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Abstract This paper is concerned with the problem of fast accurate reference tracking for the strict-feedback systems with

parametric uncertainties and unmatched disturbances. It is focused on the case where the transient response of the tracking

error, except for the settling time, e.g., the overshoot, is taken into consideration in the context of ensuring the natural

satisfaction of the initial condition. This significantly challenges the existing high-performance control solutions which are

developed by means of the tuning function-based initialization technique, the performance funnel with an infinitely large

entry, or the exponential function related to the initial tracking error. To conquer this obstruction, a novel adaptive prescribed

performance control strategy is put forward in this paper. Herein, an error transformation based on a reverse tuning function

is skillfully combined with the constraint-handling method to form a tight performance envelope on the tracking error. In

addition, a set of self-adjustable, asymmetric and time-varying performance functions are further constructed to enhance

the reliability of control designs. It turns out that the user-specified transient and steady-state tracking performance and

the boundedness of all the signals in the control system are guaranteed by our approach. The above theoretical findings are

substantiated via three simulation studies.
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1 Introduction

Recent decades have witnessed an intense level of research activity on tracking control of uncertain
strict-feedback nonlinear systems [1–5]. This is motivated by their theoretical interests and practical
significance. On the one hand, the presence of uncertainties renders the controller design of such systems
a challenging task. If not handled well, they will result in performance degradation and even instability
of the control system. On the other hand, plenty of physical plants can be described by or transformed
to the strict-feedback form, such as the robotic manipulator [4], the jet engine compressor [6], and the
ship autopilot [7].

Fast accurate reference tracking is frequently desirable in practical applications, which is conducive to
ensuring the safety and reliability of system operation. In this direction, a variety of high-performance
control approaches were developed, primarily based on funnel control (FC) [8–12] and prescribed per-
formance control (PPC) [13–17]. They allow the designer to quantitatively predefine the transient and
steady-state behavior of the tracking error. Up to now, both of them have been skillfully combined with
adaptive control [18, 19] and fuzzy/neural network control [20, 21] to improve the tracking performance
of parametrically uncertain and unknown nonlinear systems, respectively. It is noteworthy that the re-
sults [11–21] necessitate a requirement for the feasible initial condition in the sense that the initial value
of the constrained error should be within the performance envelope. This means that when the system is
rerun, or the reference is changed, these results need to check whether or not the initial condition is met.
If it is not met, the performance function needs to be reselected according to the initial condition of the
closed-loop system. This process complicates the design and implementation of the controller. Intuitively,
the employment of the performance function with a large initial value [19] contributes to alleviating the
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problem mentioned above. However, this is a palliative, not a cure, because the verification of the initial
condition is still necessary in the event of a relatively large initial error. Furthermore, the performance
envelope with an enlarged entry may render the overshoot regulation of the tracking error infeasible.

Currently, there are three mainstreammethods to ensure the natural satisfaction of the initial condition.
The first one is adopting the tuning function [22, 23] to adjust the tracking error and then imposing the
performance constraint on the adjusted error. By this means, it is achieved that the tracking error enters
into the preselected performance envelope within the preassigned settling time. Unfortunately, the explicit
performance boundary during the transient phase fails to be predefined, thus lacking a consideration
of the transient response of the tracking error except for the settling time, e.g., the overshoot. The
second one is constructing a performance function with an infinitely large initial value [24–27] such that
the initial condition holds naturally. To accelerate error convergence, the predefined settling time was
further realized [28, 29]. Thereafter, the extension to the asymmetric performance constraint [30–32]
was successfully performed, which achieves reference tracking with the user-specified overshoot, settling
time and accuracy under the known sign of the initial tracking error. Nevertheless, the tracking error
is constrained by the asymmetric performance funnel with an infinitely large entry. This may lead to a
poor transient behavior, e.g., a large positive (negative) error peak in the case of the positive (negative)
initial error. The third one is forming a performance function whose initial value is related to the initial
tracking error, thereby automatically matching arbitrary known initial conditions [33–39]. In this way,
the full-time performance constraint is imposed on the tracking error, effectively avoiding the oversized
error overshoot and peak. Even so, it should be noted that the settling time is determined collectively by
two adjustable parameters [34–36], complicating the formulation of performance specifications, and just
the exponential convergence is achieved [37]. Besides, the second-order and higher-order derivatives of
the reference are necessary [22, 25, 26, 28, 30, 32, 34–37,39]; the virtual control coefficients are required to
be constant [23, 25, 26, 29, 34, 35, 37] or known [31, 34, 35, 37]; the disturbances are ignored [26, 34–36, 39]
or should be differentiable [37]. On the other hand, tedious derivative calculations of the virtual control
signals have to be made in the controller design [22,25,26,28,29,32,34,35,37,39], leading to the problem
of “explosion of complexity”.

It is also notable that the existing high-performance control results [8, 9, 11, 13–29,32–34,36–39] com-
monly choose a pair of monotonically time-varying functions to form an inelastic performance funnel
imposed on the tracking error for ease of predefining the requisite transient and steady-state response. In
some practical applications, nevertheless, the paroxysmal factors, e.g., a disturbance with a large ampli-
tude of change or a highly fluctuating reference, may increase the tracking error, rendering it much closer
to the performance boundary. This likely gives rise to constraint violation in the case of low-frequency
sampling of the computer control system, especially when the performance specifications are too strict.
Therefore, widening the performance boundary in a proactive manner is sometimes beneficial for control
implementation in the presence of some paroxysmal factors, despite the relaxation of the performance
specifications, as pointed out by [10, 30]. A typical example is performance-related constrained control
of unmanned aerial vehicles in the adverse airflow condition [40], wherein the flight controller needs to
make a trade-off between the control performance and the vehicle capability for a safe and stable flight.
Until now, some pioneering studies have been conducted for various scenarios, including the input satu-
ration [41–44], the strong external disturbances [31,40,45], the drastically changed reference [46], and the
quasi-periodic denial-of-service attack [47]. Nonetheless, these solutions are established in the cases of
the known virtual control coefficients [31,40–42,47], the state-dependent [40] or differentiable [41,42] dis-
turbances, the completely known additive nonlinearities [40–42], or the feasible initial condition [40–47].

The above observations indicate that on the premise of ensuring the natural satisfaction of the initial
condition, the high-performance tracking control problem for strict-feedback systems with parametric
uncertainties and unmatched disturbances remains open. It further becomes challenging under the cases
where neither the values of the state-dependent virtual control coefficients nor their bounds are known;
the disturbances are not necessarily differentiable or state-dependent; the second-order and higher-order
derivatives of the reference do not need to be available; tedious derivative calculations of the virtual
control signals do not have to be made in the recursive design. In this paper, a robust adaptive PPC
approach is developed. Its superiority is enumerated as follows.

• Although the problem of the initial condition in the classical PPC methods [11–21,40–47] is addressed
in the existing studies on high-performance control [22–32, 37], the transient tracking performance fails
to be quantitatively determined, e.g., the overshoot regulation of the tracking error. Therefore, an error
transformation based on a reverse tuning function is skillfully combined with the constraint-handling
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method. The resulting control achieves reference tracking with the predefined overshoot, settling time
and accuracy, while ensuring the natural satisfaction of the initial condition.

• Contrary to the performance functions in the preassigned fixed forms [8–11, 13–30, 32–34, 36–39], a
pair of self-adjustable performance functions are constructed. This evades violation of the performance
constraint induced by the paroxysmal factors, e.g., disturbances with large amplitude of change, in
the case of low-frequency sampling of a control system. On the other hand, the differentiability of
the performance functions is guaranteed. This avoids the potential non-differentiable problem of the
self-adjustable performance functions [45] due to the absolute value of the error derivative, which is
incompatible with the dynamic surface control technique.

The rest of the paper is organized as follows. Section 2 formulates the problem under consideration.
Section 3 presents the controller development and conducts the performance analysis to validate its
effectiveness, which is extended to the self-adjustable performance constraint in Section 4. In Section 5,
the theoretical findings are illustrated by three simulation studies. In the end, Section 6 concludes this
paper.

2 Problem formulation and preliminaries

2.1 System description

The strict-feedback systems under consideration are described by















ẋi = fi(xi) + gi(xi)xi+1 + di(t), i = 1, . . . , n− 1,

ẋn = fn(xn) + gn(xn)u + dn(t),

y = x1,

(1)

where xi = [x1, . . . , xi]
T ∈ Ri, i = 1, . . . , n; xn and y ∈ R denote the system state and the system output,

respectively; fi(xi) ∈ R and gi(xi) ∈ R, i = 1, . . . , n, are the nonlinear functions; di(t) ∈ R, i = 1, . . . , n,
represent the external disturbances; u ∈ R stands for the control input.

