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Abstract This study focuses on a two-stage linear quadratic stochastic optimal control problem under model uncertainty

(TSLQU), where a system’s coefficients are uncertain and the state switches at a certain time. The cost function of the

TSLQU problem is designed to be robust to model uncertainty, that is, to be insensitive to unmatched coefficients. The

TSLQU problem can characterize the common requirement of the robust optimization of a two-stage stochastic system.

To obtain a robust optimal control, using the convex variational method and convergence analysis, a necessary optimality

condition relying on an optimal parameter is designed, which is also sufficient. Then, through the feedback form of the

candidate robust optimal control and continuity analysis, the existence of a robust optimal control and the corresponding

optimal parameter is obtained. Through explicit representation of the optimal cost vector, the characterization of the optimal

parameter is given. Additionally, a numerical simulation is presented to verify the theoretical results.
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1 Introduction

Optimal control theory has received great attention since the mid-20th century, especially after Kalman,
Pontriyagin, and Bellman announced the linear quadratic (LQ) optimal control theory, the maximum
principle, and the dynamic programming principle, respectively, in the first International Federation of
Automatic Control meeting in 1960. Compared with deterministic systems, stochastic systems with
random noises can depict commonly existing phenomena where random factors affect systems in nature
and production. In financial and industrial engineering, stochastic LQ theory is especially widely applied
for its application convenience and effectiveness (see [1–4]). For a comprehensive study of stochastic
optimal control theory and stochastic LQ theory, readers may refer to Yong and Zhou [5] and the references
therein.

In the field of stochastic LQ theory, known models are inevitable for the analysis of controlled systems
and the application of the maximum principle or the dynamic programming principle to derive optimal
controls. Nonetheless, in reality, considering numerous factors such as measurement errors, lack of a
priori experiences, and uncertainty of outer environments, system coefficients are not precisely known to
decision-makers and thus are characteristically uncertain. This phenomenon is called model uncertainty,
under which system coefficients are unmatched by the designed optimal control, resulting in nonoptimal-
ity. To deal with model uncertainty, a min–max approach was proposed by Poznyak et al. [6]. Precisely,
the optimization objective was to first maximize all possible cost functions for a given control and then
minimize the aforementioned maximum value. Compared with the simple minimization problem, this
optimization approach improves the robustness of a candidate robust optimal control. Meanwhile, there
widely exists a special kind of stochastic system in reality, where a stochastic system’s state stops evolving
at a certain time and then switches to a different state dynamic (see Huang et al. [7]). For instance,
scientific research typically switches from a long stage of preparation, exploration, and accumulation to
a stage of vast production and finding of new scientific results.
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The analysis above motivates the study of the two-stage linear quadratic stochastic optimal control
problem under model uncertainty (TSLQU), where a linear system state switches at a certain time and the
coefficients of the cost function and state are uncertain, characterizing a prevalent concern of the robust
optimization of a two-stage stochastic system under model uncertainty. Using the convex variational
technique and convergence analysis, a necessary and sufficient optimality condition depending on an
optimal parameter is obtained. Based on the optimality condition along with two auxiliary stochastic
Riccati equations and two linear differential equations, the feedback form of a candidate robust optimal
control is designed. Combining the results above with a series of continuity analyses, the existence
of robust optimal control and the corresponding optimal parameter is obtained. Moreover, using four
Lyapunov equations and four linear equations, a further and more delicate characterization of the optimal
parameter is given. Finally, a numerical example is shown to demonstrate the effectiveness of our designed
robust optimal control.

Three features distinguish our study from previous literature.
• Previous studies of the stochastic optimal control problem under model uncertainty (cf. [8–13] for ro-

bust stochastic optimal control problems with the system states respectively being stochastic differential
equations (SDEs), forward-backward SDEs, mean-field SDEs, regime-switching SDEs, quadratic-growth
forward-backward SDEs, and partially observable states) only concerned single-stage system, which was
unrealistic and less effective in dealing with model uncertainty, whereas the abrupt jump of a system’s
state, which lacked useful handling tools, was not investigated. Specifically, in [8–13], single-stage varia-
tional and adjoint equations were applied to obtain robust stochastic maximum principles for single-stage
problems, which became invalid when impulses and dimensional changes of the state occurred in the
system state equation. Meanwhile, Huang et al. [7] dealt with a mixed LQ problem from a two-stage
project management, where an optimal pair of a stopping time and an admissible control was sought,
the models were known to the decision maker, and optimality conditions were discussed, which lacked
robustness for practical application. Thus, herein, we come up with a necessary and sufficient condition
for robust optimal controls via an adjoint system consisting of two backward SDEs (BSDEs) coupled
with a boundary condition, convex variational method, and convergence analysis, which are substantially
innovative and technical compared with those in previous studies [7–13].

• More importantly, compared with previous studies [8–12], where only the existence of an optimal
parameter was discussed, we demonstrate a more delicate characterization of an optimal parameter, which
was obtained through the explicit computation of the optimal cost vector using Lyapunov equations and
linear differential equations.

