ob-
tain fine-grained representations corresponding to each time step of each modality, and then perform
multimodal sentiment semantic fusion based on these representations to capture the interactions between
cross-modal and cross-temporal sentiment information. In [96], the RAVEN model is a typical method in
this series of research. The authors found that the same words can convey different emotional messages
when accompanied by different tones or expressions. Driven by this motivation, they designed a network
that improves the word representations by dynamically integrating the fine-grained representations of
visual and auditory modalities into each word vector through a cross-modal gating mechanism, thereby
achieving the goal of infusing non-verbal emotional information into word representations. For a word

L(i), the nonverbal shift vector h
(i)
m is calculated as follows:

h(i)
m = w(i)

v · (Wvh
(i)
v ) + w(i)

a · (Wah
(i)
a ) + b

(i)
h , (20)

where Wv and Wa are weight matrices for the visual and acoustic embedding and b
(i)
h is the bias vector.

In [98], considering that audio and visual inputs might contain noise at certain time steps, like back-
ground noise in speech, the authors proposed a reinforcement learning-based gating unit to control the
information fusion between fine-grained representations of different modalities. The gating mechanism al-
lows for dynamic sentiment representation fusion by controlling whether the representation of the current
word incorporates information from a particular modality. Unlike the previous two studies, which focus
on capturing interactions of multimodal fine-grained sentiment representations associated with individual
words, in [112], the authors modelled the feature interactions between multimodal fine-grained sentiment
representations of multiple consecutive words within a window and used a memory neural network to
model global information.

Pre-trained model-based fusion. Pre-trained language models have demonstrated strong language
understanding capabilities, and researchers believe they also hold great potential for multimodal language
understanding. To explore the capabilities of pre-trained language models in the field of multimodal
sentiment analysis, in [99], the authors, inspired by the RAVEN method, designed a gating mechanism
for pre-trained language models. The aim is to inject multimodal information into the intermediate
layer word representations of the pre-trained language models to fully leverage their strong language
modeling capabilities for efficient multimodal emotional understanding. In [113], the authors proposed a
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cross-modal efficient attention mechanism that uses the output representations of pre-trained language
models to compress the input sequences of visual and audio features, thereby enhancing the model’s
computational efficiency.

To effectively extend LLMs and LMMs to multimodal sentiment analysis tasks and address two major
challenges in the field, namely, the low contribution rate of the visual modality and the design of an
effective multimodal fusion architecture, scholars in [114] proposed the VLP2MSA model that integrates
several novel components. Specifically, they introduced a fusion pipeline composed of a text encoder, a
video encoder, a prompt module, a video-text contrastive learning module, and a multimodal integration
encoder. Instead of using preprocessed visual features, their model directly takes raw text and video
frames as input.

To better extract visual information, they developed the inter-frame hybrid transformer, which cap-
tures both facial expressions and body motion features from sparsely sampled video frames, thereby
improving the representation of visual modality. In addition, a video-text prompting mechanism was
designed to generate enhanced text representations by incorporating visual cues through cross-attention
operations. This is intended to simulate the way humans intuitively combine spoken words with visual
cues like facial expressions to detect emotions such as sarcasm. The final video-text representations are
further aligned using a video-text contrastive learning strategy, which maps paired text and video embed-
dings into a shared space, ensuring semantic consistency before multimodal fusion. This fusion strategy
aims to mitigate the adverse effects of modality heterogeneity and promote more accurate sentiment
understanding.

3.3.3 Audio-image-text sentiment analysis datasets

We summarize the commonly used datasets for audio-image-text image-text sentiment analysis, including
ICT-MMMO, IEMOCAP, CMU-MOSI, CMU-MOSEI, MELD, CH-SIMS, CH-SIMS 2, M3ED, MER2023,
EMER, MER2024, CMU-MOSEAS and UR-FUNNY.

ICT-MMMO dataset is collected from the YouTube website and defines seven sentiment labels based
on sentiment polarity and intensity: positive (strong), positive, positive (weak), neutral, negative (weak),
negative, and negative (strong). In [88], the authors first addressed the task of tri-modal sentiment
analysis and demonstrated that it is a feasible task that can benefit from the combined use of image,
audio, and text modalities. This dataset forms the basis of their research.

IEMOCAP dataset is a multimodal video dialogue dataset collected by the SAIL lab at the University
of Southern California. It contains about 12 h of multimodal data, including video, audio, facial motion
capture, and transcribed text. The dataset was collected through dialogues by 5 professional male actors
and 5 professional female actors in pairs, engaging in either improvised or scripted dialogues, with a focus
on emotional expression. The dataset includes a total of 4787 improvised dialogues and 5255 scripted
dialogues, with an average of 50 sentences per dialogue and an average duration of 4.5 seconds per
sentence. Each sentence in the dialogue segments is annotated with specific emotional labels, divided
into ten categories including anger, happiness, sadness, and neutral.