Three widely used assumptions for (1) are made as follows.

Assumption 1 (see [28]). There exist an unknown constant, δi > 0, and a known continuously differ-
entiable function, Ψi(xi) > 0, such that

|fi(xi)| 6 δiΨi(xi), i = 1, . . . , n. (2)

Assumption 2 (see [15,22,32]). The function, gi(xi), is unknown and continuously differentiable with
respect to xi, i = 1, . . . , n. Moreover, there exist unknown constants, g

i
> 0 and gi > 0, such that

g
i
6 |gi(xi)| 6 gi, i = 1, . . . , n. Without loss of generality, let g

i
6 gi(xi) 6 gi, i = 1, . . . , n.

Assumption 3 (see [28, 43]). The disturbances are unknown, piecewise continuous in time, and uni-
formly bounded, i.e., |di(t)| < di for all t > 0 with di being an unknown positive constant, i = 1, . . . , n.

2.2 Control objective

The control goal for (1) is fast accurate reference tracking, i.e., steer its output, y(t), to track a reference,
yr(t), with satisfactory performance, where the tracking error is denoted by e(t) = y(t)−yr(t). Specifically,
the requisite transient and steady-state tracking behavior is prescribed by

− ρl < e(t) < ρu, t > Tf , (3)

where the accuracy, ρl and ρu, and the settling time, Tf , are positive constants.
A common assumption and a pair of technical lemmas are introduced below.

Assumption 4 (see [1, 2, 18]). The reference, yr(t), and its first-order time derivative, ẏr(t), are uni-
formly bounded and available. In addition, the second-order time derivative, ÿr(t), is uniformly bounded
yet unknown.

Lemma 1 (see [18]). For any σ > 0 and ̺ ∈ R, there holds 0 6 |̺| − 2
π
̺ arctan

(

̺
σ

)

< 2
π
σ.
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Lemma 2 (see [48]). Consider the dynamic system ˙̟ (t) = −γ1̟(t)+γ2β(t) with the constants γ1 > 0
as well as γ2 > 0 and the function β(t) > 0. For a given initial condition 0 6 ̟(t0) < ∞, there holds
̟(t) > 0, ∀t > t0. If additionally 0 6 β(t) <∞, ∀t > t0, then one has 0 6 ̟(t) <∞, ∀t > t0.

Remark 1. Assumption 1 is widely adopted in the existing studies on control of strict-feedback systems
[22,28,30,32,39]. Therein, Ψi(xi), i = 1, . . . , n, are known as the core functions and can be easily extracted
only based on the deep-rooted information of the plant. This renders the additive nonlinearities of (1) less
restrictive and more general than the ones directly characterized by linearly parameterized functions [3,4,
18,19,26,31,35]. Additionally, the requirement for the core functions being smooth [22,32,39] is removed.
As for Assumption 2, the presence of g

i
, i = 1, . . . , n, aims to ensure the controllability of (1); otherwise,

Eq. (1) becomes uncontrollable when gi(xi) tends to or equals to zero, i ∈ {1, . . . , n}. Assumption 3
is commonly used and reasonable in the literature. On the one hand, the disturbances are bounded in
the real world. On the other hand, Assumption 3 implies that the disturbances meet the local Lipschitz
condition without the assumptions on the differentiable [37, 41, 42] or state-dependent [40] disturbances.
This, together with Assumptions 1 and 2, guarantees the existence and uniqueness of the solution of
(1) [15]. In the classical studies on backstepping control designs [20, 22, 25, 26, 28, 30, 32, 34–37, 39], yr(t)
is required to be differentiable up to the relative degree of the plant, and these derivatives should be
available for controller implementation. In this paper, such a requirement is relaxed to Assumption 4
with the help of the dynamic surface control technique [1, 2, 18, 19, 40–42].

To sum up, the problem studied in this paper reads as follows.

Problem 1. For the strict-feedback system in (1) with parametric uncertainties and unmatched dis-
turbances, design a controller such that the behavior of the tracking error can be prescribed on [0, Tf)
under any known initial condition; the performance requirement in (3) is fulfilled; all the signals in the
control system are bounded.

Remark 2. Notably, the problem of fast accurate reference tracking for the nonlinear systems has
been extensively studied by the PPC method. Nevertheless, the majority of related results need to
check whether or not the initial condition holds [11–21, 40–47], when the control system is rerun or the
reference is changed. On the other hand, despite the natural satisfaction of the initial condition, there
is no consideration of the transient response of the tracking error except for the settling time, e.g., the
overshoot [22–32,37]. Either of the aspects mentioned above renders Problem 1 still open in the literature.

2.3 Reverse tuning function

For the sake of fulfilling practical prescribed-time reference tracking, a reverse tuning function, φ(t), is
first used to adjust the tracking error, which satisfies (i) φ(t) is at least C

2 with φ(0) = 1, and (ii)
limt→Tf

φ(t) = 0 and φ(t) = 0 for t > Tf , where Tf > 0 is given in (3). For example, let

φ(t) =







sinλ+2
(

π

2Tf
(Tf − t)

)

, if 0 6 t < Tf ,

0, otherwise,
(4)

where λ is an adjustable positive constant determining the convergence speed of φ(t).

Remark 3. The function, ψ(t), devised in [34, 35] can also be selected as a reverse tuning function
(although it does not satisfy item (ii) enumerated above), i.e., ψ(t)= e−ζωnt(cos(ωdt)+

ζ√
1−ζ2

sin(ωdt)),

where 0 < ζ < 1, ωn, and ωd = ωn

√

1− ζ2 denote the damping ratio, the undamped natural frequency,
and the damped natural frequency, respectively. In contrast with the settling time of ψ(t) that is obtained
by ts = 4/(ζωn) under 2% criterion, the settling time of φ(t) can be given directly in advance due to the
freedom of choosing Tf . Therefore, a more flexible selection of the reverse tuning function is provided in
this paper.

Motivated by [34, 35], we employ (4) to adjust the tracking error and then get a new error variable,
ξ(t), with a zero initial value:

ξ(t) = e(t)− φ(t)e(0). (5)

In this way, the performance specification in (3) is formulated by

−ρl < ξ(t) < ρu, ∀t > 0. (6)
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Figure 1 (Color online) Graphical representation of (6) with (5) in the cases of e(0) = 1.2 > 0, e(0) = −0.8 < 0, and e(0) = 0.

Figure 2 (Color online) Graphical representation of −ρ(t) < e(t) < ρ(t) in the cases of e(0) = 1.2 > 0, e(0) = −0.8 < 0, and

e(0) = 0.

Remark 4. Under any known y(0) and yr(0), if Eq. (6) holds, then the following features are acquired.
• The initial condition is satisfied naturally, in the sense that −ρl < ξ(0) < ρu ⇔ −ρl + e(0) < e(0) <

ρu + e(0) with ξ(0) = e(0)− φ(0)e(0) = 0.
• The behavior of the tracking error can be prescribed over [0, Tf), due to −ρl + φ(t)e(0) < e(t) <

ρu + φ(t)e(0), t ∈ [0, Tf).
• From ξ(t) = e(t) = y(t)− yr(t), t > Tf , there holds −ρl < e(t) < ρu, t > Tf .
• The tight performance constraint on the tracking error is fulfilled for all t > 0. Compared with the

state-of-the-art studies [22–32], the performance indices for the overshoot and settling time are regulated
quantitatively. Besides, the performance envelope formed by (−ρl + φ(t)e(0)) and (ρu + φ(t)e(0)) is
narrower than the performance envelope formulated by −ρ(t) and ρ(t) for all t > 0, where ρ(t) =
ρ
0
φ(t)+ρl and ρ(t) = ρ0φ(t)+ρu with ρ

0
= ρ0 = |e(0)| are chosen by referring to [21,37]. The compared

results are graphically illustrated in Figures 1 and 2.

2.4 Barrier function

For the purpose of (6), a barrier function, η(t) = η(ξ(t)), is adopted [43,49], which fulfills (i) η(t) is at least
C2 and strictly increasing for ξ(t) ∈ (−ρl, ρu); (ii) limξ(t)→(−ρl)+η(t) = −∞ and limξ(t)→ρ

−
u
η(t) = +∞;

(iii) η(t) is bounded as ξ(t) evolves inside (−ρl, ρu) but keeps away from the boundaries and vice versa.
Throughout this paper, we select [49]

η(t) =
ρlρuξ(t)

(ρl + ξ(t))(ρu − ξ(t))
. (7)

Remark 5. It follows from Remark 4 that −ρl < ξ(0) < ρu holds naturally, which means that η(t) is
defined at t = 0. On this basis, a careful inspection of (7) reveals that if η(t) is bounded for all t > 0,
then Eq. (6) is guaranteed. By this means, the problem of fast accurate reference tracking is converted
into that of ensuring the boundedness of η(t) for all t > 0.