• Through the aforementioned explicit computation of the optimal cost vector, we can illustrate the
effectiveness of our designed robust optimal control through numerical simulation, which is also novel
compared with those methods in previous studies [7–12].

The organization of this paper is as follows. Section 2 is devoted to the formulation of the TSLQU
problem and some preliminaries. Section 3 is dedicated to solving the TSLQU problem. Section 4
is committed to a numerical simulation to illustrate the validity of our theoretical results. Section 5
concludes the whole paper and points out some topics in future study.

2 Problem formulation

We consider a model in a complete probability space (Ω,F ,P). Let N be the P-null set in F and
Fs := σ{Wt, t 6 s} ∨ N , where {Wt, t ∈ [0, T ]} is a one-dimensional Brownian motion on (Ω,F ,P) and
σ{ξ} denotes the σ-algebra generated by the random variable ξ. To simplify these notations, some time
variables are omitted throughout the paper.

We introduce herein some notations. For k ∈ N+, Sk denotes the set of symmetric matrices of the k-th
order. For an m × n matrix M , the norm of M is |M | =

√

Tr(MM⊤). For l > 1, T > τ > 0, and a
Euclidian space D with the norm | · |, C1(0, T ;D) represents the set of all D-valued differentiable functions

on [0, T ], H2l([τ, T ];D) consists of all Fr-adapted processes Z ∈ D s.t. E[
∫ T

τ
|Z|2ldr] < +∞, S2l([τ, T ];D)

comprises continuous Fr-adapted processes Y ∈ D s.t. E[supr∈[τ,T ] |Y |2l] < +∞, and L∞([τ, T ];D) is

made of essentially bounded deterministic functions valued in D. An Sk-valued function Q(t) on [0, T ] is
said to be uniformly positive definite if there exists ε > 0, s.t. Q(t) > εIk×k, uniformly on [0, T ].

The coefficients of our model satisfy the following assumption.

Assumption 1. For θ ∈ {1, 2}, k,m, n ∈ N+, and T > τ > 0,
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(i) xθ ∈ Rn,Kθ ∈ Rm×n.

(ii) Ãθ, C̃θ ∈ L∞([0, τ ];Rn×n), B̃θ, D̃θ ∈ L∞([0, τ ];Rn×k), b̃θ, σ̃θ ∈ L∞([0, τ ];Rn).

(iii) ãθ ∈ L∞([0, τ ]; Sn) is nonnegative definite, c̃θ ∈ L∞([0, τ ]; Sk) is uniformly positive definite, and
G̃θ ∈ Sn is nonnegative definite.

(iv) Aθ, Cθ ∈ L∞([τ, T ];Rm×m), Bθ, Dθ ∈ L∞([τ, T ];Rm×k), bθ, σθ ∈ L∞([τ, T ];Rm).

(v) aθ ∈ L∞([τ, T ]; Sm) is nonnegative definite, cθ ∈ L∞([τ, T ]; Sk) is uniformly positive definite, and
Gθ ∈ Sm is nonnegative definite.

For θ ∈ {1, 2} and T > τ > 0, consider the following two-stage and nonhomogeneous linear SDE as a
state equation:



















dX̃θ = (ÃθX̃θ + B̃θv + b̃θ)dt+ (C̃θX̃θ + D̃θv + σ̃θ)dW, t ∈ [0, τ),

dXθ = (AθXθ +Bθv + bθ) dt+ (CθXθ +Dθv + σθ) dW, t ∈ [τ, T ],

X̃θ(0) = xθ, Xθ(τ) = KθX̃θ(τ).

(1)

The robust cost function is defined as

J [v] = sup
λ∈[0,1]

{λY1[v] + (1− λ)Y2[v]} = Y1[v] ∨ Y2[v], (2)

where

Yθ[v] =
1

2
E

{
∫ τ

0

[〈

ãθX̃θ, X̃θ

〉

+ 〈c̃θv, v〉
]

dt+
〈

G̃θX̃θ(τ), X̃θ(τ)
〉

+

∫ T

τ

[〈aθXθ, Xθ〉+ 〈cθv, v〉] dt+ 〈GθXθ(T ), Xθ(T )〉

}

. (3)

The set of admissible controls is H2([0, T ];Rk), denoted by U .
For any v ∈ U , under Assumption 1, by the classical theories of SDE (cf. [5]), Eq. (1) is uniquely

solvable and the cost function (2) is finite.

TSLQU problem. Seek for a robust optimal control v̄ ∈ U , s.t.

J [v̄] = inf
v∈U

J [v].

Remark 1. (i) In the TSLQU problem, there exist two uncertain system states (X1, X̃1) and (X2, X̃2).
For each state (Xθ, X̃θ), the decision maker aims to minimize the cost functional Yθ[v], where θ = 1, 2.
As decision makers cannot know whether the true system state is (X1, X̃1) or (X2, X̃2) because of model
uncertainty, they have to utilize a robust methodology and therefore minimize the largest loss in the
worst case scenario (i.e., minimize Y1[v] ∨ Y2[v]).

