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Abstract Understanding the dynamics of multi-agent learning has long been an important research topic. Existing research

has focused mostly on 2-agent games or well-mixed populations. However, in real-world multi-agent systems, agents often

interact in spatially or socially structured networks (or graphs). In this paper, we examine the dynamics of multi-agent

Q-learning on graphs. Combining mean-field theory and combinatorics analysis, we present a new analytical approach to

formally describe the time evolution of Q-values in the system with a topological structure. Through extensive numerical

simulations, we show that our theory consistently provides an accurate depiction of the Q-learning dynamics across different

typical games, initial conditions, and various graph structures, encompassing regular graphs, scale-free graphs, and random

graphs. Moreover, we show that when comparing regular graphs to other types of graphs with the same average degree, the

differences in the system evolution are largely attributed to the behaviors and Q-values of agents with lower degrees.
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1 Introduction

Recent years have witnessed a substantial advancement in the capability of learning agents, leading to
their wide applications in a variety of multi-agent systems (MASs), such as traffic systems [1], swarm
robots [2–4], and wireless networks [5, 6]. However, in contrast to the solid theoretical foundation of
learning under single-agent settings [7–10], learning under multi-agent settings (or multi-agent learning)
is still far from being well understood [11–16].

In pioneering work, Tuyls et al. [17] and Sato and Crutchfield [18] showed that Q-learning dynam-
ics [19] in 2-player repeated normal-form games can be viewed as a selection-mutation mechanism in
the evolutionary game theory [20]. This finding connected arguably the most well-known reinforcement
learning (RL) model to evolutionary game theory, and consequently has inspired many subsequent studies
to investigate multi-agent learning using evolutionary game-theoretic (EGT) approaches [21–28]. Kian-
ercy and Galstyan [29] characterized the fixed point structure of Q-learning in diverse 2-player games.
Kaisers and Tuyls [30] observed that the EGT approach may predict outcomes that deviate from the
actual Q-learning dynamics and consequently proposed a new algorithm that better aligned with the
EGT prediction. Leonardo et al. [31] showed that by tuning the exploration parameter, there are phase
transitions between multiple equilibria for Q-learning in certain n-player games. Hu et al. [32] focused
on a well-mixed population and showed that the multi-agent Q-learning dynamics can be characterized
by a Fokker-Planck equation.
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Previous work on multi-agent learning dynamics (see [22] for a comprehensive review) has focused either
on finite-player (mostly 2-player) games or well-mixed populations. However, different from the conven-
tional settings of 2-player games and well-mixed populations, real-world MASs can exhibit topological
structures—agents interact in spatially or socially structured networks (or graphs) [33–37]. For example,
within a social network, individuals tend to communicate primarily with the friends they know rather
than random strangers. Similarly, in traffic networks, vehicles interact based on their spatial proximity
rather than uniformly with all cars in the system. Representing each individual (or agent) as a vertex and
each potential interaction between two individuals as an edge, a multiagent system (MAS) with a topo-
logical structure can be formally represented by a graph. However, despite its widespread applicability,
multi-agent learning on graphs has received limited attention in existing theoretical investigations.

Motivated by this gap, we study multi-agent learning on graphs in this work with a particular focus
on Q-learning [19]—arguably the most well-known learning model. Previous studies, such as Hu et
al. [32] have utilized mean-field theory (MFT) to model interactions in large, well-mixed populations,
and approximate the effects of other agents on the single agent by an averaged effect. This approach was
further developed by Leung et al. [38], who applied it to Q-learning within social learning models. While
effective for infinite and well-mixed populations, these models often overlook the local impact among
agents in graph-structured populations, where agents primarily interact with nearby neighbors.

Multi-agent learning on graphs typically features a large number of agents as well as a potentially
unequal degree distribution (e.g., the degree distribution exhibits a scale-free property) [39, 40]. While
the former naturally causes analytical techniques for learning in 2-player games infeasible [17,18,22], the
latter breaks the mean-field assumption, which assumes each individual can be treated equally as the
same mean-field, used in the previous analyses for learning in well-mixed populations [32,38]. Therefore,
multi-agent learning on graphs presents a new challenge: how can one effectively capture the correlation
between the strategies of many agents and the degree distribution of the underlying graph structure?