Then, taking the time derivative of η(t) yields

η̇(t) = µ(t)(ẋ1(t)− ẏr(t)− φ̇(t)e(0)), (8)

where µ(t) =
ρ2
l ρ

2
u+ρlρuξ

2(t)
(ρl+ξ(t))2(ρu−ξ(t))2 > 0. For the notational simplicity, the time or state dependence of some

variables may be omitted in the sequel. By replacing the equation of ẋ1 with η̇, Eq. (1) is transformed
to























η̇ = µ(f1 + g1x2 + d1 − ẏr − φ̇e(0)),

ẋi = fi + gixi+1 + di, i = 2, . . . , n− 1,

ẋn = fn + gnu+ dn,

y = x1.

(9)
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3 Control design and performance analysis

In this section, a novel adaptive robust tracking control approach with tight performance guarantees is
put forward to cope with Problem 1.

3.1 Adaptive PPC design

Different from the classical backstepping design [34, 35, 48], this paper introduces the dynamic surface
control-based design philosophy [1, 2, 18, 19, 40–42] equipped with the following change of variables to
address the problem of “explosion of complexity”:

z1 = η, zi = xi − αi,f , i = 2, . . . , n (10)

with αi,f , i = 2, . . . n, denoting the outputs of the following first-order filters:

εiα̇i,f = (αi−1 − αi,f )
3, αi,f (0) = αi−1(0), i = 2, . . . , n, (11)

where εi > 0, i = 2, . . . , n are design parameters, and αi−1, i = 2, . . . , n stand for the virtual control laws
which are regarded as the inputs of (11). Subsequently, the boundary layer errors are defined by

̟i = αi,f − αi−1, i = 2, . . . , n. (12)

For ease of notation [32], let θ = max{δ21 , . . . , δ2n} and β = max{β1, . . . , βn}, where the definitions of

βi, i = 1, . . . , n, will be given shortly. Denote the estimates of θ and β as θ̂ and β̂, respectively. Then,
the corresponding estimation errors are θ̃ = θ − θ̂ and β̃ = β − β̂. The controller design is conducted
recursively.

Step 1. Through (10) and (12), we get

xi = zi +̟i + αi−1, i = 2, . . . , n. (13)

From (9), (10) and (13), the differential equation for z1 is obtained by

ż1 = µ(f1 + g1(z2 +̟2 + α1) + d1 − ẏr − φ̇e(0)). (14)

Choose the Lyapunov function candidate as V1 = 1
2g

1

z21 +
1
2h θ̃

2+ 1
2υ β̃

2+ 1
2̟

2
2, where h and υ are positive

design parameters. The time derivative of V1 is computed by (14) as

V̇1 =
g1
g
1

µz1z2 +
1

g
1

µz1(f1 + g1̟2 + g1α1 + d1 − ẏr − φ̇e(0))− 1

h
θ̃
˙̂
θ − 1

υ
β̃
˙̂
β +̟2 ˙̟ 2. (15)

Subsequently, invoking Young’s inequality, Assumptions 1–3 and Lemma 1, we have

g1
g
1

µz1z2 6 µ2z21z
2
2 +

g21
4g2

1

,
1

g
1

µz1f1 6 µ2z21δ
2
1Ψ

2
1 +

1

4g2
1

6 µ2z21Ψ
2
1θ +

1

4g2
1

, (16)

g1
g
1

µz1̟2 6 µ2z21 +
1

4
̟4

2 +
g41
16g4

1

, µz1
d1
g
1

6 µ |z1|β1 <
2

π

µz1β arctan

(

µz1
σ1

)

+
2

π

βσ1, (17)

− 1

g
1

µz1ẏr 6 µ2z21 ẏ
2
r +

1

4g2
1

, − 1

g
1

µz1φ̇e(0) 6 µ2z21 φ̇
2e2(0) +

1

4g2
1

, (18)

where σ1 > 0 is a design parameter, and β1 = d1

g
1

. Adding both sides of (16)–(18), we further have

1

g
1

z1ż1 6 µ2z21z
2
2 +

g1
g
1

µz1α1 + z1Φ1 + µ2z21Ψ
2
1θ̃ +

2

π

µz1β̃ arctan

(

µz1
σ1

)

+
1

4
̟4

2 +Π1, (19)

where Φ1 = µ2z1Ψ
2
1θ̂+

2
π
µβ̂ arctan(µz1

σ1
)+µ2z1+µ

2z1ẏ
2
r +µ

2z1φ̇
2e2(0) and Π1 = 2

π
βσ1+

g2
1

4g2
1

+
g4
1

16g4
1

+ 3
4g2

1

.

Then, the virtual control law, α1, is given by

α1 = − 1

µ
(k1z1 +Φ1) , (20)
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where k1 > 0 is a design parameter. Putting (19) and (20) into (15) leads to

V̇1 6 µ2z21z
2
2 − k1z

2
1 +

1

h
θ̃
(

τ1,1 − ˙̂
θ
)

+
1

υ
β̃
(

τ1,2 − ˙̂
β
)

+
1

4
̟4

2 +̟2 ˙̟ 2 +Π1, (21)

where τ1,1 = hµ2z21Ψ
2
1 and τ1,2 = 2

π
υµz1 arctan(

µz1
σ1

). By (11) and (12), there holds ˙̟ 2 = −̟3
2

ε2
− α̇1

with α̇1 = ∂α1

∂z1
ż1 +

∂α1

∂µ
µ̇ + ∂α1

∂Φ1
Φ̇1. Let Λ1 = α̇1. Then, we get 1

4̟
4
2 +̟2 ˙̟ 2 = 1

4̟
4
2 − 1

ε2
̟4

2 −̟2Λ1 6

(12 − 1
ε2
)̟4

2 +
1
2Λ

2
1 +

1
4 . Substituting it into (21) and choosing 0 < ε2 < 1/(12 + c2) with c2 > 0 being a

constant yield

V̇1 6 µ2z21z
2
2 − k1z

2
1 +

1

h
θ̃
(

τ1,1 − ˙̂
θ
)

+
1

υ
β̃
(

τ1,2 − ˙̂
β
)

− c2̟
4
2 +

1

2
Λ2
1 + Γ1, Γ1 = Π1 +

1

4
. (22)

Step i (i = 2, . . . , n − 1). Computing the time derivative of 1
2g

i

z2i by using (9), (10) and (13) leads

to 1
g
i

ziżi = 1
g
i

zi(fi + gizi+1 + gi̟i+1 + giαi + di − α̇i,f ). Similarly to Step 1, by Young’s inequality,

Assumptions 1–3 and Lemma 1, there hold

1

g
i

zifi 6 z2iΨ
2
i θ +

1

4g2
i

,
gi
g
i

zizi+1 6 z2i z
2
i+1 +

g2i
4g2

i

,
gi
g
i

zi̟i+1 6 z2i +
1

4
̟4

i+1 +
g4i

16g4
i

,

zi
di
g
i

6 |zi|βi <
2

π

ziβ arctan

(

zi
σi

)

+
2

π

βσi, − 1

g
i

ziα̇i,f 6 z2i α̇
2
i,f +

1

4g2
i

,

where σi is a positive design parameter, and βi =
di

g
i

. Further, we can obtain

1

g
i

ziżi 6 z2i z
2
i+1 +

gi
g
i

ziαi + ziΦi + z2iΨ
2
i θ̃ +

2

π

ziβ̃ arctan

(

zi
σi

)

+
1

4
̟4

i+1 +Πi, (23)

where Φi = ziΨ
2
i θ̂ +

2
π
β̂ arctan( zi

σi
) + zi + ziα̇

2
i,f and Πi =

2
π
βσi +

g2
i

4g2
i

+
g4
i

16g4
i

+ 1
2g2

i

. Then, the virtual

control laws, αi, i = 2, . . . , n− 1, are designed by

α2 = −
(

k2z2 + µ2z21z2 +Φ2

)

, (24)

αi = −
(

kizi + z2i−1zi +Φi

)

, i = 3, . . . , n− 1, (25)

where ki, i = 2, . . . , n− 1, are positive design parameters. Consider the Lyapunov function candidate as
Vi = Vi−1 +