(ii) On the one hand, notice that
∫ T

0
a1ds ∨

∫ T

0
a2ds 6

∫ T

0
a1 ∨ a2ds, where a1 and a2 are integrable

functions on [0, T ]. Furthermore, normally, the left side is strictly smaller than the right side. Hence, we
cannot simply transform the cost function (2) into a quadratic function, indicating the necessity of this
study. On the other hand, the TSLQU problem can also be seen as a degenerate zero-sum game problem
where only one player’s control enters the system state, which cannot be solved by classical game theories.

3 Main results

This section is devoted to solving the TSLQU problem. The solution procedure is as follows.

(i) Using the convex variational method, seek for the necessary and sufficient optimality condition
satisfied by the robust optimal control v̄.

(ii) Using the decoupling method, obtain the feedback form of v̄.

(iii) Analyze the continuity dependency of the feedback state and cost function w.r.t. the parameter
λ and obtain the existence and characterization of the optimal parameter λ̄.

We illustrate each step separately in Subsections 3.1–3.3.
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3.1 Seeking for the robust optimal control v̄

Suppose v̄ ∈ U is a robust optimal control of the TSLQU problem. Let ( ¯̃Xθ, X̄θ) denote the solution of
(1) under v̄. Introduce the following adjoint system coupled by a terminal condition:



















dpθ = −
[

aθX̄θ +A⊤
θ pθ + C⊤

θ qθ
]

dt+ qθdW, t ∈ [τ, T ],

dp̃θ = −
[

ãθ
¯̃Xθ + Ã⊤

θ p̃θ + C̃⊤
θ q̃θ

]

dt+ q̃θdW, t ∈ [0, τ),

pθ(T ) = GθX̄θ(T ), p̃θ(τ) = G̃θ
¯̃Xθ(τ) +K⊤

θ pθ(τ).

(4)

System (4) is made of two linear BSDEs coupled by a terminal condition. For v̄ ∈ U , Eq. (4) is uniquely
solved by (pθ, qθ) ∈ S2([0, T ];Rm)×H2([0, T ];Rm) and (p̃θ, q̃θ) ∈ S2([0, T ];Rn)×H2([0, T ];Rn)(cf. [5]).

Remark 2. Here, we emphasize that, significantly different from a one-state stochastic optimal control
problem, where there is only one adjoint equation in the optimality condition, two adjoint equations

coupled by a novel terminal condition p̃θ(τ) = G̃θ
¯̃Xθ(τ) + K⊤

θ pθ(τ) are needed to deal with addition
jump terms in the cost function and the system state of the TSLQU problem.

We first give the necessary and sufficient optimality condition of the TSLQU problem.

Theorem 1. Suppose Assumption 1 holds. Then, v̄ ∈ U is a robust optimal control if and only if there
exist v̄ ∈ U and λ̄ ∈ [0, 1] satisfying











Ȳ1 ∨ Ȳ2 = λ̄Ȳ1 + (1− λ̄)Ȳ2, (5a)

λ̄(B̃⊤
1 p̃1 + D̃⊤

1 q̃1 + c̃1v̄) + (1− λ̄)(B̃⊤
2 p̃2 + D̃⊤

2 q̃2 + c̃2v̄) = 0, t ∈ [0, τ), (5b)

λ̄(B⊤
1 p1 +D⊤

1 q1 + c1v̄) + (1− λ̄)
(

B⊤
2 p2 +D⊤

2 q2 + c2v̄
)

= 0, t ∈ [τ, T ], (5c)

where (pθ, qθ, p̃θ, q̃θ) is a solution to the adjoint equation (4) and Ȳθ is the value of (3) corresponding to
v̄, θ = 1, 2.

Proof. Part I. Necessity of (5).
Step 1. Transformation of the necessary condition.
Suppose v̄ ∈ U is a robust optimal control. Let Q̄ denote the set of λ̄ satisfying Ȳ1∨Ȳ2 = λ̄Ȳ1+(1−λ̄)Ȳ2.

If Ȳ1 > Ȳ2, then, λ̄ = 1 ∈ Q̄; else, λ̄ = 0 ∈ Q̄. Therefore, Q̄ is not empty.
Then, the necessity condition is equivalent to that there exists a λ̄ ∈ Q̄ s.t. for any v ∈ U ,

E

[

∫ T

τ

〈

λ̄
(

B⊤
1 p1 +D⊤

1 q1 + c1v̄
)

+ (1− λ̄)
(

B⊤
2 p2 +D⊤

2 q2 + c2v̄
)

, v − v̄
〉

dt

]

+ E

[
∫ τ

0

〈

λ̄
(

B̃⊤
1 p̃1 + D̃⊤

1 q̃1 + c̃1v̄
)

+ (1− λ̄)
(

B̃⊤
2 p̃2 + D̃⊤

2 q̃2 + c̃2v̄
)

, v − v̄
〉

dt

]

> 0. (6)

For any admissible control v, letting αθ = Xθ − X̄θ, α̃θ = X̃θ −
˜̄Xθ, where (X̃θ, Xθ) is the solution of

(1) corresponding to v, we have














dαθ = [Aθαθ +Bθ(v − v̄)] ds+ [Cθαθ +Dθ(v − v̄)] dW,

dα̃θ =
[

Ãθα̃θ + B̃θ(v − v̄)
]

ds+
[

C̃θα̃θ + D̃θ(v − v̄)
]

dW,

α̃θ(0) = 0, αθ(τ) = Kθα̃θ(τ).