CMU-MOSI and CMU-MOSEI are two commonly used datasets in the multimodal sentiment
analysis area. The data is sourced from video blogs (vlogs) on the online sharing platform YouTube.
These datasets primarily focus on coarse-grained multimodal sentiment classification tasks. CMU-MOSI
dataset comprises 2199 video segments extracted from 93 distinct videos. The video content consists
of English comments posted by individual speakers. There are 41 female and 48 male speakers, mostly
between the ages of 20 and 30, coming from diverse backgrounds (Caucasian, Asian, etc.). The videos
are annotated by five annotators from the Amazon Mechanical Turk platform, and the annotations are
averaged. Annotations cover seven categories of emotional tendencies ranging from −3 to +3. The
CMU-MOSEI dataset is larger than the CMU-MOSI dataset, containing 23453 video segments from 1000
different speakers across 250 topics, with a total duration of 65 h. The dataset includes both emotion
labels and sentiment labels. Emotion labels include happiness, sadness, anger, fear, disgust, and surprise,
while sentiment labels include sentiment binary classification, five classification, and seven classification
annotations.

MELD dataset originates from the classic TV series Friends. It comprises a total of 1443 dialogues and
13708 utterances, with an average of 9.5 sentences per dialogue and an average duration of 3.6 seconds
per sentence. Each sentence in the dialogue segments is annotated with one of seven emotional labels,
including anger, disgust, sadness, happiness, neutral, surprise, and fear. Additionally, each sentence is
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also assigned a sentiment label, categorized as positive, negative, or neutral.
CH-SIMS dataset is a Chinese multimodal sentiment classification dataset with the unique feature of

having both unimodal and multimodal sentiment labels. It consists of 60 original videos collected from
movie clips, TV series, and various performance shows. These videos were clipped at the frame level
to obtain 2281 video segments. Annotators labeled each video segment for four modalities: text, audio,
silent video, and multimodal. To avoid cross-modal interference during annotation, annotators could
only access information from the current modality. They first performed unimodal labeling, followed by
multimodal labeling. Although the dataset provides labels for each modal, its primary purpose is coarse-
grained multimodal sentiment classification. The CH-SIMS 2 dataset expands the CH-SIMS dataset.
This dataset is larger in scale and more difficult, requiring the model to accurately integrate information
from different modalities to predict the correct answer.

M3ED dataset includes 990 Chinese dialogue videos, totaling 24449 sentences. Each sentence is
annotated for six basic emotions (happiness, surprise, sadness, disgust, anger, and fear), as well as
neutral emotion.

MER2023 includes four subsets: Train & Val, MERMULTi, MER-NOISE, and MER-SEMI. In the
last subset, besides the labeled samples, it also contains a large amount of unlabeled data. The dataset
annotates sentiment labels on each sample and focuses on challenges such as multi-label learning, noise
robustness, and semi-supervised learning. Furthermore, they built upon MER2023 to create the EMER
dataset, which not only annotates sentiment labels on each sample but also the reasoning process be-
hind the labels. In MER2024, they expanded the dataset size and included a subset with multi-label
annotations, attempting to describe the emotional states of characters as accurately as possible.

CMU-MOSEAS is the first large-scale multimodal language dataset for Spanish, Portuguese, German
and French, with 40000 total labelled sentences. It covers a diverse set topics and speakers, and carries
supervision of 20 labels including sentiment (and subjectivity), emotions, and attributes.

UR-FUNNY dataset is tailored for humor detection tasks, which are closely related to multimodal
sentiment analysis. The dataset was collected from the TED website, selecting 8257 humorous snippets
from 1866 videos and their transcribed texts, and additionally, 8257 non-humorous segments were ran-
domly chosen. The total duration of the dataset is 90.23 h, encompassing 1741 different speakers and
417 distinct topics.

3.4 Multimodal sarcasm detection

Sarcasm detection task initially only focused on the textual context [145–147], with scholars noting
that common ironic sentences often juxtapose positive phrases with negative contexts. For example,
in the sentence “I’m so happy I’m late for work”, the presence of the positive phrase “happy” within
the negative context of being late for work makes it easily recognizable as sarcasm. In most cases, the
sentiment signals conveyed by different modalities in multimodal data are consistent. However, there
are instances of inconsistency, necessitating sentiment disambiguation across modalities. Multimodal
sentiment disambiguation is essentially a classification task. Multimodal sentiment inconsistency can be
categorized into two types: complete sentiment conflict, defined as multimodal irony recognition tasks,
and instances where some modalities convey ‘neutral’ sentiment polarities while others convey positive or
negative sentiment polarities, which are typical cases of implicit sentiment expression. The multimodal
sarcasm detection task formalization as follows.