1
2g

i

z2i +
1
2̟

2
i+1. This in conjunction with (22)–(25) gives

V̇i 6z
2
i z

2
i+1 −

i
∑

j=1

kjz
2
j +

1

h
θ̃
(

τi,1 − ˙̂
θ
)

+
1

υ
β̃
(

τi,2 − ˙̂
β
)

+Πi

+
1

4
̟4

i+1 +̟i+1 ˙̟ i+1 −
i−1
∑

j=1

cj+1̟
4
j+1 +

i−1
∑

j=1

1

2
Λ2
j +

i−1
∑

j=1

Γj , (26)

where τi,1 = τi−1,1 + hz2iΨ
2
i and τi,2 = τi−1,2 +

2
π
υzi arctan(

zi
σi
). Note from (11) and (12) that ˙̟ i+1 =

−̟3
i+1

εi+1
−α̇i, i = 2, . . . , n−1, where α̇2 = ∂α2

∂z1
ż1+

∂α2

∂z2
ż2+

∂α2

∂µ
µ̇+ ∂α2

∂Φ2
Φ̇2 and α̇i =

∂αi

∂zi−1
żi−1+

∂αi

∂zi
żi+

∂αi

∂Φi
Φ̇i,

i = 3, . . . , n − 1. Further, it can be derived that 1
4̟

4
i+1 +̟i+1 ˙̟ i+1 6 (12 − 1

εi+1
)̟4

i+1 +
1
2Λ

2
i +

1
4 with

Λi = α̇i. Inserting the above inequality into (26) and letting 0 < εi+1 < 1/(12 + ci+1) with ci+1 > 0 being
a constant yield

V̇i 6 z2i z
2
i+1 −

i
∑

j=1

kjz
2
j +

1

h
θ̃(τi,1 − ˙̂

θ) +
1

υ
β̃(τi,2 − ˙̂

β)−
i

∑

j=1

cj+1̟
4
j+1 +

i
∑

j=1

1

2
Λ2
j +

i
∑

j=1

Γj , (27)

where Γi = Πi +
1
4 .
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Figure 3 (Color online) Schematic of the proposed adaptive PPC architecture.

Step n. At this step, it is noted from (9) and (10) that 1
g
n

znżn = 1
g
n

zn(fn+gnu+dn−α̇n,f ). Following

the same line as in Step i, we can derive 1
g
n

znżn 6
gn
g
n

znu+znΦn+z
2
nΨ

2
nθ̃+

2
π
znβ̃ arctan(

zn
σn

)+Πn, where

Φn = znΨ
2
nθ̂ +

2
π
β̂ arctan( zn

σn
) + znα̇

2
n,f and Πn = 2

π
βσn + 1

2g2
n

with σn > 0 and βn = dn

g
n

. Construct the

Lyapunov function candidate as Vn = Vn−1 +
1

2g
n

z2n, which, together with (27) for i = n− 1, yields

V̇n 6
gn
g
n

znu+ zn
(

z2n−1zn +Φn

)

+Πn −
n−1
∑

j=1

kjz
2
j +

1

h
θ̃
(

τn,1 − ˙̂
θ
)

+
1

υ
β̃
(

τn,2 − ˙̂
β
)

−
n−1
∑

j=1

cj+1̟
4
j+1 +

n−1
∑

j=1

1

2
Λ2
j +

n−1
∑

j=1

Γj , (28)

where τn,1 = τn−1,1 + hz2nΨ
2
n and τn,2 = τn−1,2 +

2
π
υzn arctan(

zn
σn

). The actual control law, u, and the

update laws for θ̂ and β̂ are severally designed as follows:















u = −
(

knzn + z2n−1zn +Φn

)

,
˙̂
θ = τn,1 − lθ̂, θ̂(0) > 0,
˙̂
β = τn,2 −mβ̂, β̂(0) > 0,

(29)

where kn, l, and m are positive design parameters. Inserting (29) into (28) leads to

V̇n 6 −
n
∑

j=1

kjz
2
j +

l

h
θ̃θ̂ +

m

υ
β̃β̂ −

n−1
∑

j=1

cj+1̟
4
j+1 +

n−1
∑

j=1

1

2
Λ2
j +

n−1
∑

j=1

Γj +Πn. (30)

A schematic of the proposed adaptive PPC architecture is exhibited in Figure 3.

3.2 Performance analysis

The theoretical result of this paper is stated as follows.

Theorem 1. If Assumptions 1–4 hold, then Problem 1 is solved by the control scheme in (4), (5), (7),
(10), (11), (20), (24), (25) and (29) under any known initial condition.

Proof. Due to ̟2
j+1 6 ̟4

j+1 +
1
4 , j = 1, . . . , n− 1, θ̃θ̂ 6 − 1

2 θ̃
2 + 1

2θ
2, and β̃β̂ 6 − 1

2 β̃
2 + 1

2β
2, Eq. (30)

is further scaled by

V̇n 6 −
n
∑

j=1

kjz
2
j −

l

2h
θ̃2 − m

2υ
β̃2 −

n−1
∑

j=1

cj+1̟
2
j+1 +

l

2h
θ2 +

m

2υ
β2 +

n−1
∑

j=1

1

4
cj+1 +

n−1
∑

j=1

1

2
Λ2
j +

n−1
∑

j=1

Γj +Πn.

In view of [1, 2, 18, 19, 40–42], consider the compact set ΩV := {
∑n

j=1
1
g
j

z2j + 1
h
θ̃2 + 1

υ
β̃2 +

∑n
j=2̟

2
j 6

2B0} ⊂ R2n+1 with B0 > 0. Consequently, there exists a positive constant, Mi, such that |Λi| 6 Mi on
ΩV , i = 1, . . . , n− 1. Then, there holds

V̇n 6 −
n
∑

j=1

kjz
2
j −

l

2h
θ̃2 − m

2υ
β̃2 −

n
∑

j=2

cj̟
2
j + Γ 6 −ΥVn + Γ, (31)
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where Υ = min{2kjgj , l,m, 2ck} > 0, j = 1, . . . , n, k = 2, . . . , n, and Γ = l
2hθ

2 + m
2υβ

2 +
∑n

j=2
1
4cj +

∑n−1
j=1

1
2M

2
j +

∑n−1
j=1 Γj +Πn > 0.

Proceed with verifying the uniform boundedness of all the signals in the control system. The inequality
in (31) implies that V̇n < 0 on Vn = B0 when Υ > Γ

B0
. Accordingly, Vn 6 B0 is an invariant set, i.e., if

Vn(0) 6 B0, then Vn 6 B0 for all t > 0. This implies that the uniform boundedness of zi, i = 1, . . . , n, θ̃,

β̃, and ̟i, i = 2, . . . , n, is ensured. Invoking θ̃ = θ − θ̂ and β̃ = β − β̂, we obtain θ̂ ∈ L∞ and β̂ ∈ L∞.
Due to z1 = η ∈ L∞, it follows from (7), Remark 5 and (8) that −ρl < ξ < ρu for all t > 0 and µ ∈ L∞.
Note from Assumption 4 and (4) that yr ∈ L∞, ẏr ∈ L∞, φ ∈ L∞, and φ̇ ∈ L∞. By (5), there holds
x1 ∈ L∞. This together with the continuity of Ψ1(x1) in Assumption 1 with respect to x1 (i.e., x1) yields
the uniform boundedness of Ψ1(x1). The above facts along with (20) guarantee α1 ∈ L∞. Therefore, x2
in (13) is uniformly bounded. Take the same way to evaluate α2, . . . , αn−1, x3, . . . , xn, and u. Then, it
can be deduced that αi ∈ L∞, i = 2, . . . , n− 1, xi ∈ L∞, i = 3, . . . , n, and u ∈ L∞. Further, αi,f in (12)
is uniformly bounded, i = 2, . . . , n.

What remains to be analyzed is the tracking performance of the control system. Applying −ρl < ξ < ρu
for all t > 0 to Remark 4 shows that the quantitative regulation of the behavior of the tracking error on
[0, Tf) is achieved and the performance requirement in (3) is fulfilled.