(7)

Let

mθ[v] =E

[

∫ T

τ

[〈

aθX̄θ, αθ

〉

+ 〈cθ v̄, v − v̄〉
]

dt+
〈

GθX̄θ(T ), αθ(T )
〉

]

+ E

[
∫ τ

0

[〈

ãθ
¯̃Xθ, α̃θ

〉

+ 〈c̃θv̄, v − v̄〉
]

dt+
〈

G̃θ
¯̃Xθ(τ), α̃θ(τ)

〉

]

, θ = 1, 2.

Applying Itô’s formula to 〈p, α〉 and 〈p̃, α̃〉, it can be obtained that the necessary condition (6) is equivalent
to the condition where there exists a λ̄ ∈ Q̄ s.t. the following variational inequality:

inf
v∈U

{λ̄m1[v] + (1− λ̄)m2[v]} > 0. (8)
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Step 2. Proof of the variational inequality (8).
Set

Jθ,1[v] =
1

2
E

{
∫ τ

0

[〈

ãθX̃θ, X̃θ

〉

+ 〈c̃θv, v〉
]

dt+
〈

G̃θX̃θ(τ), X̃θ(τ)
〉

}

, (9)

Jθ,2[v] =
1

2
E

{
∫ T

τ

[〈aθXθ, Xθ〉+ 〈cθv, v〉] dt+ 〈GθXθ(T ), Xθ(T )〉

}

. (10)

Let (X̃ l, X l) denote the solution of (1) corresponding to vl = v̄+l(v−v̄); then, it holds thatX l
θ = X̄θ+lαθ,

X̃ l
θ = ¯̃Xθ + lα̃θ. Simple calculations lead to

Jθ,2[v
l]− Jθ,2[v̄] =

1

2
E

{

∫ T

τ

[〈

aθ(2X̄θ + lαθ), lαθ

〉

+ 〈cθ(2v̄ + l(v − v̄)), l(v − v̄)〉
]

dt

+
〈

Gθ(2X̄θ(T ) + lαθ(T )), lαθ(T )
〉

}

, (11)

Jθ,1[v
l]− Jθ,1[v̄] =

1

2
E

{
∫ τ

0

[〈

ãθ(2
¯̃Xθ + lα̃θ), lα̃θ

〉

+ 〈c̃θ(2v̄ + l(v − v̄)), l(v − v̄)〉
]

dt

+
〈

G̃θ(2
¯̃Xθ(τ) + lα̃θ(τ)), lα̃θ(τ)

〉

}

. (12)

For any λ ∈ Q̄, by the definition of J [v], (11), and (12), it holds that

lim inf
l→0

J [vl]− J [v̄]

l
> lim inf

l→0

λ(Y1[v
l]− Ȳ1) + (1− λ)(Y2[v

l]− Ȳ2)

l

= λm1[v] + (1− λ)m2[v].

Therefore,

lim inf
l→0

J [vl]− J [v̄]

l
> sup

λ∈Q̄

{λm1[v] + (1− λ)m2[v]}. (13)

We intend to prove that the reverse inequality of (13) is true. By the property of upper limits, there
exists a sequence {ln} s.t. ln → 0, n → +∞, and lim supl→0(J [v

l]−J [v̄])/l = limn→+∞(J [vln ]−J [v̄])/ln.
For any n ∈ N+, there exists an λn ∈ [0, 1] s.t.

J [vln ] = λnY1[v
ln ] + (1− λn)Y2[v

ln ]. (14)

Therefore, by (11), (12), and (14),

J [vln ]− J [v̄]

ln
6

λn(Y1[v
ln ]− Ȳ1) + (1− λn)(Y2[v

ln ]− Ȳ2)

ln
6 λnm1[v] + (1 − λn)m2[v] + o(ln). (15)

If Y1[v
ln ] > Y2[v

ln ], let λn = 1. Else, let λn = 0. Then, there exists a subsequence {nk} satisfying (c1) or
(c2), where (c1) λnk

≡ 1, ∀k ∈ N+ and (c2) λnk
≡ 0, ∀k ∈ N+. Because the analysis under (c1) and (c2)

is symmetrical, we only consider (c1), where λnk
≡ 1, ∀k ∈ N+. Then, it holds that Y1[v

ln
k ] > Y2[v

ln
k ].