To address this challenge, we present a new analytical approach that combines the MFT and combi-
natorics analysis. This entails (i) encoding possible joint actions of an agent’s neighbors into a neighbor
configuration (Definition 2), (ii) reformulating the agent’s reward function based on the neighbor con-
figuration (Lemma 1), (iii) employing a mean-field approximation to estimate the probability of each
neighbor configuration that the agent may encounter (Lemma 2), and (iv) deriving the expected change
in Q-values for the agent (Lemma 4). Based on these key steps, we show that our approach leads to
a Fokker-Planck equation that governs the probability distribution of Q-values on graphs (Theorem 1).
Moreover, we show that as the degree of each vertex (or agent) approaches infinity, our derived Fokker-
Planck equation can be reduced to the Fokker-Planck equation for well-mixed populations (Corollary 1);
that is to say, our theory, which considers multi-agent learning on graphs, can be seen as a generaliza-
tion of the previous approach [32] that assumes well-mixed populations and overlooks the possibility of
underlying topology of MASs.

We numerically validate our theory on five distinct symmetric games and various graph structures,
encompassing regular graphs with diverse degrees, scale-free graphs, as well as two categories of random
graphs in our experiments. We show that our theory consistently provides an accurate depiction of
Q-learning dynamics across different games, initial conditions, and graph structures. In particular, we
show that our model yields a more accurate prediction of learning on regular and random graphs than on
scale-free graphs. We analyze that this is because, within scale-free graphs, many substructures hug and
resist interactions with others. Moreover, we show that in regular graphs, as agents’ (or nodes’) degrees
increase, their behavior and Q-values converge to that of the mean-field (i.e., the averaged behavior and
the averaged Q-values). Last but not least, we show that when comparing regular graphs to other types
of graphs with the same average degree, the differences in the system evolution are largely attributed to
the behaviors and Q-values of agents with lower degrees.

2 Related work

2.1 Modeling the dynamics of Q-learning in games

Tuyls et al. [17] developed a system of replicator equations to model the policy dynamics of twoQ-learning
agents in repeated 2-player matrix games. The importance of replicator dynamics in RL algorithms, such
asQ-learning, is evident as it is linked to the gradient of expected rewards [41]. Subsequently, some studies
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extended this approach beyond 2-player games to analyze the dynamics of a small-sized population of
Q-learning agents [42]. Kianercy and Galstyan’s study [43] presents a comprehensive portrayal of the
fixed point structure across multiple 2-player 2-action games and investigates how this structure responds
to noise resulting from exploration. Subsequent studies generalized this EGT approach to other learning
algorithms, such as FAQ-learning, infinitesimal gradient ascent, and regret minimization. Researchers
developed formal models for the dynamics of two agents under these learning algorithms [30,44]. Recently,
Hu et al. [32,45] developed a Fokker-Planck equation-based model to characterize the population dynamics
of infinitely many Q-learning agents in an MAS. Building upon this work, Leung et al. [38] examined
local interactions between agents, in which an agent is paired with another agent in the population to
play a 2-player symmetric game at each time step. However, the underlying topological graphs of the
MASs considered in these studies [32, 38, 45, 46] essentially consist of well-mixed populations, where in
each round of gameplay, every agent interacts with another agent randomly selected from the rest of the
population.

2.2 Simulation of Q-learning on graphs

Additionally, some researchers have focused on exploring the impact of graph structure on the interaction
behavior between agents by carrying out simulations on MASs with a specific underlying topological
graph. Villatoro et al. [47, 48] investigated the impact of different graphs on agents’ behavior in a Q-
learning MAS, where agents’ rewards depend on the past actions of others and studied the effects of certain
substructures on the diffusion of agent behavior. They pointed out that different features of the graphs
where agents are located can result in different convergence times to reach a social convention. These
experiments have revealed evidence that demonstrates how certain abstract substructures within certain
topological graphs, such as a scale-free graph, can result in longer convergence times or even prevent
full convergence to society-wide conventions. If agents can interact with a majority of the population,
it can prevent the formation of local conventions. Sen et al. [49] examined the effect of graph structure,
such as scale-free and ring networks. In scale-free networks, hub nodes (agents), agents with numerous
neighbors, have more influence than others. While ring (regular) networks converge faster for fewer
actions, scale-free networks can converge faster for a larger number of actions. Yu et al. [50] allowed
each agent to consider the actions of all its neighbors and investigated the effects of underlying graphs.
Nevertheless, these studies are limited to simulations and lack a proper theory. This work complements
these simulation-based studies by providing a feasible approach to theoretically study the dynamics of
multi-agent learning on graphs.

3 Preliminaries

3.1 Multiagent systems on the graph

Consider an MAS on the graph. The interactions between agents are subject to certain limitations, which
we abstract as a graph G that satisfies Definition 1. Each vertex represents an agent that can interact
with another one with the 2-player game G via an edge eij in graph G and get the reward rit averaged
over all games with its neighbors.