Remark 6. Both the FC method and the PPC method can be employed to achieve reference tracking
with the prescribed transient and steady-state behavior. FC is a continuation of the adaptive high-
gain control methodology, where the monotonically increasing control gain is replaced with a time-
varying and error-dependent function. In this direction, the controller design is conducted based on
a pivotal component, which is composed of the gain function multiplying the tracking error, in the
form of ηFC(t) = 1

1−
|e(t)|
ρ(t)

e(t) [8]. By contrast, the key idea in PPC is the introduction of an er-

ror transformation incorporating the desired performance specifications to yield the transformed sys-
tem of the original controlled system, where the error transformation function is commonly chosen as

ηPPC,1(t) = ln
(

ρ(t)+e(t)
ρ(t)−e(t)

)

[15]. Nevertheless, it is noteworthy that there exists a non-differentiable prob-

lem of |e(t)| with e(t) = 0 in ηFC(t). Although the improved work [20] was conducted to avoid this
problem, it fails to handle the asymmetric constraint in (6) straightforwardly, e.g., the overshoot. On the

contrary, such a specification can be directly introduced by ηPPC,2(t) = ln
(

ρ(t)+e(t)

ρ(t)−e(t)

)

. As a matter of

fact, ηFC(t), ηPPC,1(t) and ηPPC,2(t) all belong to barrier functions, and Eq. (6) is an error constraint in
essence. In addition to ηPPC,2(t), other types of barrier functions are also feasible to ensure (6) as long as
they own the infinity property, e.g., (7) in this paper and (15) in [22]. Accordingly, Problem 1 is solved
by the barrier function-based constrained control method within the robust adaptive control framework.

Remark 7. Instead of the tuning function-based initialization technique [22,23], the performance funnel
with an infinitely large entry [24–32], and the exponential function related to the initial tracking error [37],
the reverse tuning function in (4) is adopted to adjust the tracking error, and then the performance
constraint is imposed on the adjusted error, i.e., (6) with (5). By this means, reference tracking with the
predefined transient and steady-state performance specifications on the overshoot, the settling time and
the accuracy is achieved while ensuring the natural satisfaction of the initial condition. Nonetheless, it
is noteworthy that due to the error transformation in (5), the known initial tracking error is required for
the online control design, rendering the off-line control design infeasible. On the other hand, in practical
application, strict performance specifications are generally effective in regulating the transient and steady-
state behavior of the tracking error. In the case of low-frequency sampling of the computer control system,
nevertheless, such specifications may be adverse when a disturbance with a large amplitude of change is
present. This is because the violent variation of the tracking error results in the highly possible appearance
of constraint violation. In this direction, the following example is illustrative.

Example 1. Consider the longitudinal vehicle system [27], ṗ = ϑ + d1(t), Mϑ̇ = f(ϑ) + u + d2(t),
where M = 50, p and ϑ are the mass, position and velocity of the vehicle, respectively; u is the control
input; f(ϑ) = −50ϑ− 25|ϑ|ϑ denotes the aerodynamic friction; d1(t) shown in Figure 4(c) and d2(t) =
0.05 sin(0.1t) stand for the exogenous disturbances. The control objective is to steer p(t) to track yr(t) =
sin(0.2t) with |p(t)−yr(t)| < 0.05, t > 3. Following Theorem 1, a controller is formed with Tf = 3, λ = 1,
ρl = 0.05, ρu = 0.05, k1 = 20, σ1 = 0.02, k2 = 200, σ2 = 0.02, ε1 = 0.001, h = 5, l = 20, υ = 1, m = 3,
and Ψ(ϑ) = (ϑ − 1)2. In the simulation, let p(0) = 1, ϑ(0) = 0, θ̂(0) = 0, and β̂(0) = 0. The simulation
is conducted under MATLAB with the 0.0 start time, the 10 stop time, and the fixed-step type. Apply
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Figure 4 (Color online) Evolutions of the tracking errors under the different FSTs and the disturbance. (a) The tracking error

and performance envelope under TFST,1 = 0.001; (b) the tracking error and performance envelope under TFST,2 = 0.0001; (c) the

disturbance d1(t).

the controller to the longitudinal vehicle system and set the different fundamental sample times (FSTs),
i.e., TFST,1 = 0.001 and TFST,2 = 0.0001. The simulation results are exhibited in Figures 4(a) and (b).
It is seen from Figure 4(a) with TFST,1 = 0.001 that fast accurate reference tracking with the small error
overshoot is realized before t = 5. After the abrupt change in the amplitude of d1(t), nevertheless, the
tracking error shows frequent fluctuation such that it violates the prescribed performance constraint, and
even the system loses control. In contrast, the controller under TFST,2 = 0.0001 works well for this case;
see Figure 4(b). However, this is highly dependent on the sampling frequency of the practical control
system and is at the cost of increasing the computation burden in control implementation. Therefore,
motivated by the above technical challenges, a solution capable of enhancing the reliability of control
implementation under low-frequency sampling is given in Section 4.

4 Extension to self-adjustable performance constraint

The technical development conducted in the previous sections is extended to a more general case with
the self-adjustable performance constraint in this section. A way to strengthen the reliability of control
designs is provided by appropriately relaxing the performance specifications and adapting the control
gain such that the tracking task is successfully implemented in the presence of paroxysmal factors.

4.1 Problem statement

The problem treated in this section reads as follows.

Problem 2. For the strict-feedback system in (1) under the disturbances with large amplitude of
change, develop a robust controller such that (P1) the reliability of the control system is enhanced;
(P2) all the signals involved in the closed loop are bounded; (P3) the evolution of the tracking error over
time satisfies

φ(t)e(0) − ρl(t)− ωl(t) < e(t) < φ(t)e(0) + ρu(t) + ωu(t), ∀t > 0. (32)

Here, φ(t) is given in (4); ρ̃ < ρl(t) < ∞ and ρ̃ < ρu(t) < ∞ with ρ̃ being a positive constant; the
modification signals, ωl(t) and ωu(t), are given by

ωi(t) =
2

π

(p1,i + β̂1(t)) arctan (∆i(t)), i ∈ {l, u}, (33)

where p1,l and p1,u are positive constants; β̂1(t) ∈ R>0 will be designed later soon in (40); ∆l(t) ∈ R>0

and ∆u(t) ∈ R>0 are generated by the following user-appointed degradation rules:

{

∆̇l(t) = −p2,l∆l(t) + p33,lδl(t),

δl(t) = (sign (e(t)− φ(t)e(0) + p4,lρl(t))− 1) (e(t)− φ(t)e(0) + p4,lρl(t))
3
,

(34)

{

∆̇u(t) = −p2,u∆u(t) + p33,uδu(t),

δu(t) = (sign (e(t)− φ(t)e(0)− p4,uρu(t)) + 1) (e(t)− φ(t)e(0)− p4,uρu(t))
3
,

(35)

with ∆l(0) = 0 and ∆u(0) = 0, where p2,i > 0, p3,i > 0, and 0 < p4,i < 1 are design parameters,
i ∈ {l, u}; (φ(t)e(0) − p4,lρl(t)) and (φ(t)e(0) + p4,uρu(t)) denote the monitoring functions (MFs) inside
the performance envelope; sign(·) represents the signum function [29, 43].
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Table 1 Values of δl(t) and δu(t) based on the relationship between the tracking error and the MFs.

Relationship between the tracking error and the MFs δl(t) δu(t)

e(t) < (φ(t)e(0) − p4,lρl(t)) −2(e(t) − φ(t)e(0) + p4,lρl(t))
3 > 0 0

(φ(t)e(0) − p4,lρl(t)) 6 e(t) 6 (φ(t)e(0) + p4,uρu(t)) 0 0

e(t) > (φ(t)e(0) + p4,uρu(t)) 0 2(e(t) − φ(t)e(0) − p4,uρu(t))
3 > 0

Remark 8. It is seen from (34) and (35) that the values of δl(t) and δu(t) depend on the relationship
between e(t), (φ(t)e(0)− p4,lρl(t)), and (φ(t)e(0)+ p4,uρu(t)); see Table 1 for details. It is not difficult to
verify that δl(t) and δu(t) are continuous and differentiable in time, despite the involvement of the signum
function in (34) and (35). Due to δl(t) > 0 and δu(t) > 0, we obtain from Lemma 2 that ∆l(t) and ∆u(t)

are nonnegative under ∆l(0) = ∆u(0) = 0. They together with β̂1(t) > 0 are supplied to (33), further
acquiring the modified performance boundaries (φ(t)e(0) − ρl(t)− ωl(t)) and (φ(t)e(0) + ρu(t) + ωu(t)).
Moreover, p4,l and p4,u play the role of the ratio thresholds. If e(t) evolves inside the prespecified “safe
region”, i.e., [φ(t)e(0)− p4,lρl(t), φ(t)e(0)+ p4,uρu(t)], then by (34) and (35), ωl(t) and ωu(t) are equal to
zero, and the performance boundaries on e(t) are maintained in the original forms, i.e., (φ(t)e(0)− ρl(t))
and (φ(t)e(0) + ρu(t)). In this case, there is no need to modify the performance boundaries on e(t) and
to relax the performance specifications. If e(t) is outside [φ(t)e(0) − p4,lρl(t), φ(t)e(0) + p4,uρu(t)], then
the performance boundaries on e(t) are automatically modified from (φ(t)e(0) − ρl(t)) and (φ(t)e(0) +
ρu(t)) to (φ(t)e(0) − ρl(t) − ωl(t)) and (φ(t)e(0) + ρu(t) + ωu(t)) accordingly. Once e(t) reenters into
[φ(t)e(0) − p4,lρl(t), φ(t)e(0) + p4,uρu(t)], (φ(t)e(0) − ρl(t) − ωl(t)) and (φ(t)e(0) + ρu(t) + ωu(t)) will
converge to (φ(t)e(0)−ρl(t)) and (φ(t)e(0)+ρu(t)) exponentially fast, respectively, with the convergence
rate governed by p2,l and p2,u. The above analysis implies that the modification scheme in (32)–(35)
is crucial in avoiding violation of the performance constraint and enhancing the reliability of control
implementation, as we will prove below. On the other hand, the typical selections of ρl(t) and ρu(t)
include but are not limited to the following functions:

ρi(t) = ρi,0e
−ℓit + ρi,∞ and ρi(t) =







ρi,0

(

1
2 cos

(

πt

T̃i

)

+ 1
2

)ℓi+2

+ ρi,T̃ , if 0 6 t < T̃i,

ρi,T̃ , otherwise,

for each i ∈ {l, u}, where ρi,0, ρi,∞, ℓi, T̃i, and ρi,T̃ are positive constants, i ∈ {l, u}.
A lemma, which facilitates the upcoming control design, is provided below.

Lemma 3. Let Fl(t) = ρl(t) + ωl(t) and Fu(t) = ρu(t) + ωu(t), and then by (5), Eq. (32) is equivalent
to

− Fl(t) < ξ(t) < Fu(t), ∀t > 0. (36)

Proof. It is straightforward and thus omitted.

4.2 Barrier function

With the aim at (36), the barrier function in (7) is modified to

η(t) =
Fl(t)Fu(t)ξ(t)

(Fl(t) + ξ(t))(Fu(t)− ξ(t))
. (37)

From (5) and (37), the differential equation for η(t) is obtained by

η̇(t) = µ1(t)(ẋ1(t)− ẏr(t)− φ̇(t)e(0)) + µ2(t), (38)

where

µ1(t) =
F 2
l (t)F

2
u (t) + Fl(t)Fu(t)ξ

2(t)

(Fl(t) + ξ(t))2(Fu(t)− ξ(t))2
> 0,

µ2(t) =
ξ2(t)

(Fl(t) + ξ(t))2(Fu(t)− ξ(t))2
(Ḟl(t)F

2
u (t)− F 2

l (t)Ḟu(t)− (Fl(t)Ḟu(t) + Ḟl(t)Fu(t))ξ(t)).
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4.3 Self-adjustable performance-based control design

To deal with Problem 2, a self-adjustable performance-based adaptive robust control approach is proposed
in this subsection. The controller design begins with the following change of variables:

z1 = η, zi = xi − αi,f , i = 2, . . . , n, (39)

where αi,f is obtained through (11). Subsequently, the controller design is conducted step by step.

Step 1. Differentiating z1 in (39) by (1) and (38) yields ż1 = µ1(f1 + g1x2 + d1 − ẏr − φ̇e(0)) + µ2.
Substituting (13) into the above equation, we have ż1 = µ1(f1+ g1(z2+̟2+α1)+ d1− ẏr − φ̇e(0))+µ2.
Choose the Lyapunov function candidate as V1 = 1

2g
1

z21 + 1
2h1

θ̃21 + 1
2υ1

β̃2
1 + 1

2̟
2
2, where h1 and υ1 are

positive parameters; θ̃1 = θ1 − θ̂1 and β̃1 = β1 − β̂1; θ̂1 and β̂1 are the estimates of θ1 = δ21 and β1 = d1

g
1

,

respectively. Computing the time derivative of V1 gives V̇1 = g1
g
1

µ1z1z2 +
1
g
1

µ1z1(f1 + g1̟2 + g1α1 + d1 −

ẏr − φ̇e(0)) + 1
g
1

µ2z1 − 1
h1
θ̃1

˙̂
θ1 − 1

υ1
β̃1

˙̂
β1 +̟2 ˙̟ 2. By following the same line from (16) to (19), it can be

derived that 1
g
1

z1ż1 6 µ2
1z

2
1z

2
2 +

g1
g
1

µ1z1α1 + z1Ξ1 +µ2
1z

2
1Ψ

2
1θ̃1 +

2
π
µ1z1β̃1 arctan(

µ1z1
σ1

) + 1
4̟

4
2 +Π′

1, where

σ1 > 0 is a design parameter; Ξ1 = µ2
1z1Ψ

2
1θ̂1+

2
π
µ1β̂1 arctan(

µ1z1
σ1

)+µ2
1z1+µ

2
2z1+µ

2
1z1ẏ

2
r +µ

2
1z1φ̇

2e2(0);

Π′
1 = 2

π
β1σ1 +

g2
1

4g2
1

+
g4
1

16g4
1

+ 1
g2
1

. Then, design the virtual control law, α1, and the update laws for θ̂1 and

β̂1 as














α1 = − 1
µ1

(k1z1 + Ξ1 + γl∆lz1 + γu∆uz1) ,
˙̂
θ1 = h1µ

2
1z

2
1Ψ

2
1 − l1θ̂1, θ̂1(0) > 0,

˙̂
β1 = 2

π
υ1µ1z1 arctan(

µ1z1
σ1

)−m1β̂1, β̂1(0) > 0,

(40)

where k1, γl, γu, l1, and m1 are positive design constants, and −γl∆lz1/µ1 and −γu∆uz1/µ1 are the
differentiable terms. Inserting 1

g
1

z1ż1 and (40) into V̇1 and utilizing 1
4̟

4
2+̟2 ˙̟ 2 6 (12 −

1
ε2
)̟4

2+
1
2Λ

2
1+

1
4

with Λ1 = α̇1 yield V̇1 6 µ2
1z

2
1z

2
2 −k1z21 −γl∆lz

2
1 −γu∆uz

2
1 +

l1
h1
θ̃1θ̂1+

m1

υ1
β̃1β̂1+(12 −

1
ε2
)̟4

2 +
1
2Λ

2
1+Γ′

1 6

µ2
1z

2
1z

2
2 − k1z

2
1 +

l1
h1
θ̃1θ̂1 +

m1

υ1
β̃1β̂1 − c2̟

4
2 +

1
2Λ

2
1 + Γ′

1, where Γ′
1 = Π′

1 +
1
4 and 0 < ε2 < 1/(12 + c2) with

c2 > 0 being a constant. It is notable that the introduction of −γl∆lz1/µ1 and −γu∆uz1/µ1 in (40)
does not make the structure of V̇1 more complicated, as a result of −γl∆lz

2
1 6 0 and −γu∆uz

2
1 6 0 with

∆l > 0, ∆u > 0, and z21 > 0.
Step i (i = 2, . . . , n − 1). Following the same design procedure as in Section 3 to devise the virtual

control laws, α2, . . . , αn−1, and the update laws for θ̂2, . . . , θ̂n−1 and β̂2, . . . , β̂n−1 one by one, we can
obtain























α2 = −
(

k2z2 + µ2
1z

2
1z2 +Φ2

)

,

αi = −
(

kizi + z2i−1zi +Φi

)

, i = 3, . . . , n− 1,
˙̂
θi = hiz

2
iΨ

2
i − liθ̂i, θ̂i(0) > 0, i = 2, . . . , n− 1,

˙̂
βi =

2
π
υizi arctan(

zi
σi
)−miβ̂i, β̂i(0) > 0, i = 2, . . . , n− 1,

(41)

where ki, hi, li, υi, σi, and mi are positive design parameters, i = 2, . . . , n − 1, and Φi = ziΨ
2
i θ̂i +

2
π
β̂i arctan(

zi
σi
) + zi + ziα̇

2
i,f , i = 2, . . . , n − 1. Construct the Lyapunov function candidate as Vi =

Vi−1 +
1

2g
i

z2i +
1

2hi
θ̃2i +

1
2υi
β̃2
i +

1
2̟

2
i+1, i = 2, . . . , n− 1, where θ̃i = θi − θ̂i and β̃i = βi − β̂i with θi = δ2i

and βi =
di

g
i

, i = 2, . . . , n− 1. Computing the time derivative of Vi and invoking V̇1 and (41), we obtain

V̇i 6 z2i z
2
i+1−

∑i
j=1 kjz

2
j +

∑i
j=1

lj
hj
θ̃j θ̂j +

∑i
j=1

mj

υj
β̃j β̂j −

∑i
j=1 cj+1̟

4
j+1+

∑i
j=1

1
2Λ

2
j +

∑i
j=1 Γ

′
j , where

Γ′
i = Πi +

1
4 with Πi =

2
π
βiσi +

g2
i

4g2
i

+
g4
i

16g4
i

+ 1
2g2

i

, i = 2, . . . , n− 1.