Multimodal sarcasm detection aims to identify if a given text associated with an image has sarcastic
meaning. Formally, given a set of multimodal samples D, for each sample d ∈ D, it contains a sentence T
with n words {t1, t2, t3, . . . , tn} and an associated image I. The goal of the model is to learn a multimodal
sarcasm detection classifier to correctly predict the results of unseen samples.

In [120], the authors introduced a multimodal sarcasm detection task for videos and compiled a corre-
sponding dataset from television series. Considering the correlation between sentiment classification and
sarcasm detection, in [121], the authors proposed a multi-task framework to simultaneously recognize
sarcasm and classify sentiment polarity. In [122], the authors suggested identifying sarcasm by capturing
incongruent emotional semantic cues across modalities, such as rolling one’s eyes while uttering praise.

Additionally, some researchers have studied sarcasm in text and images; for example, in [52], the authors
introduced a multimodal sarcasm detection task for text and images and designed a multi-level fusion
network to detect sarcasm. In [54], the authors proposed the multimodal sarcasm detection model using
two different computational frameworks based on SVM and CNN that integrate text and visual modalities.
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Identifying inconsistencies between modalities is key to multimodal sarcasm detection, and recent models
can be categorized into those based on attention mechanisms and those using graph neural networks
(GNN). For example, in [55], the authors introduced a BERT-based model with a cross-modal attention
mechanism and a text-oriented co-attention mechanism to capture inconsistencies within and between
modalities. In [56], the authors designed a 2D internal attention mechanism based on BERT and ResNet
to extract relationships between words and images. In [57], the authors proposed a Transformer-based
architecture to fuse textual and visual information. In terms of GNN, scholars in [58] built heterogeneous
intramodal and cross-modal graphs (InCrossMG) for each multimodal example to determine the emotional
inconsistencies within specific modalities and between different modalities, and introduced an interactive
graph convolutional network structure to learn the relationships of inconsistencies in a joint and interactive
manner within modal and cross-modal graphs. In [59], the authors constructed heterogeneous graphs
containing fine-grained object information of images for each instance and designed a cross-modal graph
convolutional network.

Additionally, some scholars [60] have proposed incorporating external commonsense knowledge into
multimodal sarcasm detection to enhance the model’s understanding of cross-modal semantics. They in-
troduced a model named KnowleNet, which leverages the ConceptNet [148] knowledge base to enrich both
textual and visual features with semantically related concepts. Unlike attention-only models, KnowleNet
applies a knowledge-based word-level semantic similarity detection mechanism that compares text and
image information based on their conceptual embeddings.

In this framework, the image is first parsed into a set of semantic attributes, while the accompanying
text is tokenized. Both modalities are then mapped to a shared conceptual space via ConceptNet, produc-
ing word embeddings that capture commonsense relationships. For each word or attribute, ConceptNet
generates dense vectors through a smoothed pointwise mutual information (PPMI) matrix followed by
dimensionality reduction via SVD. To compute the semantic alignment between modalities, the model
calculates inner product similarities between the text and image concept vectors, then applies a max
pooling operation to extract the most salient associations, followed by a Flatten layer for feature unifica-
tion. Crucially, the model adopts different processing procedures for sarcastic (positive) and non-sarcastic
(negative) samples. For sarcastic samples, where image and text tend to conflict or misalign semantically,
the model emphasizes semantic divergence; for non-sarcastic samples, it focuses on semantic consistency.
To further refine representation, a contrastive learning strategy is employed to increase the separability
of positive and negative samples in the shared representation space.

Recent studies have explored various strategies to enhance multimodal sarcasm detection by integrating
external knowledge and exploiting richer modality interactions. For instance, the work in [61] proposed
a lightweight multimodal interaction model that incorporates commonsense knowledge to improve deep
learning-based sarcasm detection. Building upon this, Ref. [62] further introduced emotional knowledge
into the detection process by leveraging sentiment dictionaries. Sentiment vectors are derived from words
across different modalities and integrated into each modality’s representation to capture affective signals
more effectively. Advancing this line of research, Ref. [53] proposed a multi-view CLIP-based framework
that extracts multi-grained features from textual, visual, and joint text-image interaction views, enabling
a more comprehensive understanding of multimodal sarcasm. These studies reflect a clear progression,
from incorporating general knowledge to emotional semantics, to fine-grained multimodal interactions,
demonstrating the growing emphasis on leveraging diverse knowledge sources and multi-perspective cues
for improved sarcasm understanding.