By (11) and (12), we obtain that Yθ[v
ln

k ] → Ȳθ, k → +∞. Therefore, Ȳ1 > Ȳ2, which means that 1 ∈ Q̄.
Taking the limit on both sides of (15), we arrive at

lim sup
l→0

J [vl]− J [v̄]

l
= lim

k→+∞

J [vlk ]− J [v̄]

lk
6 m1[v]. (16)

Combining (13) and (16), along with 1 ∈ Q̄ and the optimality of v̄, we obtain that

sup
λ∈Q̄

{λm1[v] + (1 − λ)m2[v]} = lim
l→0

J [vl]− J [v̄]

l
> 0



Wang G C, et al. Sci China Inf Sci September 2025, Vol. 68, Iss. 9, 192204:6

holds for any v ∈ U . Thus,

inf
v∈U

sup
λ∈Q̄

{λm1[v] + (1− λ)m2[v]} > 0.

We plan to derive

sup
λ∈Q̄

inf
v∈U

{λm1[v] + (1− λ)m2[v]} > 0. (17)

Therefore, when Ȳ1 6= Ȳ2, then Q̄ is a singleton; clearly, Eq. (17), which is equivalent to (8), holds.
Moreover, when Ȳ1 = Ȳ2, it holds that Q̄ = [0, 1]. Through (17), ∀εn > 0, there exists λn ∈ [0, 1] s.t.,
∀v ∈ U ,

λnm1[v] + (1 − λn)m2[v] > inf
v∈U

{λnm1[v] + (1 − λn)m2[v]} > −εn. (18)

Then, choosing a subsequence, if needed, there exists a λ̄ ∈ [0, 1] independent of v s.t. λn → λ̄. Thus, for
any v ∈ U , taking the limit on both sides of (18), we obtain that there exists a λ̄ ∈ Q̄ s.t., for any v ∈ U ,

λ̄m1[v] + (1− λ̄)m2[v] > 0, (19)

which proves (8).
It only remains to prove (17) given that Ȳ1 = Ȳ2. In this case, Q̄ = [0, 1]. Let g(λ, v) = λm1[v] + (1−

λ)m2[v]. It can be easily obtained that g(λ, v) is linear and hence convex w.r.t. v and linear w.r.t. λ.
For v′ ∈ U , let (α̃v′

, αv′

) denote the solution of (7) under v′. By classical methods such as Gronwall’s
inequality and the Burkholder-Davis-Gundy inequality, we derive (hereafter, C > 0 represents a constant
independent of (v, v′) and may vary from line to line)

E

[

sup
t∈[0,τ ]

∣

∣

∣
α̃v
θ − α̃v′

θ

∣

∣

∣

2
]

6 CE

[
∫ τ

0

|v − v′|2dr

]

,

and

E

[

sup
t∈[τ,T ]

∣

∣

∣
αv
θ − αv′

θ

∣

∣

∣

2
]

6 CE

[

∫ T

τ

|v − v′|2dr +
∣

∣

∣
K
(

α̃v
θ(τ) − α̃v′

θ (τ)
)∣

∣

∣

2
]

6 CE

[

∫ T

0

|v − v′|2dr

]

.

Therefore, by the definition of mθ, we can deduce

|g(λ, v)− g(λ, v′)| 6 CE

[

∫ T

0

|v − v′|2dr

]

,

implying the continuity of g(λ, v) w.r.t. v. As g(λ, v) is also linear w.r.t. λ and convex w.r.t. v, by the
mini-max theorem (cf. Theorem B.1.2 in [14]),

sup
λ∈[0,1]

inf
v∈U

g(λ, v) = inf
v∈U

sup
λ∈[0,1]

g(λ, v) > 0,

which is (17). The necessity of (5) is proven.
Part II. Sufficiency of (5).
Suppose that there exist λ̄ and v̄ satisfying (5). For any admissible control v, still let αθ = Xθ − X̄θ,

α̃θ = X̃θ −
˜̄Xθ as in Part I. Applying Itô’s formula to 〈pθ, αθ〉, it holds that

Jθ,2[v]− Jθ,2[v̄]
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> E

{

〈

GθX̄θ(T ), αθ(T )
〉

+ Jθ,2[v]− Jθ,2[v̄]−
1

2
〈GθXθ(T ), Xθ(T )〉+

1

2

〈

GθX̄θ(T ), X̄θ(T )
〉

}

= E

{

〈pθ(τ), αθ(τ)〉 +

∫ T

τ

{

−
〈

aθX̄θ, αθ

〉

+
〈

B⊤
θ pθ, v − v̄

〉

+
〈

D⊤
θ qθ, v − v̄

〉

+
1

2

[

〈aθXθ, Xθ〉 −
〈

aθX̄θ, X̄θ

〉

+ 〈cθv, v〉 − 〈cθv̄, v̄〉
]

}

ds

}

> E

[

〈pθ(τ), αθ(τ)〉 +

∫ T

τ

〈

B⊤
θ pθ +D⊤

θ qθ + cθ v̄, v − v̄
〉

ds

]

.