Definition 1 (Graph). A graph G (N , E) consist of a set N of vertices (agents) and a set E of edges
in which each edge eij connects 2 vertices i, j. The graph we considered in this paper is an undirected
connected graph without any loops, whose degree distribution is given by a function ρ (·).

We use an adjacency matrix B := [bij ]n×n to represent the agents’ interaction topological graph, while
the edge set E ⊆ N × N governs the interactions between two agents. For the adjacency matrix B, all
diagonal elements bii are zero, while off-diagonal elements satisfy bij = 1 (i 6= j) if and only if eij ∈ E ;
otherwise, bij = 0. Both the edge eij (i 6= j) and eji (i 6= j) indicate the same 2-player game, means that
agent i, i.e., vertex i, can interact with its neighbor j.

The behavior of an agent interacting with its neighbors leads naturally to the concepts of agent i’s
neighbor set and degree. In this paper, the neighbor set Ni := {j : eij ∈ E , i 6= j} is the set of agent i’s
neighbors, and the matrix K := diag

{

k1, . . . , kn
}

is a diagonal matrix, where ki =
∑n

j=1 bij = |Ni| is the
agent i’s degree, represents the degree of all agents in the population. Also, we use a discrete probability
function ρ (·), where ρ (degree = k) > 0 and

∑

k ρ (degree = k) = 1, to represent the degree distribution
of individuals in the whole population. For the ease of notation, we simplify ρ (degree = k) as ρ (k).
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Algorithm 1 A framework for multiagent Q-learning on a graph.

Require: A graph-structured agent population G (N , E), a symmetric normal-form game G, a maximum time step T .

1: while t < T do

2: for each agent i ∈ N do

3: Agent i selects an action a ∈ A in accordance with its strategy;

4: end for

5: for each agent i ∈ N do

6: for each neighbor z ∈ Ni do

7: Agents i and z play game G using their respective selected actions;

8: end for

9: Agent i receives a payoff rit(a) that is averaged over the ki games it plays;

10: end for

11: for each agent i ∈ N do

12: Agent i updates the Q-value of its corresponding action a:

qit+1(a)← qit(a) + α[rit(a)− qit(a)];

13: end for

14: t← t + 1;

15: end while

3.2 Interbehavior betweens agents

For an MAS on a graph that satisfies Definition 1, agents obtain rewards by playing the 2-player symmetric
game.

The normal-form game denoted by G := 〈A,R〉 in which A := {a1, . . . , am} is the available action set,
R ∈ R

m×m is a reward matrix that is symmetric for the two players:

R :=
[

raiaj

]

16i,j6m
,

where raiaj
denotes the reward when an agent taking action ai plays the game against a neighbor

taking action aj via an existing edge eij . This action can be encoded into an one-hot vector aj =

[0, . . . , 1, . . . , 0]T, i.e., the unit vector with the j-th component equaling to 1 and others 0. In every time
step t, the agent i receives a reward rij(aj) according to the actions it and its neighbors take. For one
game G, the payoff of using action aj against action ay is

r (aj | ay) = aT
j Ray. (1)

We denote the joint action of neighbors of agent i as a−i. For the agent with more than one neighbor,
an arbitrary agent’s reward is averaged over all ki games with its ki neighbors at time step t, i.e.,

rit
(

aj | a
−i
)

=
1

ki

∑

∀zi∈Ni,ay∈A

rit

(

aj | a
zi

y

)

, (2)

where az
i

y is the action ay which chosen by agent i’s neighbor zi.
Since the game G is symmetric, the reward for an arbitrary agent in G playing a particular action

depends only on the other agent’s action, not the identity of the opponent; therefore, the game G is the
same for all agents in G. The agent can use mixed strategies, where the strategy of agent i at time step

t is xi
t :=

[

xi
t (a1) , . . . , x

i
t (am)

]T
,xi

t ∈ R
m, xi

t > 0,
∑m

j xi
t(aj) = 1, where xi

t(aj), ∀aj ∈ A denotes the
probability of agent i choosing action aj (pure strategy) at time t.

Overall, we assume that for every time step t, each agent i chooses an action aj in accordance with its
own strategy xi

t and plays game G with its ki neighbors. Since normal-form games involve only a single
state and do not require state transitions, we followed the previous studies [32,45] and adopted stateless
Q-learning. Based on the average payoff rit(aj), the agent’s strategy is revised by means of the stateless
Q-learning method. The interaction framework is summarized in Algorithm 1.