Building on the success of large-scale pretrained models, recent work has begun to explore the ap-
plication of LLMs and LMMs for multimodal sarcasm understanding. In [63], the authors tested the
performance of some existing open-source LLMs and LMMs in the multimodal sarcasm detection task
and proposed a generative multi-media sarcasm model consisting of a designed instruction template and
a demonstration retrieval module based on the large language model. In [64], the authors proposed a ver-
satile framework named CofiPara for multimodal sarcasm target identification, following a coarse-to-fine
paradigm. Each sample consists of an image-text pair {I, T }. The framework first performs coarse-
grained sarcasm detection (MSD) to determine if a sample is sarcastic, then conducts fine-grained target
identification (MSTI) to locate sarcasm targets in both text and image via textual phrases and visual
bounding boxes. CofiPara integrates large multimodal model (LMM) reasoning to enhance performance,
and includes three stages: divergent thinking with LMMs, coarse-grained pre-training, and fine-grained
fine-tuning.

We summarize the commonly used datasets for multimodal sarcasm detection, including MMSD,
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Figure 3 Conceptual illustration of multimodal sentiment analysis using LLMs. (a) LLMs are used as text feature extractors;

(b) non-text modalities are converted into textual form via modality translation and then processed by LLMs; (c) non-text modality

features are aligned to the textual representation space through modality alignment before being input into LLMs.

MMSD2.0 and MUStARD.

MMSD dataset is collected from the Twitter platform by searching for tweets in English that contain
special tags indicating sarcasm, such as #sarcasm, #sarcastic, #irony, #ironic, to gather sarcastically
labeled data, and collecting other tweets without these tags as non-sarcastic data. The dataset is an-
notated with a binary classification of “sarcastic/non-sarcastic”. MMSD2.0 fixed the shortcomings of
MMSD, by removing the spurious cues and re-annotating the unreasonable samples.

MUStARD is a multimodal sarcasm detection dataset primarily sourced from English sitcoms, in-
cluding Friends, The Big Bang Theory, The Golden Girls, and non-sarcastic video content from the
MELD dataset. The authors collected a total of 6365 video clips from these sources and annotated them,
including 345 sarcastic video clips. To balance the categories, an equal number of 345 non-sarcastic video
clips were selected from the remaining clips, resulting in a dataset comprising 690 video segments. The
annotations include the dialogue, speaker, context dialogue and its speaker, the source TV show, and a
label indicating whether it is sarcastic. The rich annotation allows researchers to conduct a variety of
learning tasks, including studying the impact of context and speakers on the task of sarcasm detection.

4 Usage of LLMs in multimodal sentiment analysis

Figure 3 illustrates three common strategies for leveraging LLMs in multimodal sentiment analysis tasks.
These strategies aim to take advantage of the extensive knowledge and strong reasoning abilities of
LLMs, while enabling them, despite being inherently text-oriented, to process and understand multimodal
signals.

The first strategy, shown in Figure 3(a), resembles the traditional multimodal processing pipeline.
Multimodal data is collected from sources such as social media platforms, then cleaned and filtered.
Separate feature extraction algorithms are applied to each modality to generate corresponding feature
vectors. These vectors are fused using multimodal fusion techniques and passed to classification models for
sentiment prediction. In this setup, LLMs serve primarily as enhanced text feature extractors, without
fundamentally altering the traditional architecture. The second strategy, depicted in Figure 3(b), is
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Table 3 Some text-centric multimodal sentiment analysis methods that have utilized LLMs.

Method Usage of LLMs Advantage Disadvantage

WisdoM [128] Zero-shot learning: (1) using

ChatGPT to provide prompt

templates; (2) prompting

LMMs to generate context

using the prompt templates

with image and sentence.

Leverage the contextual world

knowledge induced from the

LMMs for enhanced image-text

sentiment classification.

Due to hallucinations in LLMs,

the contextual knowledge sup-

plemented by LLMs and LMMs

as knowledge sources may not

be accurate. The adaptive in-

corporation of context requires

further exploration.

ChatGPT-ICL [87] Zero-shot learning and few-

shot learning: using ChatGPT

to predict final sentiment la-

bels.

This work explores the poten-

tial of ICL with ChatGPT for

multimodal aspect-based sen-

timent analysis, achieves com-

petitive performance while uti-

lizing a significantly smaller

sample size.

The ICL framework exhibits a

relatively limited capability for

aspect term extraction tasks

when compared to fine-tuned

methods.

A2II [77] Full-parameter tuning: lever-

age the ability of LMMs to al-

leviate the limitation of cross-

modal fusion.

This work explored an in-

struction tuning modeling ap-

proach for multimodal aspect-

based sentiment classification

task, and achieved impressive

performance.