Similarly, applying Itô’s formula to 〈p̃θ, α̃θ〉, it holds that

λ̄Y1[v] + (1 − λ̄)Y2[v]− λ̄Ȳ1 − (1− λ̄)Ȳ2

= λ̄ {J1,2[v] + J1,1[v]− J1,2[v̄]− J1,1[v̄]}+ (1 − λ̄) {J2,2[v] + J2,1[v]− J2,2[v̄]− J2,1[v̄]}

> λ̄E

[

〈p1(τ), α1(τ)〉 + J1,1[v]− J1,1[v̄] +

∫ T

τ

〈

B⊤
1 p1 +D⊤

1 q1 + c1v̄, v − v̄
〉

ds

]

+ (1 − λ̄)E

[

〈p2(τ), α2(τ)〉 + J2,1[v]− J2,1[v̄] +

∫ T

τ

〈

B⊤
2 p2 +D⊤

2 q2 + c2v̄, v − v̄
〉

ds

]

> E

[
∫ τ

0

〈

λ̄
(

B̃⊤
1 p̃1 + D̃⊤

1 q̃1 + c̃1v̄
)

+ (1− λ̄)
(

B̃⊤
2 p̃2 + D̃⊤

2 q̃2 + c̃2v̄
)

, v − v̄
〉

ds

+

∫ T

τ

〈

λ̄
(

B⊤
1 p1 +D⊤

1 q1 + c1v̄
)

+ (1 − λ̄)
(

B⊤
2 p2 +D⊤

2 q2 + c2v̄
)

, v − v̄
〉

ds

]

= 0.

Finally, we arrive at

J [v]− J [v̄] > λ̄Y1[v] + (1 − λ̄)Y2[v]− λ̄Ȳ1 − (1− λ̄)Ȳ2 > 0.

The proof is complete.

3.2 Designing the feedback form of the robust optimal control v̄

Suppose that there exist λ̄ and v̄ satisfying (5). Set

A =

[

A1 0

0 A2

]

, B =

[

B1

B2

]

, C =

[

C1 0

0 C2

]

, D =

[

D1

D2

]

,

and

K =

[

K⊤
1 0

0 K⊤
2

]

, b =

[

b1

b2

]

, σ =

[

σ1

σ2

]

, x =

[

x1

x2

]

, X =

[

X1

X2

]

.

Similarly, define Ã, B̃, C̃, D̃, b̃, σ̃, and X̃. Then, the state equation (1) is reformulated as



















dX̃ =
(

ÃX̃ + B̃v + b̃
)

dt+
(

C̃X̃ + D̃v + σ̃
)

dW, t ∈ [0, τ),

dX = (AX +Bv + b) dt+ (CX +Dv + σ) dW, t ∈ [τ, T ],

X̃(0) = x, X(τ) = K⊤X̃(τ).

(20)

Set

p =

[

p1

p2

]

, q =

[

q1

q2

]

, a =

[

a1 0

0 a2

]

, G =

[

G1 0

0 G2

]

.
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Similarly, set p̃, q̃, ã, G̃, and

Λ̃ =

[

λIn×n 0

0 (1 − λ)In×n

]

,Λ =

[

λIm×m 0

0 (1− λ)Im×m

]

.

Then, the optimality conditions (5b) and (5c) are rewritten as

B⊤Λp+D⊤Λq +Rλ̄v̄ = 0, B̃⊤Λ̃p̃+ D̃⊤Λ̃q̃ + R̃λ̄v̄ = 0, (21)

where






−dp =
(

aX̄ +A⊤p+ C⊤q
)

dt− qdW,

p(T ) = GX̄(T ),






−dp̃ =
(

ã ¯̃X + Ã⊤p̃+ C̃⊤q̃
)

dt− q̃dW,

p̃(τ) = G̃ ¯̃X(τ) +Kp(τ),

R̃λ̄ = λ̄c̃1 + (1− λ̄)c̃2, R
λ̄ = λ̄c1 + (1− λ̄)c2, (22)

and ( ¯̃X, X̄) is the solution of (20) under v̄.
Now, we want to give a feedback form of v̄. Set Λp = PX̄ + φ with P ∈ C1(0, T ; S2m) and φ ∈

C1(0, T ;R2m). Applying Itô’s formula to PX̄, it holds that
[

Ṗ X̄ + P
(

AX̄ +Bv̄ + b
)

+ φ̇
]

dt+ P
(

CX̄ +Dv̄ + σ
)

dW (23)

= dΛp

= −Λ
(

aX̄ +Ap+ Cq
)

dt+ ΛqdW. (24)

Comparing (24) and (23), we have Λq = P
(

CX̄ +Dv̄ + σ
)

, and

(

Ṗ + PA+AP + aΛ
)

X̄ + PBv̄ + CP
(

CX̄ +Dv̄ + σ
)

+ Pb+ φ̇+Aφ = 0. (25)

Inserting Λp and Λq into (21) results in

v̄ = −
(

Rλ̄ +D⊤PD
)−1

[(

B⊤P +D⊤PC
)

X̄ +B⊤φ+D⊤Pσ
]

, t ∈ [τ, T ],

where














Ṗ + PA+A⊤P + aΛ + C⊤PC

−
(

B⊤P +D⊤PC
)⊤
(

Rλ̄ +D⊤PD
)−1

(

B⊤P +D⊤PC
)

= 0,

P (T ) = ΛG,

(26)































φ̇+

[

A−B
(

Rλ̄ +D⊤PD
)−1

(

B⊤P +D⊤PC
)

]⊤

φ

+

[

C −D
(

Rλ̄ +D⊤PD
)−1

(

B⊤P +D⊤PC
)

]⊤

Pσ + Pb = 0,

φ(T ) = 0.

