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Target detection in clutter emerges as a particularly perti-

nent issue for a radar system [1, 2]. When a radar system

employs pulsed Doppler processing to identify potential tar-

gets amidst such clutter, the target components often un-

dergo fluctuations, which subsequently allows them to be

embedded within the covariance matrix of the data under

examination. In a recent study [3], the authors have devised

innovative detectors for targets within compound-Gaussian

clutter. These detectors leverage the eigenvalues of the co-

variance matrix, demonstrating superior detection perfor-

mance compared to existing methods.

However, the detectors presented in [3] exhibit two no-

table limitations. First, they are created without the ca-

pability to suppress clutter, making them vulnerable to in-

tense clutter. Second, these detectors are tailored for point

targets, whereas modern radar systems, with wide band-

width, often encounter targets spanning multiple range bins,

necessitating a different approach. To address these is-

sues, we introduce eigenvalue-based detectors specifically de-

signed for detecting distributed targets amidst compound-

Gaussian clutter. These detectors incorporate a clutter sup-

pression mechanism, enabling them to enhance detection

performance. The effectiveness of our proposed detectors

has been validated using both simulated and real-world data.

Problem formulation. For a distributed target, if present,

occupying K range cells, the test data gathered by a radar

system over a coherent processing interval (CPI) can be rep-

resented by N × 1 column vectors zl, l = 1, . . . ,K, with N

being the number of pulses in a CPI. zl typically contains

clutter cl and noise nl. The covariance matrix of the clutter

and noise is unknown. Estimation of this covariance matrix

necessitates the use of training data, which are commonly

acquired adjacent to the test data. We assume that the sec-

ondary data zls, l = K + 1, . . . ,K + L, with L being the

number of secondary data, share the same covariance ma-

trix structure with the test data. Under hypothesis H0, all

the data only contain noise and clutter. Conversely, under

hypothesis H1, the test data also encompass signal compo-

nents. Hence, the detection problem is formulated as






H0 : zl = cl +nl, l = 1, . . . , K + L,

H1 :

{
zl = sl + cl +nl, l = 1, . . . ,K,

zl = cl + nl, l = K + 1, . . . , K + L,

(1)

where the signal has the form sl = βlp, l = 1, . . . , K,

βl is the unknown target amplitude, p = [1, e−j2πfd ,

. . . , e−j2πfd(N−1)]T denotes the signal steering vector, and

fd is the normalized target Doppler frequency. The clut-

ter cl is modeled as a spherically invariant random vector

(SIRV), described as cl =
√
τlηl, l = 1, . . . ,K +L, where cl

is expressed as the product of the square root of the slowly

varying texture τl and the quickly varying speckle ηl. Here,

τl is a nonnegative real random variable, representing the

local power of the clutter in the lth range cell. The tex-

ture τl is considered to be unknown and deterministic since

the statistics of the texture are difficult to obtain in prac-

tice. The speckle ηl is characterized as an independent,

zero-mean, complex circular Gaussian random vector with

an N ×N covariance matrix R.

Detector design. To design effective detectors, we

need the sample covariance matrix (SCM), given as R̂ =
1
L

∑K+L
l=K+1 zlz

H
l . Then we whiten the data as z̃l =

R̂− 1
2 zl, resulting in the whitened test data (l = 1, . . . ,K)

and whitened training data (l = K + 1, . . . ,K + L). The

data whitening process has the function of clutter suppres-

sion and hence enhances detection performance.

Note that if we whiten the data with the actual covari-

ance matrix R, resulting in the whitened data zl = R− 1
2 zl,
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then the covariance matrix of zl can be written as

R
zl

= E
[
zlz

H
l

]
=




r0,l · · · r∗N−1,r

... · · ·
...

rN−1,r · · · r0,r


 , (2)

where rm,l is the correlation coefficient, expressed as

rm,l = E
[
z̄q,lz̄

∗
q+m,l

]
, 0 6 m 6 N − 1, 0 6 q 6 N −m− 1.

(3)

with z̄m,l being the mth element of zl. Moreover, the

data in the lth range cell zl can be represented by zl =[
z0,l, . . . , zN−1,l

]T
, l = 1, . . . ,K + L.