3.3 Q-learning and Boltzmann explorations

In this subsection, we will detail the Q-learning and Boltzmann exploration used in this paper.

3.3.1 Q-learning

As mentioned above, since the game between agents is a repeated and normal-form game, no state
transition occurs. There, the Q-learning framework under which the agents learn their actions is the
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stateless version [51], meaning that each agent i possesses an individual vector of estimated Q-values
qi
t := [qit(a1), . . . , q

i
t(am)]T.

An agent needs to consider only its own current Q-value in each round without considering its history.
To evaluate action aj and maximize the reward of future decisions, the corresponding Q-value qit(aj)

is updated as follows after action aj is executed:

qit+1(aj)← qit(aj) + α
[

rit(aj)− qit(aj)
]

, (3)

where α is the learning rate.

3.3.2 Boltzmann exploration

Boltzmann exploration is a typical strategy for decision-making when faced with uncertainty and is one
of the most commonly used tools in RL [52]. To address the fundamental dilemma of the exploration-
exploitation trade-off, we use a Boltzmann probability with a certain parameter to model each agent’s
strategy: xi

t(aj) := exp
(

βqit(aj)
)

/
∑

∀a∈A exp
(

βqit(a)
)

, where β is the Boltzmann exploration tempera-
ture. When β is relatively small, the agent tends to be more exploratory and will try some low-reward
behaviors. If β = 0, this is equivalent to complete exploration (that is, the action will be selected com-
pletely at random). When β is relatively large, the agent tends to exploit its experience. If β →∞, the
agent will become greedy (that is, it will tend to choose only the action that maximizes qit(a)).

4 Modeling the Q-learning dynamics on a graph

In this section, we formally model the Q-learning dynamics on a graph. We start by discussing the limita-
tions of the previous approach, focusing on well-mixed populations in Subsection 4.1. In Subsection 4.2,
we present the key steps towards developing our main result—a continuity equation for describing the
Q-learning dynamics on a graph (Theorem 1). Then, we discuss some important observations on our
main result.

4.1 Limitations of the previous approaches

MFT is an effective approach of evolutionary game theory to transform the intractable many-body prob-
lem in a high-dimensional stochastic model into an effective one-body problem in a simpler model, thus
obtaining a description of the system behavior at a low computational cost.

In previous work, Hu et al. [32] considered the case of an infinitely large, well-mixed population
and used MFT to approximate the effects of other agents on the single agent by an averaged effect.
Specifically, they approximated the immediate reward of an agent by the expected reward against the
average strategy of the entire population. Then, they employed a probability distribution to depict the
Q-value distribution of an MAS and established a continuity equation to characterize the evolutionary
dynamics of that Q-value distribution. This idea has been later applied to Q-learning under the social
learning model; Leung et al. [38] proposed the use of Brownian motions to model the stochasticity that
arises from social learning and developed a Fokker-Planck equation (a variant of the continuity equation
with diffusion terms) to formally describe the learning dynamics.

The key idea of using MFT for modeling Q-learning dynamics is that for different agents, as they use
the same action, they change when facing the same situation. So, for an arbitrary agent in the well-mixed
population, the environment it confronts, i.e., the actions chosen by its neighbors, is highly similar to
that faced by any other in the population. However, for the population on a graph, limited by the graph
structure G (N , E), agents cannot interact with all others in the population, but only with local neighbors.
So, for an arbitrary agent in the population, the strategies adopted by its neighbors are not the same
or may be drastically different. In general, these previous studies only consider infinite and well-mixed
populations and give relatively less consideration to the local impact among agents. In other words, such
a situation [32] does not hold for all MASs on graphs.

4.2 Our mean-field theoretic approach

Let us start with an arbitrary agent i in the population with a degree of ki, with a fixed set of neighbors
Ni. The individual’s payoff depends on its action and the actions of all its neighbors, i.e., the configuration
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of the neighbors. Before developing our dynamic model, we define the neighbor configuration and rewrite
the payoff.

Definition 2 (Neighbor configuration). Let kiaj
be the number of agent i’s neighbors who adopt action

aj ∈ A. A neighbor configuration of agent i is γi
t = [kia1,t

, . . . , kiam,t]
T such that kiaj ,t

> 0, j = 1, . . . ,m

and
∑m

j=1 k
i
aj ,t

= ki. The set of all possible neighbor configurations for agent i is denoted by Γi.