(27)

Similarly, we have

v̄ = −
(

R̃λ̄ + D̃⊤P̃ D̃
)−1 [(

B̃⊤P̃ + D̃⊤P̃ C̃
)

¯̃X + B̃⊤φ̃+ D̃⊤P̃ σ̃
]

, t ∈ [0, τ),

where


















˙̃P + P̃ Ã+ Ã⊤P̃ + ãΛ + C̃⊤P̃ C̃

−
(

B̃⊤P̃ + D̃⊤P̃ C̃
)⊤ (

R̃λ̄ + D̃⊤P̃ D̃
)−1 (

B̃⊤P̃ + D̃⊤P̃ C̃
)

= 0,

P̃ (τ) = Λ̃G̃+KP (τ)K⊤,

(28)
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





























˙̃
φ+

[

Ã − B̃
(

R̃λ̄ + D̃⊤P̃ D̃
)−1 (

B̃⊤P̃ + D̃⊤P̃ C̃
)

]⊤

φ̃

+

[

C̃ − D̃
(

R̃λ̄ + D̃⊤P̃ D̃
)−1 (

B̃⊤P̃ + D̃⊤P̃ C̃
)

]⊤

P̃ σ̃ + P̃ b̃ = 0,

φ̃(τ) = Kφ(τ).

(29)

Eqs. (26) and (28) are stochastic Riccati equations. Under any λ̄ ∈ [0, 1], Eqs. (26) and (28) admit
unique nonnegative definite solutions (cf. Theorem 7.2, Chapter 6 in Yong and Zhou [5]). Therefore, the
linear differential equations (27) and (29) are uniquely solvable.

The analysis above is summarized as the following lemma.

Lemma 1. Suppose Assumption 1 holds. Let v̄ ∈ Ū , λ̄ ∈ [0, 1] satisfy (5). Then, v̄ is a robust optimal
control of the TSLQU problem, which admits the following feedback form:

v̄ =











−
(

R̃λ̄ + D̃⊤P̃ D̃
)−1 [(

B̃⊤P̃ + D̃⊤P̃ C̃
)

¯̃X + B̃⊤φ̃+ D̃⊤P̃ σ̃
]

, t ∈ [0, τ),

−
(

Rλ̄ +D⊤PD
)−1

[(

B⊤P +D⊤PC
)

X̄ +B⊤φ+D⊤Pσ
]

, t ∈ [τ, T ],
(30)

where P, φ, P̃ , and φ̃ solve the differential equations (26)–(29), respectively, Rλ̄ and R̃λ̄ are given by (22),

and ( ¯̃X, X̄) solves the two-stage SDE (20) under v̄.

Remark 3. There are two main differences between (30) and the feedback optimal controls of classical
stochastic LQ problems (cf. [5]). First, we can see that unlike in stochastic LQ problems without model
uncertainty, the robust optimal control (30) of the TSLQU problem usually relies on both coefficients
under θ = 1 and ones under θ = 2, which means that because of model uncertainty, the robust optimal
control relies on the information of two uncertain states. Secondly, because of the impulse term in the
state equation, the robust optimal control (30) also switches at time τ , which is substantially different
compared with those of classical stochastic LQ problems.

3.3 Seeking for the optimal parameter λ̄

According to the optimality condition (5a), λ̄ must satisfy Ȳ1 ∨ Ȳ2 = λ̄Ȳ1 + (1 − λ̄)Ȳ2. Nonetheless,

because of Lemma 1, v̄, ¯̃X, X̄, Ȳ1, and Ȳ2 all depend on the parameter λ̄. Consequently, for a given λ̄,
Eq. (5a) might not hold, which cannot guarantee the existence of the optimal parameter λ̄. For λ ∈ [0, 1]
and a random variable ξ, define ξλ to emphasize the dependency of ξ on λ. Through a series of analyses,
we can perform the continuity of Ȳ λ

1 = Y1[v̄
λ] and Ȳ λ

2 = Y2[v̄
λ] w.r.t. λ, which further leads to the

existence of λ̄ satisfying (5a). Furthermore, via the explicit presentation of Ȳ λ
1 and Ȳ λ

2 under λ, we give
the characterization of λ̄.

Lemma 2. Ȳ λ
1 and Ȳ λ

2 are continuous w.r.t. λ ∈ [0, 1].

Proof. Hereafter, C represents a constant independent of λ. Let ∆ξ = ξλ − ξλ
′

for λ, λ′ ∈ [0, 1].