The visual features extracted

by the Q-Former structure,

which queries based on aspect,

may be mismatched, leading to

the neglect of some visual emo-

tional signals.

CofiPara [64] Zero-shot learning: using

potential sarcastic labels as

prompts to cultivate divergent

thinking in LMMs, eliciting the

relevant knowledge in LMMs

for judging irony.

Note the negative impact of

the inevitable noise in LMMs,

and use competitive princi-

ples to align the sarcastic con-

tent generated by LMMs with

their original multimodal fea-

tures to reduce the noise im-

pact. View LMMs as modal

converters, transforming visual

information into text to help

cross-modal alignment.

Viewing LMMs as a knowledge

source largely depends on the

capabilities of the LMMs them-

selves. Although effective mea-

sures have been taken to re-

duce the impact of noise from

LMMs, a certain proportion of

erroneous judgments are still

caused by LMMs.

modality translation, where non-text inputs are converted into textual descriptions, such as generating
captions for images, so that the resulting textual representations can be directly processed by LLMs. The
third strategy, illustrated in Figure 3(c), is modality alignment. Here, a multimodal encoder is used to
extract features from various modalities, and a feature alignment mechanism maps these features into the
LLM’s textual representation space. This alignment allows the LLM to interpret and utilize multimodal
information effectively for sentiment analysis.

In Table 3 [64, 77, 87, 128], we have summarized some representative multimodal sentiment analysis
methods assisted by LLMs, analyzing the strategies used with LLMs as well as their advantages and
disadvantages. After analysis, we have found that most existing research tends to view LLMs as knowledge
sources. Operating under a parameter-fixed paradigm, these studies leverage zero-shot and few-shot
strategies to endow smaller models with additional worldly knowledge in multimodal sentiment analysis
tasks, resulting in performance improvements. Here are further advantages and methods of utilizing
LLMs in text-centric multimodal sentiment analysis.

• LLMs can supplement richer knowledge, such as knowledge of different languages and cultures, to
promote the progress of multimodal sentiment analysis towards multilingualism.

• Leveraging the robust multimodal capabilities of LMMs, models like GPT-4V and LLaVA, known
for their strong image captioning abilities, can transform image data into textual format, simplifying the
challenge of modal alignment.

• Utilizing the powerful reasoning capabilities of LLMs, existing work has shown that effective in-
context learning (ICL) can enhance the emotional reasoning capabilities of LLMs, significantly improving
their ability to trace and guide emotional understanding.

• Fine-tuning with high-quality multimodal sentiment data using a parameter-tuning paradigm, such
as the A2II model, has also been successful. Although it used the smaller-scale Flan-T5-base model, there
is anticipation for methods that adopt parameter-efficient fine-tuning strategy in larger-scale LLMs.

• Additionally, the use of LLMs as tools in multimodal sentiment analysis holds a promising outlook.

However, there are also disadvantages of using LLMs in multimodal sentiment analysis.

• LLMs have to face hallucination problems, and the inevitable generation of erroneous knowledge may
lead to incorrect judgments. Enhancing the accuracy and completeness of sentiment judgment-related
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Figure 4 (Color online) Prompt examples for video-based sentiment analysis (video SA), image-text sentiment classification

(image-text SA), and multimodal aspect-based sentiment classification (image-text ABSA), respectively. The text inside the dashed

box is a demonstration of the few-shot setting and would be removed under the zero-shot setting.

knowledge from LLMs while reducing the negative noise caused by biases and hallucinations remains a
pressing challenge.

• The sensitivity of LLMs to prompts is significant, as different prompts can drastically influence the
output. Choosing the appropriate prompt is challenging.

• Not all LLMs excel in emotional intelligence; as the training of LLMs and LMMs currently aims to
develop a broad range of capabilities, emotional intelligence is just one of many focal points. Therefore,
the emotional capabilities of most models may not be exceptional, and careful consideration is needed
when selecting LLMs for assisting in multimodal sentiment analysis.

• Existing LMMs still lack support for additional modalities. While most LMMs focus on text and
image modalities, and some have video processing capabilities, there is a lack of capacity to handle other
modalities like physiological signals, limiting their use in multimodal sentiment analysis.

• Methods based on the parameter-tuning paradigm face significant costs, requiring several times the
computational resources and time compared to traditional multimodal sentiment analysis models.

5 Evaluations of LLMs-based multimodal sentiment analysis methods

5.1 Prompting strategy

When using LLMs, we employ prompts (a specific type of input text) to trigger the model’s response.
Since LLMs are highly sensitive to prompts, even slight variations in semantics can elicit vastly different
responses. Therefore, prompt design is of paramount importance. Figure 4 shows some prompt examples.