For example, suppose that agent i chooses between 2 actions (a1 and a2) and has 2 neighbors (ki = 2).
The set Γi consists of three possible neighbor configurations, namely [2, 0]T (both the neighbors choose
a1), [1, 1]

T (one neighbor chooses a1 and the other chooses a2), and [0, 2]T (both the neighbors choose
a2). Please note that in the scenario of [1, 1]T, which agents take action a1 does not change the rewards
of the focal agent. We can rewrite the agent’s reward and obtain the following lemma by utilizing the
above neighbor configuration definition and building upon (2).

Lemma 1. The reward of agent i who adopts action aj ∈ A against its ki neighbors can be expressed
as

rt
(

aj | a
−i
)

= rt
(

aj | γ
i
t

)

=
1

ki
aT
j Rγi

t . (4)

Proof. See Appendix A in Supporting information.
This lemma shows that the reward of agent i at time t depends on its own action aj as well as its

current neighbor configuration γi
t . As individual agents choose their actions independently and have their

own neighborhoods, the current neighbor configurations generally differ across different agents. Using
MFT, the likelihood of each neighbor configuration, denoted by λ(γi

t), can be calculated based on the
average strategy of the population. We show this in the following lemma.

Lemma 2. With mean-field approximation, the probability of the occurrence of a neighbor configuration
γi
t ∈ Γi for agent i is

λ
(

γi
t

)

=
ki!

∏m
l=1 k

i
al
!

m
∏

j=1

xt(aj)
ki
aj , (5)

where xt (aj) = 1
n

∑

∀z∈N
exp (βqzt (aj))∑

∀a∈A
exp (βqzt (a))

is the probability of all agents in the population selecting

action aj and the average strategy of the population is xt = [xt (a1) , . . . , xt (am)].

Proof. See Appendix B in Supporting information.
Recall that upon receiving a reward, agent i updates its Q-value for the action in use and does not

update the Q-values for the other actions. The action choice is made according to the mixed strategy and
is thus stochastic. From the modeler’s perspective, the action choices of individual agents are generally
intractable given the infinitely large number of agents. Here, we track the expected change of Q-values
for individual agents, factoring into the stochasticity that arises from their action choices. Let f i

j

(

qi
t

)

be

the expected change in the Q-value of action aj for agent i at time t, given the current Q-values qi
t. We

derive its form in Lemma 3.

Lemma 3. The expected change in the Q-value of action aj ∈ A for agent i at time t is given by

f i
j

(

qi
t

)

= αxi
t (aj)





∑

γi
t∈Γ

i

[

λ
(

γi
t

)

rt
(

aj | γ
i
t

)]

− qit(aj)



 . (6)

Proof. See Appendix C in Supporting information.
Observe that the expected change vij

(

qi
t

)

in the Q-value depends on agent i and particularly agent

i’s current neighbor configurations γi
t . Note that by Definition 2, their sets of all possible neighbor

configurations are the same for agents with the same degree. That is, Γi = Γzi

if the degrees ki = kz
i

for
agents i and zi. Thus, for individual agents with degree k, we can write their set of all possible neighbor
configurations as Γ (k). Leveraging on this, we show that for every agent in the population, the expected
changes in the Q-value of action aj ∈ A can be unified into the same form vj(qt), regardless of the current
neighbor configurations of individual agents.

Lemma 4. The expected change in the Q-value of action aj ∈ A for any agent at time t is given by

vj(qt) = αxt (aj)

[

k̃
∑

k=1

∑

γ∈Γ(k)

[ρ(k)λ (γ) rt (aj | γ)]− qt(aj)

]

, (7)
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where ρ(k) is the degree distribution of the graph G, k̃ is the maximum degree of the graph G, and Γ(k)
is the set of all possible neighbor configurations given degree k with generic neighbor configuration γ.

Proof. See Appendix D in Supporting information.
By Lemma 4, at every time step t, the expected changes in the Q-values for any agent in the population

admits the same form vj(qt). This allows us to represent the system state by a probability distribution
over the set of Q-values qt ∈ R

m, and track the system evolution by tracking the time evolution of
the probability distribution of Q-values. We define Qt = [Q1,t, Q2,t, . . . , Qm,t]

T ∈ R
m to be a vector of

random variables denoting the Q-values of a randomly selected agent in the population at time t, and
with a slight abuse of notation, p (qt, t) to be the probability density function. Intuitively, p (qt, t) can
be understood as the fraction of agents having the Q-value qt in the population at time t. We are now
in a good position to present our main result about the time evolution of the system state.

Theorem 1. In the continuous time limit, the probability distribution of the Q-values in the population
is governed by the following Fokker-Planck equation:

∂p (qt, t)

∂t
= −

m
∑

j=1

[

∂

∂qt(aj)

[

p (qt, t) vj(qt)
]

]

, (8)

where vj(qt) = αxt(aj)[
∑k̃

k=1 ρ(k)
∑

γ∈Γ(k)[[
(k−1)!∏
m
l=1

kal
!

