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Appendix A Proof of Lemma 1

Proof. First, we analyze the reward of an arbitrary agent i. For the agent’s reward rt
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)
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According to
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T
jRay,

we can transform reward in Equation (A1) into a matrix multiplication form:
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Appendix B Proof of Lemma 2

Proof. For agent i, the action choices of their neighbors are generally different. With mean-field approximation [1, 2], we

approximate the strategy of each neighbor by the same average strategy xt of the population. However, different from the previ-

ous approaches [1–3], we additionally characterize the effects of graph structure by explicitly considering the neighborhood size.

Specifically, we observe that the decision-making process of each neighbor can be seen as an independent multinoulli trial:

• the m available actions amounts to the m events,

• each trial leads to success for exactly one event (a particular action choice),

• the success probability of an event is the probability of the corresponding action choice, which can be approximated by the

average probability of choosing that action in the population.
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Thus, λ
(
γi
t

)
can be understood as the probability distribution of a multinomial distribution with the number of independent

trials being ki (the number of neighbors), the number of events being m (the number of available actions), and the success

probabilities of events being xt (the average strategy).
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is the probability mass function of the above multinomial distribution. ■

Appendix C Proof of Lemma 3
Proof. The expected change in the Q-value on the graph caused by the action aj of agent i with degree ki is the product of

the probability that these agents have neighbor configuration γi
t , the probability of adopting action, and the change in the Q-value

vector qt in the j-th dimension, ∆qit,j
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Appendix D Proof of Lemma 4
Proof. The Lemma 3 corresponds to the case of an agent with a known degree ki. However, in a population where agents can

have different degrees, we must consider the proportion of these agents, i.e. ρ (k). In this case, we can express the average reward

of the entire population in round t as follows:
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can be expanded to:
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Appendix E Proof of Corollary 1
Proof. Intuitively, the probability of a neighbor configuration λ (γt) occurring follows a multinomial distribution Multinom (k,xt)

with

xt := [xt (a1) , . . . , xt (am)]
T
,xt ∈ Rm

, xt ⩾ 0,

m∑
j=1

xt (aj) = 1,

where xt (aj) represents the average probability of all agents in the population adopting action aj at time step t.

Since the limit of a multinomial distribution with m random variables can be approximated by a (m − 1)-dimensional normal

distribution, we can restrict γ ∈ Rm to its first m− 1 rows, denote it as γ̂t ∈ Rm−1. Then, the agents’ average reward by adopting

action aj , denoted as r̄ (aj), can be expressed as follows in this population at time step t.

∑
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∫
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where φ (γ̂t) is density function
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and (m − 1) × (m − 1) covariance matrix

Σ̂t;i,j = E [(γ̂t;i − xt;i (ai)) (γ̂t;j − xt;j (aj))]

= Cov [γ̂t;i, γ̂t;j ]

such that 1 ⩽ i ⩽ (m − 1) and 1 ⩽ j ⩽ (m − 1).

vj (qt) can be viewed as a function of the expected reward, i.e.

vj (qt) = g (E [rt (aj)]) ,
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For a fixed k,
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For the case of the mean-field method [1,2], we can assume that the actions of agents’ neighbors are the average strategy of the

entire population. In other words, we consider the average payoff across the population for an agent’s payoff, i.e.

g (rt (aj)) ,

where

rt (aj) = a
T
jRxt, (E3)

which is the agents’ average reward by adopting action aj .

Please note that Equation (E2) and (E3) are different and should not be considered identical.

Then, we take the Taylor series expansion of vj (qt) = g (E (rt (aj))) at rt (aj), and obtain
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where ∆γ̄t = γ̄t/k − xt, which is the difference between the actual neighborhood configuration and the average policy. Note that

∆γ̄t
h is the h-th central moment of the normal distribution; therefore, ∆γ̄t

h is 0 if and only if h is odd. For this reason, we focus

only on even h, meaning that Equation (E4) can be reduced to
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It is obvious that the bias of the mean-field method [1,2] is mainly caused by the central moments ∆γ̄t
2l of the distribution in

term2 of Equation (E5).

In the scenario we are considering, where the actions are independent of each other, we can obtain
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It is evident that the difference E [rt (aj)] and rt (aj) is only related to
∑m

j=1[xt(aj)(1−xt(aj))]
l
/kl in term2 of Equation (E6).

For Equation (E6), term2 → 0 with k → 0. Hence, we can obtain
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Appendix F Extended Validation of Figure 2. (a): Results from 100 to 1000 Steps
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(a) Snowdrift game
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(b) Prisoner’s Dilemma
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(c) Stag Hunt

Figure F1 Extended experimental results from the Snowdrift (SD), Prisoner’s Dilemma (PD), and Stag Hunt (SH) games for

populations in three graph structures — Barabási–Albert (BA), Erdős–Rényi (ER), and Random Geometric Graph (RGG) -

extend from 100-steps to 1, 000-steps. The results clearly demonstrate that the discrepancies between theoretical predictions and

experimental outcomes stabilize and do not increase beyond a certain point. Specifically, in SD, which shows the largest difference

among the games tested, the discrepancies remain relatively small even in the BA network, with errors ≈ 0.016 for q̄ (a1) and

≈ 0.061 for q̄ (a2). Similarly, in the ER network and RGG, these errors are about ≈ 0.0033 and ≈ 0.02, respectively.
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