As shown in Figure 4, in the zero-shot setting, the prompts include the task name, task definition, and
output format. The task name is used to identify and specify the task, while the task definition provides
an explanation of the task, enabling the model to understand the input-output format of the task and
providing a candidate label space for outputs. The output format defines the expected structure of the
output, guiding the model to generate content in the expected format.

In the few-shot setting, additional demonstration sections are added to assist in model inference
learning.

5.2 Evaluation metrics

This section discusses the various commonly used metrics used in the field of text-centric multimodal
sentiment analysis tasks [149].

Accuracy is a measure that indicates the proportion of instances correctly predicted out of the total
number of instances. Further, Weighted-Accuracy accounts for class imbalances by assigning different
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weights to each class.

Accuracy =
TP + TN

TP + TN+ FP + TN
, (21)

Weighted-Accuracy =
1

N

N∑

i=1

wi ·
TPi +TNi

TPi +TNi + FPi +TNi
, (22)

where TP represents true positives, TN represents true negatives, FP represents false positives, FN
represents false negatives, N represents the total number of instances, wi represents the weight for
class i.

Precision evaluates the fraction of true positive predictions among instances that have been predicted
as positive.

Precision =
TP

TP + FP
. (23)

Recall, which is sometimes referred to as sensitivity or true positive rate, quantifies the proportion of
true positive instances that are accurately predicted.

Recall =
TP

TP + FN
. (24)

The F1-Score merges precision and recall to offer a well-rounded assessment of the model’s accuracy.
Additionally, the Weighted-F1-Score accounts for class imbalances.

F1-Score = 2 · Precision ·Recall
Precision + Recall

, (25)

Weighted-F1-Score =
1

N

N∑

i=1

wi · 2 ·
Precisioni · Recalli
Precisioni +Recalli

. (26)

5.3 Reference results

With the in-depth development of LLMs in the field of multimodal sentiment analysis, it is necessary
to compare the performance of LLMs on multimodal sentiment analysis datasets. However, testing on
commercial LLMs such as ChatGPT is often expensive. Some studies [63, 64, 77, 87, 128, 150–152] have
demonstrated the performance of some LLMs on multimodal sentiment analysis tasks. We have organized
the relevant results in the Table 4.

6 Applications of text-centric multimodal sentiment analysis

The research in text-centric multimodal sentiment analysis has its roots in the flourishing development of
multimodal data and the advancements in deep learning technologies. It is also driven by a wide range of
practical applications. In this section, we explore the application of LLM-based text-centric multimodal
sentiment analysis.

6.1 Comment analysis

One of the earliest and most impactful applications of sentiment analysis was in the field of e-commerce
for comment analysis. This research area not only attracted numerous computer scientists who delved
into algorithm development but also drew the interest of management scientists exploring marketing and
management strategies. Initially, these studies primarily revolved around textual comments, analyzing
user reviews to gather feedback on products or services. However, as e-commerce evolved, relying solely
on text-based sentiment analysis proved insufficient. User-generated comments often include multimedia
elements, making multimodal data more prominent compared to pure text comments.

With the increasing availability of multimodal data on social networks, some of the challenges that
puzzled researchers can be alleviated in a multimodal interactive context, enabling comprehensive senti-
ment analysis. For instance, one challenging problem is sarcasm recognition, which can be easily resolved
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Table 4 An overview of the performance (%) of existing LLMs and LMMs on text-centric multimodal sentiment analysis bench-

marks. ∗ indicates the model results after training on the MMSD and MMSD2.0 datasets. Italicized words represent the few-shot

results, and the rest are zero-shot results. Bold represents the best zero-shot results.

Method
MVSA-S MVSA-M TumEmo Twitter-2015 Twitter-2017 MMSD MMSD2.0 MOSI-2 MOSEI CH-SIMS M3ED

Acc. Acc. Acc. Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

ChatGPT 56.55 53.18 48.17 65.28 63.12 62.47 62.34 69.02 – – – 86.13 85.92 85.60 84.43 79.66 78.78 44.47 40.40

Claude – – – – – – – – – – – 87.04 86.55 85.83 84.81 88.70 87.44 34.90 34.83

LLaMA1-7B 67.23 60.72 38.26 58.53 – 46.43 – 58.99 – – – 82.01 – 75.62 – – – – –

LLaMA1-13B 66.88 68.82 44.68 52.07 – 47.24 – 57.53 – – – 72.10 – 79.55 – – – – –

LLaMA2-7B 66.99 69.22 40.28 58.53 – 46.60 – 56.33 – – – 67.68 – 77.30 – – – – –

LLaMA2-13B 66.02 68.69 45.78 60.37 – 48.54 – 60.23 – – – 81.86 – 81.66 – – – – –

Mixtral-AWQ 54.37 55.59 43.94 55.45 – 60.21 – 64.38 – – – 87.92 – 79.30 – – – – –