Step n. In the end, the actual control law, u, and the update laws for θ̂n and β̂n are designed by














u = −
(

knzn + z2n−1zn +Φn

)

,
˙̂
θn = hnz

2
nΨ

2
n − lnθ̂n, θ̂n(0) > 0,

˙̂
βn = 2

π
υnzn arctan(

zn
σn

)−mnβ̂n, β̂n(0) > 0,

(42)
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where kn, hn, ln, υn, σn, and mn are positive design parameters, and Φn = znΨ
2
nθ̂n + 2

π
β̂n arctan(

zn
σn

) +

znα̇
2
n,f . Consider the Lyapunov function candidate as Vn = Vn−1 + 1

2g
n

z2n + 1
2hn

θ̃2n + 1
2υn

β̃2
n, where

θ̃n = θn − θ̂n and β̃n = βn − β̂n with θn = δ2n and βn = dn

g
n

. In view of V̇n−1 and (42), the differential

equation for Vn is obtained by V̇n 6 −
∑n

j=1 kjz
2
j +

∑n
j=1

lj
hj
θ̃j θ̂j +

∑n
j=1

mj

υj
β̃j β̂j −

∑n−1
j=1 cj+1̟

4
j+1 +

∑n−1
j=1

1
2Λ

2
j +

∑n−1
j=1 Γ′

j +Πn, where Πn = 2
π
βnσn + 1

2g2
n

.

Another theoretical result of this paper is summarized as follows.

Theorem 2. The proposed control scheme in (4), (5), (11), (33)–(37), (39), (40)–(42) solves Problem
2, under Assumptions 1–4 and any known bounded initial condition.

Proof. It can be carried out in a similar procedure with the proof of Theorem 1; thus, the main proof
is omitted due to the limited space. However, what needs to be proven additionally is the boundedness
of ∆l(t) and ∆u(t). Similarly to (31), we can derive that Vn is bounded for all t > 0. This implies that
zi, θ̃i, β̃i and ̟j are uniformly bounded, i = 1, . . . , n, j = 2, . . . , n. According to the boundedness of θi
and βi, one sees from θ̃i = θi − θ̂i and β̃i = βi − β̂i that θ̂i and β̂i are uniformly bounded, i = 1, . . . , n.
By (33) and Lemma 3, there hold Fl(t) ∈ L∞ and Fu(t) ∈ L∞. On this basis, we obtain ξ(t) ∈ L∞

and e(t) ∈ L∞. This together with Table 1 yields that there exists a positive constant, δ̄i, such that
0 6 δi(t) < δ̄i for all t > 0, i ∈ {l, u}. Then, invoking Lemma 2, we deduce that ∆l(t) in (34) and ∆u(t)
in (35) are uniformly bounded under ∆l(0) = 0 and ∆u(0) = 0.

Remark 9. It follows from (32) that the self-adjustable prescribed performance is manifested in two
aspects. On the one hand, under ∆l(0) = 0 and ∆u(0) = 0, we obtain from (33) that ωl(0) = 0 and
ωu(0) = 0. This together with (4) yields by (32) for t = 0 that −ρl(0) + e(0) < e(0) < ρu(0) + e(0).
Accordingly, whenever the controlled system is rerun, or the reference is changed, our approach is capable
of automatically adjusting the initial values of the upper and lower performance boundaries on e(t), i.e.,
(ρu(0) + e(0)) and (−ρl(0) + e(0)), such that the initial condition holds naturally. On the other hand, in
the presence of paroxysmal factors, e.g., a disturbance with a large amplitude of change, the performance
boundaries on the tracking error are temporarily modified based on the user-appointed rules in (32)–(35)
such that the performance specifications are appropriately relaxed and the tracking control task becomes
more feasible. The design philosophy is clarified in Remark 8. Moreover, in (40), a pair of differentiable
terms, −γl∆lz1/µ1 and −γu∆uz1/µ1, are employed to compensate for the negative effects arising from
the violent variation of the tracking error, thus strengthening the robustness of the control system to
prevent instability during operation. In addition to the relaxation of the performance specifications, this
is another essential difference between the proposed approach in this section and that in Section 3. In this
direction, the following example is provided to illustrate the roles of the modification signals, ωl(t) and
ωu(t), in (32) and the auxiliary terms, −γl∆lz1/µ1 and −γu∆uz1/µ1, in (40) for control implementation.

Example 2. Consider the longitudinal vehicle system in Example 1 again. According to Theorem 2,
a controller, labeled as C1, is obtained with Tf = 3, λ = 1, ρl,0 = ρu,0 = 0.2, ℓl = ℓu = 1, T̃l = T̃u = 3,
ρl,T̃ = ρu,T̃ = 0.05, k1 = 20, γl = γu = 50, σ1 = 0.02, k2 = 200, σ2 = 0.02, ε1 = 0.001, h1 = h2 = 5,

l1 = l2 = 20, υ1 = υ2 = 1, m1 = m2 = 3, Ψ(ϑ) = (ϑ − 1)2, p1,l = p1,u = 0.5, p2,l = p2,u = 110,
p3,l = p3,u = 50, and p4,l = p4,u = 0.5. To evaluate the impact of the auxiliary terms in (40) on the
control performance, a comparative controller, labeled as C2, is employed to conduct an ablation study,
i.e., the above controller with γl = γu = 0. The simulation is performed under MATLAB with the 0.0
start time, the 10 stop time, the fixed-step type, and the 0.001 FST. Apply the above two controllers to the
longitudinal vehicle system under the same initial conditions with Example 1, and the simulation results
are displayed in Figure 5. It is seen that the tracking errors evolve inside their respective performance
envelopes, despite the abrupt change in the amplitude of d1(t) shown in Figure 4(c), unlike the result in
Figure 4(a). Nevertheless, careful inspection of Figure 5 reveals that the tracking error obtained by C1

exhibits a lower amplitude during the abrupt change in the amplitude of the external disturbance than
that under C2. This is attributed to the compensation of the auxiliary terms in (40) for the negative
effects caused by the disturbance. Therefore, the combination of the modification signals in (32) and
the auxiliary terms in (40) is capable of effectively enhancing the reliability of control implementation
under low-frequency sampling when a disturbance with a large amplitude of change is present. In this
spirit, the proposed approach in this paper is also suitable for some practical scenarios in addition to
Example 1, including the unmanned aerial vehicles flying under microburst [40], the waverider vehicles
flying under sudden disturbances [45], the hypersonic vehicles with a drastically changing reference [46],
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Figure 5 (Color online) Evolutions of the tracking errors. (a) e(t) obtained by C1; (b) e(t) obtained by C2.

Figure 6 (Color online) Simulation under our approach. (a) The tracking error and performance envelope; (b) the second state

variable; (c) the control input.

and the mechanical systems under denial-of-service attacks [47].

5 Simulation studies

In this section, three simulation studies are conducted to illustrate the above theoretical results.

Example 3. Consider a second-order nonlinear system with the following dynamics:

ẋ1 = x21 + x2, ẋ2 = x31x
2
2 + u, y = x1 (43)

with x1(0) = 0 and x2(0) = 0. The control task for (43) is to drive y(t) to track yr(t) = 1, and the
transient and steady-state tracking response is formulated by

|y(t)− yr(t)| < 0.1, t > 8. (44)

Based on Theorem 1, a controller is formed with ρl = ρu = 0.1, λ = 3, Tf = 8, k1 = 35, Ψ1(x1) = x21,
k2 = 100, Ψ2(x2) = x21x

2
2e

x1 , ε2 = 10−6, h = 1, and l = 20. The application of the above controller to
(43) is depicted in Figure 6. It is seen that the tracking error evolves inside the performance envelope
such that the performance requirement predefined in (44) is satisfied. Moreover, the second state variable
and the control input are both bounded. Therefore, the feasibility of the developed approach is verified
by the simulation results.