In (2) Rz̄l is unknown. It is assumed that the data re-

ceived by the radar are wide-sense stationary. It follows that

Rz̄l has a Toeplitz Hermitian positive-definite (HPD) struc-

ture. Hence, to estimate Rz̄l , we use the whitened data in

all the range cells. The ergodicity of the stationary Gaus-

sian process permits us to estimate the correlation coefficient

rm,l by averaging the whitened data, i.e.,

r̂m,l =
1

N

N−1−m∑

q=0

z̃q,lz̃
∗
q+m,l, 06m 6 N−1, l = 1, . . . ,K+L,

(4)

where z̃q,l is the qth element of z̃l. Moreover, the estimated

whitened covariance matrix is defined as R̂
z̃l
.

Eigenvalues play a pivotal role in extracting information

about potential targets from the test data. The maximum

eigenvalue of the test data, signifies the most significant in-

formation pertaining to the potential target [4]. Adopting

the maximum, minimum, harmonic mean (HM), arithmetic

mean (AM), and geometric mean (GM) of eigenvalues of

an HPD matrix, we propose the following eigenvalue-based

detector for distributed targets (EDDT):

tEDDT =
1
K

∑K
l=1 λ̃max,l

1
L

∑K+L
l=K+1 [

1
N

∑N
n=1 λ̃

a
n,l]

1/a
, (5)

where λ̃max,l = max{eig(R̂
z̃l
)}, l = 1, . . . ,K, λ̃n,l is the

nth eigenvalue of R̂
z̃l
, l = 1, . . . , K + L, Λ is the detection

threshold, and a is a tunable parameter. We can adjust the

power parameter a to obtain different kinds of EDDT. As

a = −1, 1, 0,−∞,∞, the EDDT in (5) can be recast as

tEDDT =






1
K

∑K
l=1

λ̃max,l
1
L

∑K+L
l=K+1

[N/
∑N

n=1 (1/λ̃n,l)]
, a = −1,

1
K

∑K
l=1 λ̃max,l

1
LN

∑K+L
l=K+1

∑N
n=1

λ̃n,l

, a = 1,

1
K

∑K
l=1 λ̃max,l

1
L

∑K+L
l=K+1

(
∏N

n=1
λ̃n,l)

1/N , a = 0,

1
K

∑K
l=1

λ̃max,l
1
L

∑K+L
l=K+1

λ̃min,l

, a = −∞,

1
K

∑K
l=1

λ̃max,l

1
L

∑K+L
l=K+1

λ̃max,l

, a = ∞,

(6)

where λ̃min,l = min {eig(R̂
ẑl
)}. For convenience, the pro-

posed EDDT in (5) or (6) with a = −1, 1, 0,−∞,∞ is re-

ferred to as maximum eigenvalue to harmonic mean detector

(MHM-D), maximum eigenvalue to arithmetic mean detec-

tor (MAM-D), maximum eigenvalue to geometric mean de-

tector (MGM-D), maximum eigenvalue to minimum eigen-

value detector (MME-D), and maximum eigenvalue to max-

imum eigenvalue detector (MEM-D), respectively.

Experiments. We compare the probabilities of detec-

tion (PDs) of the proposed detectors with the distributed

target version of the MGM detector in [3], referred to as

the MGM detector with no whitening (MGM-D-nW). Pre-

cisely, the MGM-D-nW can be obtained from the MGM-

D in (8) in [3] when the numerator λmax,cut is replaced

by 1
K

∑K
l=1 λmax,cut,l, with λmax,cut,l being the maximum

eigenvalue of the estimated covariance matrix for the lth test

data. For the simulation results, the covariance matrix of

the speckle component has the structure of R = R0+p0IN ,

where R0 represents the clutter covariance matrix, p0 rep-

resents the thermal noise power, the (b, n)th element of R0

is R0(b, n) = σ2
cρ

|b−n|, b, n = 1, . . . , N , and ρ = 0.9. We set

the probability of a false alarm as 10−3. The texture com-

ponent of the compound-Gaussian clutter follows an inverse

gamma distribution, with a shape parameter of ν = 0.9 and

a scale parameter of µ = 1.3. For the real data, the dataset

TFA17 014.03.mat is used [5]. Figure 1 shows that the new

detector MHM-D has the highest PD, and when the PD is

0.8, the performance improvement of the MHM-D in terms

of output signal-to-clutter ratio (SCR) exceeds 5 dB com-

pared to the MGM-D-nW.

Figure 1 (Color online) PDs of the detectors under different

SCRs. (a) Simulated data; (b) real data.

Conclusion. The EDDT first implements a whitening op-

eration to the test data to reduce the impact of the clutter.

Then, it performs eigenvalue decomposition to the whitened

data to effectively utilize the energy of the potential target

embedded in the clutter. Finally, it uses these eigenvalues

to form effective detectors. Numerical results showed that

the proposed detectors outperform the existing ones.
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