∏m
l=1 xt(al)

kal ]aT
j Rγ] − qt(aj)], k̃ is the maximum

degree of agents in a population, and xt (al) =
∫ exp (βqt(al))∑

∀a∈A
exp (βqt(a))

p(qt, t)dqt.

Proof sketch. We are interested in the time evolution of the probability density function p(qt, t). Let
δ ∈ (0, 1] be the amount of time that passes between two repetitions of the games. We define θ(Qt) to
be a test function of Q-values, and define a quantity Yt to be the expected change of the test function

during time δ, i.e., Yt =
E[θ(Qt+δ)]−E[θ(Qt)]

δ
.

We show that with the Taylor series, θ can be expanded as

E [θ (Qt+δ)] = E [θ (Qt)]+ δE





m
∑

j=1

vj(qt)



+
1

2
δ2E





m
∑

j=1

vj(qt)
2 ∂2θ(qt)

∂qt(aj)2



+ δ2E



o





m
∑

j=1

vj(qt)
2







 . (9)

Observe that we can recover the quantity Yt by moving the first term of the right-hand side to the left-
hand side and dividing both sides by δ. Then, taking the limit of Y with δ → 0 (assuming the continuous-
time limit), the contributions of the third and fourth terms on the right-hand side of (9) become negligible.
After that, we use integration by parts and leverage the property that p (qt, t) approaches 0 in the limit,
yielding

∫

θ(qt)
∂p (qt, t)

∂t
dqt = −

∫

θ(qt)

m
∑

j=1

[

∂

∂qt(aj)

[

p (qt, t) vj(qt)
]

]

dqt.

As this holds for any test function θ(qt), we obtain (8) in the theorem.
Then, We conduct further research on Theorem 1 to explore more fundamental reasons and get Corol-

lary 1.

Corollary 1. Consider a population of agents on a graph and the agents’ degree k → ∞. Let us
assume a population with all agents with the degree of k, and the distribution of Q-values, p (qt, t, k), is
a function of k. The Q-value distribution p (qt, t, k) obtained by this paper converge to the one p̂ (qt, t)

obtained by the mean-filed approach [32,45], i.e., p (qt, t, k)
k→∞
−−−−→
D

p̂ (qt, t), where D means converging in

distribution and p (qt, t, k) =
∫ ∂p(qt,t,k)

∂t
dt.

Proof. See Appendix E in Supporting information.
In Corollary 1, we know that agents with different degrees and the same initial distribution have

different Q-value distributions after some steps. Agents’ Q-value distributions are not the same for
regular graphs with different degrees. As the degree increases, the Q-value distribution converges to the
mean-field result [32, 45]. Agents with the same degree in a random graph behave similarly to the same
degree agents in the regular graph regarding their actions. In this scenario, the Q-value of agents with
larger degrees is also close to the mean-field result. The Q-value distribution of high-degree agents is very
similar to the mean-field result.



Liu J Z, et al. Sci China Inf Sci September 2025, Vol. 68, Iss. 9, 192206:8

Figure 1 Payoff matrices for (a) CG, (b) MP, (c) PD, (d) SD, and (e) SH.

5 Experimental validation

We consider 5 widely used symmetric normal-form games [53]—coordination game (CG), matching pen-
nies (MP), prisoner’s dilemma (PD), snowdrift game (SD, also known as Chicken), and stag hunt (SH)—to
verify the effectiveness of our model in different settings. The action sets and payoff matrices for these
five games are shown in Figure 1.

For the agent-based simulations and the dynamics model, throughout the entire article, the exploration
temperature β is set to 2, and the learning rate α is set to 0.4. To avoid finite-size effects and randomness,
we average several independent samples for each setting. Unless otherwise specified, we set the initial
Q-values to a beta distribution between all agents.

5.1 The evolution of agent behaviors on regular graphs

We conduct simulations for the regular graph case based on the following interaction structure: a ran-
dom regular graph with all nodes of degree k, no self-loops, and multiple edges. We also explore the
accuracy of our method under three different initial Q-value distributions, as well as the evolution of
these games. Three different beta distributions are as Beta (2, 8, Qmin, Qmax), Beta (5, 5, Qmin, Qmax), and
Beta (8, 2, Qmin, Qmax) where Qmin = max (min (ra1,a1

, ra1,a2
) ,min (ra2,a1

, ra2,a2
)) and Qmax =

min (max (ra1,a1
, ra1,a2

) ,max (ra2,a1
, ra2,a2

)).
Unless otherwise specified, the experimental results of the theoretical calculations are obtained for all

regular graphs based on finite-difference method integration with an interval of 0.01. The simulation
results are based on 5000 experiments repeated on graphs’ population of 1000 agents. Our experimental
results are displayed in Figure 2.