For comparison, another PPC scheme with a standard second-order transient response [34] is applied to
(43) under the known system model. The simulation results are collected in Figure 7. It is observed from
Figure 7(a) that since ψ(t) is not identically equal to zero for t > 8, the actual performance constraint
on the tracking error is (−0.1 + ψ(t)e(0), 0.1 + ψ(t)e(0)) rather than (−0.1, 0.1) during t ∈ [8, 20). This
means that the performance requirement for the tracking accuracy is not fulfilled after the predefined
settling time. On the other hand, the comparison between Figures 6 and 7 shows that a larger negative
control peak is needed for the comparative scheme. Accordingly, the simulation results demonstrate the
superiority of our approach.

Example 4. Consider the mathematical model of a jet engine compressor as follows [6]:

ẋ1 = −x2 − 1.5x21 − 0.5x31, ẋ2 = u+ d(t), y = x1, (45)

where x1, x2, u, and d(t) denote the mass flow, the pressure rise, the throttle mass flow, and the
disturbance, respectively. In the simulation, let x2(0) = [1, 0]T and d(t) = sin(2t). The control objective
for (45) is to steer y(t) to track yr(t) = sin(t) with the following performance specification:

|y(t)− yr(t)| < 0.05, t > 6. (46)
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Figure 7 (Color online) Simulation under the comparative scheme [34]. (a) The tracking error and performance envelope;

(b) the second state variable; (c) the control input.

Figure 8 (Color online) Simulation under proposed control. (a) The system output and reference; (b) the tracking error and

performance envelope; (c) the second state variable and virtual control signal.

Figure 9 (Color online) Simulation under proposed control. (a) The control input; (b) the adaptive law θ̂(t); (c) the adaptive

law β̂(t).

Figure 10 (Color online) Simulation under PI FC [11]. (a) The system output and reference; (b) the tracking error and perfor-

mance envelope; (c) the control input.

Following Theorem 2, a controller is acquired with Tf = 6, λ = 0.1, ρl,0 = ρu,0 = 0.45, ℓl = ℓu = 0.1,

T̃l = T̃u = 6, ρl,T̃ = ρu,T̃ = 0.05, k1 = 2, γl = γu = 0, k2 = 5, σ2 = 0.02, ε1 = 0.0001, h = 1, l = 20,

υ = 1, m = 3, Ψ1(x1) = x21(e
x1 + 2), pi,l = pi,l = 0, i = 1, 2, 3, and p4,l = p4,u = 0.99. Apply it to

(45), and the simulation results are displayed in Figures 8 and 9. It is observed from Figure 8(a) that
reference tracking is achieved. Concretely, Figure 8(b) exhibits the evolution of the tracking error inside
the performance envelope, thus fulfilling the performance requirement in (46). One sees from Figures
8(c) and 9 that the second state variable, the virtual control signal, the control input, and the adaptive
laws are all bounded. Thus, the feasibility of the proposed approach is verified by the simulation results.

For the purpose of comparison, a proportional-integral (PI) FC scheme [11] is applied to (45) with the
same control objective. Figure 10 displays the simulation results. It is seen that reference tracking is
realized by a bounded control input, and the tracking error fulfills the performance requirement in (46).
Nevertheless, careful inspection of Figures 8(b) and 10(b) reveals that the tracking error obtained by
our controller exhibits a smaller overshoot than that by using the PI funnel controller. This is because
our approach is capable of regulating quantitatively the error overshoot by imposing a tight performance
envelope on the tracking error. Accordingly, the comparative simulation results clarify the advantage of
the proposed control approach.
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Figure 11 (Color online) Simulation under different cases. (a) The tracking error and performance envelope under Case 1;

(b) the tracking error and performance envelope under Case 2; (c) the tracking error and performance envelope under Case 3.

Figure 12 (Color online) Simulation under different cases. (a) The second state variable and virtual control signal under Case 1;

(b) the second state variable and virtual control signal under Case 2; (c) the second state variable and virtual control signal under

Case 3.

Example 5. To further enrich the simulation test, consider the following strict-feedback system:















ẋ1 = 0.5 sin(0.1x1) + (1.5 + 0.2 sin(0.3x1))x2 + d1(t),

ẋ2 = 0.1 sin(x1x2) + 0.2e−|x1|+1 + (1.5 + 0.2 cos(0.1x1x2))u+ d2(t),

y = x1,

(47)

where x1(0) = 1 and x2(0) = −0.3; d1(t) = 0.1 sin(5t) for 0 6 t < 5, d1(t) = 1.25 sin(2πt)−0.5 cos(3(t−2))
for 5 6 t < 7, and d1(t) = 0.2 cos(1.5t) for t > 7, which simulates a disturbance with a large amplitude
of change; d2(t) = 1.2 sin(t) + 0.75 cos(t). The control task is to force y(t) to track yr(t) = 0.5 sin(0.5t)
with the anticipant performance guarantees:

φ(t)e(0)− ρl(t)− ωl(t) < y(t)− yr(t) < φ(t)e(0) + ρu(t) + ωu(t), t > 0. (48)

According to Theorem 2, the design parameters of the control approach are chosen as λ = 1, Tf = 3,

ρl,0 = ρu,0 = 0.45, ρl,T̃ = ρu,T̃ = 0.05, ℓl = ℓu = 1, T̃l = T̃u = 3, p2,l = p2,u = 50, p1,l = p1,u = 0.5,
p4,l = p4,u = 0.6, k1 = 10, σ1 = 0.02, k2 = 12, σ2 = 0.02, ε2 = 0.001, h1 = h2 = 5, l1 = l2 = 20, υ1 =
υ2 = 1, and m1 = m2 = 3. In our approach, the purpose of introducing ωi(t) and −γi∆i(t)z1(t)/µ1(t)
is to enhance the reliability of control implementation in the case of low-frequency sampling, i ∈ {l, u}.
For a sufficient demonstration of such a feature, three scenarios are considered as follows.

• Case 1. ωi(t) = 0 (p3,i = 0) and −γi∆i(t)z1(t)/µ1(t) = 0 (γi = 0), i ∈ {l, u}.
• Case 2. ωi(t) > 0 (p3,i = 110) and −γi∆i(t)z1(t)/µ1(t) = 0 (γi = 0), i ∈ {l, u}.
• Case 3. ωi(t) > 0 (p3,i = 110) and −γi∆i(t)z1(t)/µ1(t) ∈ R (γi = 6), i ∈ {l, u}.

The simulation is performed under MATLAB with the 0.0 start time, the 10 stop time, the fixed-step type,
and the 0.001 FST. The comparative simulation results are exhibited in Figures 11–14. The trajectories of
the tracking errors under Cases 1–3 and their respective performance envelopes are plotted in Figure 11,
from which we observe that the abrupt change of the disturbance causes a violation of the performance
constraint in Case 1. By contrast, the constraint satisfaction of Cases 2 and 3 is achieved due to the
introduction of ωi(t) related to ∆i(t) in (48), i ∈ {l, u}, where it is seen from Figure 14 that ∆i(t),
i ∈ {l, u}, is bounded and nonnegative. In addition, Figure 11 shows that the tracking performance of
Case 3 is better than that of Case 2, since −γi∆i(t)z1(t)/µ1(t), i ∈ {l, u}, introduced in the virtual control
signal, compensates well for the effect of the disturbance on the tracking performance at the expense of
more obvious fluctuations of the control signal, as depicted in Figure 13. Accordingly, the feasibility of
our approach is verified by the simulation results.
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Figure 13 (Color online) Simulation under different cases. (a) The control input under Case 1; (b) the control input under Case

2; (c) the control input under Case 3.

Figure 14 (Color online) Simulation under different cases. (a) The auxiliary variables under Case 2; (b) the auxiliary variables

under Case 3.

6 Conclusion

An adaptive robust control approach with tight performance guarantees for the strict-feedback systems
with parametric uncertainties and unmatched disturbances is put forward in this paper. It achieves
reference tracking with the predefined performance specifications on the overshoot, the settling time, and
the accuracy while guaranteeing the natural satisfaction of the initial condition. Moreover, the reliability
of control implementation is enhanced by employing a kind of performance function with a self-adjustable
ability and a pair of auxiliary terms for adaption of the control gain, in the presence of paroxysmal factors,
e.g., a disturbance with a large amplitude of change. The simulation results validate the feasibility and
advantages of the proposed approach. As future work, it is of interest to extend the established results to
more complicated systems, e.g., nonlinear multiagent systems or multiple-input-multiple-output nonlinear
systems.
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