Gemma 67.72 61.61 43.10 54.29 – 52.43 – 60.07 – – – 81.65 – 77.05 – – – – –

Flan-T5-XXL 64.81 66.01 49.56 72.13 – 63.70 – 71.40 – – – 89.60 – 86.52 – – – – –

ChatGLM2-6B – – – – – – – – – – – 84.12 84.12 – – 77.58 75.95 45.68 30.52

ChatGLM2-6B* – – – – – – – 94.02 93.76 78.41 78.23 – – – – – – – –

LLaMA2-7B* – – – – – – – 93.97 93.72 82.52 82.27 – – – – – – – –

GPT-4V 76.19 71.05 50.58 53.85 – 60.16 – 76.76 – – – 90.91 – 87.10 – – – – –

Claude3-V 80.95 69.08 46.15 38.46 – 54.47 – 71.37 – – – 78.79 – 79.93 – – – – –

Gemini-V 72.73 70.18 51.65 54.51 – 59.32 – 56.83 – – – 88.34 – 87.14 – – – – –

OpenFlamingo 55.58 61.15 29.47 57.28 – 46.19 – 52.68 – – – 79.97 – 77.30 – – – – –

Fromage 29.85 28.19 22.76 19.96 – 27.31 – 40.68 – – – 57.19 – 47.41 – – – – –

LLaVA-v0-7B 69.42 65.42 30.44 35.10 – 44.57 – 43.21 – – – 74.69 – 74.65 – – – – –

LLaVA-v0-13B 73.06 69.61 38.51 37.99 – 48.46 – 44.29 – – – 80.18 – 76.58 – – – – –

LLaVA-v1.6-7B 59.95 67.23 45.12 59.31 – 52.84 – 59.61 – – – 85.63 – 81.62 – – – – –

LLaVA-v1.6-13B 64.56 60.43 53.22 58.73 – 56.08 – 62.31 – – – 86.39 – 78.26 – – – – –

MiniGPT4 71.12 70.78 50.29 47.16 – 49.43 – 57.49 – – – 83.99 – 83.38 – – – – –

mPLOG-Owl 51.94 50.36 33.37 33.75 – 38.74 – 49.73 – – – 68.75 – 58.10 – – – – –

mPLOG-Owl2.1 53.64 63.11 47.02 60.66 – 55.11 – 60.48 – – – 85.63 – 73.47 – – – – –

AdapterV2 73.54 70.13 39.14 37.32 – 48.38 – 57.20 – – – 86.43 – 82.02 – – – – –

VPGTrans 64.32 69.54 46.17 42.62 – 44.81 – 65.04 – – – 76.22 – 76.76 – – – – –

MultiGPT 52.91 62.03 30.26 58.53 – 46.35 – 59.82 – – – 68.35 – 72.76 – – – – –

LaVIN-7B 39.32 40.75 26.84 37.22 – 33.06 – 60.48 – – – 71.41 – 69.97 – – – – –

LaVIN-13B 53.64 48.79 32.77 35.39 – 40.68 – 57.58 – – – 79.97 – 73.54 – – – – –

Lynx 64.32 67.71 42.79 46.00 – 47.00 – 43.96 – – – 74.77 – 73.72 – – – – –

Fuyu-8B 48.54 55.46 46.34 58.82 – 50.81 – 61.44 – – – 83.49 – 78.37 – – – – –

LaVIT 61.65 68.74 41.78 36.84 – 43.36 – 56.00 – – – 73.09 – 64.10 – – – – –

Qwen-VL-Chat 62.38 69.06 49.29 65.48 – 59.72 – 61.10 – – – 85.93 – 80.41 – – – – –

BLIP 66.26 68.22 51.06 70.78 – 64.42 – 72.02 – – – 88.99 – 86.88 – – – – –

InstructBLIP 71.60 70.37 52.36 57.57 59.63 60.37 35.96 73.10 – – – 88.68 – 85.98 – – – – –

LLaVA-v1.5-7B* – – – – – – – 93.67 93.40 85.18 85.11 – – – – – – – –

mPLUG-Owl2 – – – 76.80 72.30 74.20 73.00 – – – – – – – – – – – –

MMICL-14B – – – 76.00 72.70 74.10 74.00 – – – – – – – – – – – –

LLaVA-v1.5-13B – – – 77.90 74.30 74.60 74.30 – – 51.06 43.02 – – – – – – – –

Qwen-VL-v1.0 – – – – – – – – – 76.63 69.03 – – – – – – – –

with the addition of multimodal information. For example, when a comment like “It’s such a surprise”
is accompanied by a picture of a disappointed face, sarcasm recognition becomes straightforward. In
the field of management, multimodal data, enriched with additional modal factors, can influence user
decisions and consequently impact marketing and management strategies.