We illustrate the Q-value and policy of the population as a function of the time step for a random
regular graph of degree k = 4 with three different initial Q-value distributions. The dots represent the
results of the agent-based simulations, and the lines represent the theoretical results derived from our
dynamics model. By comparing the average Q-value q(ai) and the average strategy x̄(ai) obtained by
our model with the corresponding simulation results, we find that our model can capture the evolution
process even in the case of considering local interactions.

In addition, Our model also reflects the differences between the evolution processes in different games.
We found that for the CG and MP, due to different initial Q-value distributions and strategies, the
final strategy of the agents will approximate two distinct Nash equilibrium. For the remaining three
games (PD, SD, SH), regardless of the initial Q-value distribution, the evolutionary results eventually
approximate a Nash equilibrium. Take PD for example, defection (a2) becomes the dominant strategy,
which is consistent with the prediction of traditional game theory.

5.2 Differences of populations with varying graph structures

We conducted relevant experiments to investigate the performance differences of populations with varying
graph structures and degree distributions across different games.

Figure 3 illustrates the performance of our method on populations with four different graph struc-
tures. To avoid the influence of other factors, we constrained the graphs to have an average degree of
4. We selected three non-regular graphs with an average degree of approximately 4, namely Barabási-
Albert (BA) scale-free network [54], Erdős-Rényi (ER) random graph [55], and random geometric graphs
(RGG) [56]. Additionally, we included a regular graph with a degree of 4. We generated 20 different
graphs using the same parameters for experimentation for each non-regular graph type and recorded the
results. Due to construction constraints with a guaranteed average degree of the graphs, here the ER
graph is a population of 400 agents and the RGG graph consists of 100 agents.

In Figure 3(a), we display the theoretical and experimental results of the SD on these various graphs.
Although we conducted experiments for all five games, due to space limitations, we chose to present
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Figure 2 Time series of the average Q-values and strategies on a regular graph of degree k = 4 under 3 different initial Q-value dis-

tributions. To simplify, we will ignore the last two parameters of the Beta distribution and represent Beta (alpha, beta, Qmin, Qmax)

as Beta (alpha, beta). (a) CG; (b) MP; (c) PD; (d) SD; (e) SH.

the results of the SD, which showed the most significant performance differences. In this figure, the line
segments represent the theoretical calculation results. In contrast, the filled polygons represent the actual
experimental results, that the width of each polygon corresponds to twice the standard deviation of the
bias between the graphs, and the center represents the average value of the calculated results.

The theoretical and simulation results of the agents on ER network and RGG are similar. This
observation aligns with their degree distributions, and the differences between the results of these two
graphs and the regular graph can be attributed to the presence of agents with different degrees in the
graphs. Correspondingly, the results in the BA network show a more significant discrepancy compared
to the ER network and RGG, which is consistent with their degree distributions.

Furthermore, we also observed a significant discrepancy between the BA network’s simulation and the-
oretical calculation results compared to those on ER networks and RGG. The reasons are twofold. First,
agents’ degrees are generally not the same. Second, by the preferential attachment of the BA networks,
agents are more likely to be linked to those with high degrees, causing their actual neighbor configurations
to deviate slightly from the mean-field neighbor configuration. This increases the discrepancies between
theoretical predictions and experimental results. As a result, there are slight discrepancies between the
results of the theoretical calculation and the results obtained through simulation. Moreover, the diver-
gence between theoretical and experimental results on random graphs stabilizes after about 15-time steps,
rather than increasing continuously. This suggests that the model effectively captures the dynamics of
populations in most random graphs, despite some initial discrepancies.

In addition, according to Delgado’s [57] and Sen et al.’s [48, 58] research, certain structural aspects
within the graph contribute to specificities in the actions of some agents compared to the entire population.
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Figure 3 Experiment results of the SD for the populations in three graph structures: BA, ER, and RGG. (a) We present the

simulation and theoretical calculation results of the SD for populations in the three graph structures with an average degree of

around 4. Additionally, we provide a comparison with the results from a regular graph population with a degree of 4. (b) We

extracted the average Q-values and strategies of agents with varying degrees within the populations of these three graph structures.

This, too, contributes to the observed differences between simulation and theoretical results in the BA
network.