In practical applications, fine-grained sentiment analysis is more effective. In text-based analysis stud-
ies, user textual comment data can be broken down into fine-grained segments (e.g., sentences, clauses),
with each segment evaluating different aspects of the main entity (e.g., price, quality, appearance). In
contrast, fine-grained analysis of multimodal data is still in its emerging stages but presents greater chal-
lenges. For instance, extracting object-level information from complex multimodal data and modeling
fine-grained element correspondences between multimodal elements are ongoing research topics that need
exploration with LLMs in the future.

6.2 Multimodal intelligent human-machine interaction

Multimodal sentiment analysis can be applied to human-computer interaction, enabling real-time under-
standing and analysis of emotional communication for more natural interactions. There are three main
categories of applications.

(1) Customer service conversations. In this domain, multimodal data consists of audio data
and text data transformed from automatic speech recognition (ASR) technology. It mainly serves two
tasks: customer satisfaction analysis and detection of customer abnormal emotions. Customer satisfaction
analysis involves using multimodal emotion computing technology to analyze the content of conversations
between customers and service representatives to assess the level of customer satisfaction. Customer
abnormal emotion detection monitors customer emotions in real time through the analysis of customer
dialogue data and prompts timely intervention when abnormal emotional changes occur.
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(2) Emotional companionship. Emotional companionship is a crucial aspect of chatbot applica-
tions. Currently, most companion chatbots do not utilize multimodal emotion computing technology,
meaning they do not fully possess human-like multimodal processing capabilities. Ideally, companion
chatbots should be capable of recognizing and generating multimodal emotional features, such as ex-
pressing emotions through language, exhibiting emotional fluctuations in speech, or displaying facial
expressions.

(3) Smart furniture. The development of artificial intelligence has given rise to smart homes, which
enhance convenience and comfort in daily life and are increasingly popular among consumers. Many tech
companies worldwide have entered the smart home market, proposing a range of solutions like Apple’s
HomeKit, Xiaomi’s Mi Home, and Haier’s U-Home. While smart homes have made life more convenient,
they are currently primarily focused on home automation, with users controlling home devices through
voice commands based on keyword recognition. This approach does not fully embody the intelligence of
smart homes, and there is substantial potential for further development, particularly in voice interaction
and automatic environment detection.

With the assistance of LLMs, AI technologies based on multimodal sentiment analysis methods can
elevate the intelligence of smart homes in the future. True smart home scenarios involve multiple modal-
ities, where smart home products can provide appropriate feedback by calculating the user’s emotions
(e.g., happiness, anger, sadness) or states (e.g., fatigue, restlessness). For example, based on a user’s
fatigue state in a multimodal scenario, the system could ask if they want the lights dimmed. In conver-
sational scenarios, the system can detect the user’s emotional state and provide empathetic responses.
Smart in-car systems can promptly detect abnormal user emotions or states (e.g., road rage, fatigue)
and provide appropriate reminders. Designing these functionalities poses significant challenges, but it
also represents a significant opportunity for multimodal emotion computing to enter the smart furniture
domain.

7 Conclusion

In this survey, we introduced the latest advancements in text-centric multimodal sentiment analysis area
and summarized the primary challenges and potential solutions. Additionally, we reviewed the existing
ways of applying LLMs in multimodal sentiment analysis tasks and summarized their advantages and
disadvantages. We believe that leveraging LLMs in multimodal sentiment analysis has several potential
advantages. (1) Knowledge source: LLMs trained on massive datasets and can be treated as a knowledge
source, that can capture a broader range of patterns, linguistic cues, and contextual information related
to emotions, potentially improving recognition performance. (2) Interpretability: LLMs can potentially
elucidate the reasoning behind their decisions, enhancing the interpretability and transparency of the
emotion recognition process. (3) Cross-domain applications: LLMs have the potential to be applied across
various domains, as they are trained on a wide range of data sources. This allows them to understand
emotions expressed in various domains, from customer reviews to conversational data, thus achieving
broader applicability. However, LLMs-based methods also have to face problems such as hallucinations
and high fine-tuning costs. Furthermore, as new models and datasets continue to emerge, ensuring the
relevance and reliability of multimodal sentiment analysis requires continuous benchmarking and dataset
expansion. Establishing standardized evaluation frameworks will be essential for tracking progress and
maintaining robustness in this rapidly evolving field. The emergence of LLMs provides new ideas and
challenges for multimodal sentiment analysis. We hope that this survey can help and encourage further
research in this field.
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