In Figure 3(b), we examined the Q-values and strategies of agents with degrees ranging from 2 to 10
in the populations on these three graphs. We compared these results with the corresponding agents in
regular graphs with the same degrees. The findings demonstrate that the differences in Q-values and
strategies due to varying degrees in the BA network are more significant than in the other two graphs.
This observation indirectly validates that specific unique graph structures in the BA network can lead
to these differences, as observed in our experiments. Furthermore, we can deduce from Figure 3(b) that
the behavioral performance of agents of the same degree tends to be the same in different populations,
and small-degree agents and those in scale-free graphs differed slightly from others in their behavior and
Q-values.

5.3 Variation in population strategies and Q-values induced by regular graph structures

of different degrees

Furthermore, to explore the distinctions among individuals with varying degrees, we conducted experi-
ments on regular graphs with different degrees, as depicted in Figure 4. Similarly, we conducted experi-
ments for the five aforementioned games. However, due to space limitations, we have chosen to present
only the results of the SD. We can observe that populations with different degrees in regular graph struc-
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Figure 4 Simulation and theoretical calculation results for populations with different degrees in the SD with regular graph

structures, where MF represents results obtained using the mean-field method.

tures also exhibit slight variations in experimental results. As the degree increases, the experimental
results for the regular graph approach are closer to those obtained by the mean-field method. Among
them, the population with a degree of 4 shows the most significant discrepancy compared to populations
with other degrees. Besides, the experimental results for the population with a degree of 20 closely
approach the result obtained through the mean-field method.

Furthermore, to delve deeper into the variations among populations with different degrees in regular
graph structures across the PD, SH, and SD games, we have depicted the changes between these three
distinct game results using line plots and violin plots, as illustrated in Figure 5. For Figure 5(a), the
lines in the left-side line plot represent theoretical calculation results, while the points represent results
from multiple simulations. The right-side violin plot illustrates the data distribution and its range of
experimental results for populations on graphs with various degrees. Figures 5(b)–(d) show line charts
of MASs’ strategies and their degrees. It is clear that in SH, an agent’s degree has minimal impact
on strategy selection, whereas in SD, it significantly influences their strategic choices. Moreover, the
strategies of agents are more significantly affected only when the degree is small (/ 10).

It can be observed that for different games, as the probability of each action approaches 0.5, the range
of strategy distribution becomes larger. This is because, in the case of two-action games, their strategies
can be considered as Bernoulli distributions, with the corresponding variance ∆2 = xt (a1) (1− xt (a1)).
The closer an action is to 0.5, the more significant its variance. Moreover, the bias of these actions
between the result of regular graphs of various degrees and the result obtained by the mean-field results
exponentially decreases as the degree increases. In addition, the behavior of agents in the small degree
regular graphs has more significant changes as a result of degree changes than those on the large degree
regular graphs. These observations align with what we discovered in Corollary 1.

6 Conclusion and future work

This paper proposes a formal model of the Q-learning dynamics on a graph. By capturing the influence
of different neighbor configurations on the learning of agents, we derive a system of differential equations
to describe the evolution of the Q-value distribution. To verify the accuracy of our theoretical model, we
conduct a series of agent-based simulations on regular, random graphs and scale-free graphs. Under five
typical symmetric normal-form games, the behavioral evolution is consistent with the prediction of our
theoretical model. With an increase in degree, agents’ actions tend to concentrate more on the results
of a graphless (mean-field) structure. In addition, our model captures the effect of the degree on agents’
behavior on graphs and unveils the relationship between the strategies of many agents and the degree
distribution of the underlying graph structure.

Our current model has limitations in detailing the evolutionary dynamics of MASs with complex topo-
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Figure 5 (a) We conducted experiments on agent populations on regular graphs (degree 2–100) for the PD, SH, and SD games,

and represented their strategy distributions using violin plots. (b)–(d) Line charts of MASs’ strategies and their degrees, which

clearly show that in SD, strategies are most affected by degree, while in SH, the impact is minimal. Furthermore, the strategies of

agents are significantly more affected only when their degrees are small (/ 10).

logical structures. For instance, clusters of agents may evolve strategies that diverge from the entire
population. To address this, we plan to incorporate more topological attributes into our model. Future
work will also extend our approach to include more complex game scenarios such as asymmetric and
stochastic games, and explore the dynamics of games on coupling networks. Additionally, we will im-
plement various learning algorithms to improve the robustness and applicability of our models. These
enhancements will enable us to explore a wider range of strategic interactions and network topologies,
thus providing deeper insights into the dynamics of MASs.
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