(i) Estimate |∆ ¯̃X | on [0, τ ]. Given Theorem 4.5 in Hu and Wang [9], the following continuity
dependency of the solution of (26) w.r.t. λ holds

|∆P (t)| 6 C|λ− λ′|, t ∈ [τ, T ]. (31)

By Lemma 3.1 in Kohlmann and Tang [15], the uniform estimate of |Pλ(t)| holds

|Pλ(t)| 6 C, t ∈ [τ, T ]. (32)

Rewrite (27) as
{

φ̇λ + ρλφλ + ̺λ = 0,

φ(T ) = 0.

Then, Eq. (32) and the uniformly positive definiteness of c1 and c2 result in

|ρλ(t)| ∨ |̺λ(t)| 6 C, t ∈ [τ, T ]. (33)
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By Gronwall’s inequality and (33), we arrive at

|φλ(t)| 6 C, t ∈ [τ, T ]. (34)

Using the estimates of |∆P (t)| (31), it can be obtained that

|∆ρ(t)| ∨ |∆̺(t)| 6 C|λ− λ′|, t ∈ [τ, T ]. (35)

Organize the equation satisfied by ∆φ as

{

∆φ̇+∆ρφλ + ρλ
′

∆φ+∆̺ = 0,

∆φ(T ) = 0.

By Gronwall’s inequality, Eqs. (33), (34), and (35) result in the estimates of |∆φ|, and

|∆φ(t)| 6 C|λ− λ′|, t ∈ [τ, T ].

Substituting v̄ into ¯̃X , the feedback state satisfied by ¯̃X can be rewritten as

d ¯̃Xλ =
(

µ̃λ ¯̃Xλ + b̃
)

+
(

ν̃λ ¯̃Xλ + σ̃
)

dW, ¯̃X(0) = x.

Continue to estimate µ̃λ and ν̃λ. By the estimates |∆P (t)| ∨ |∆φ(t)| 6 C|λ− λ′|, t ∈ [τ, T ], it holds that
|∆P̃ (τ)| ∨ |∆φ̃(τ)| 6 C|λ− λ′|. By the procedures dealing with P and φ, we obtain |∆P̃ (t)| ∨ |∆φ̃(t)| 6
C|λ− λ′|, t ∈ [0, τ ]. Therefore, |∆µ̃(t)| ∨ |∆ν̃(t)| 6 C|λ− λ′|, t ∈ [0, τ ].

Rearrange ∆ ¯̃X as follows:

d∆ ¯̃X =
(

∆µ̃ ¯̃Xλ + µ̃λ′

∆ ¯̃X
)

ds+
(

∆ν̃ ¯̃Xλ + ν̃λ
′

∆ ¯̃X
)

dW, ∆ ¯̃X(0) = 0.

By the classical estimates of SDEs (cf. Lemma A.1 in Hu and Wang [9]), we can obtain the estimates of

|∆ ¯̃Xλ|:

E

[

sup
t∈[0,τ ]

∣

∣

∣
∆ ¯̃X(t)

∣

∣

∣

4
]

6 CE

[

(
∫ τ

0

∣

∣

∣
∆µ̃ ¯̃Xλ

∣

∣

∣
dt

)4

+

(
∫ τ

0

∣

∣

∣
∆ν̃ ¯̃Xλ

∣

∣

∣

2

dt

)2
]

6 C |λ− λ′|
4
E

[

(
∫ τ

0

∣

∣

∣

¯̃Xλ
∣

∣

∣
dt

)4

+

(
∫ τ

0

∣

∣

∣

¯̃Xλ
∣

∣

∣

2

dt

)2
]

6 C |λ− λ′|
4
E

[

sup
t∈[0,τ ]

∣

∣

∣

¯̃Xλ(t)
∣

∣

∣

4
]

6 C |λ− λ′|
4

[

|x|4 +

(
∫ τ

0

|b̃|dt

)4

+

(
∫ τ

0

|σ̃|2dt

)2
]

6 C |λ− λ′|
4
.

(ii) Estimate |∆X̄| on [τ, T ]. Plugging v̄ into X̄ , we can arrange ∆X̄ as

d∆X̄ =
(

∆µX̄λ + µλ′

∆X̄
)

ds+
(

∆νX̄λ + νλ
′

∆X̄
)

dW, ∆X̄(τ) = K⊤∆ ¯̃X(τ).

According to the estimates in (i) and by similar methods handling |∆ ¯̃X |, it holds that

E

[

sup
t∈[τ,T ]

∣

∣∆X̄(t)
∣

∣

4

]
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6 CE





∣

∣K⊤∆X̄(τ)
∣

∣

4
+

(

∫ T

τ

|∆µX̄λ|dt

)4

+

(

∫ T

τ

|∆νX̄λ|2dt

)2




6 C|λ− λ′|4E

[

C+ sup
t∈[τ,T ]

∣

∣X̄λ(t)
∣

∣

4

]

6 C|λ− λ′|4E



C+
∣

∣

∣
K⊤ ¯̃X(τ)

∣

∣

∣

4

+

(

∫ T

τ

|b|dt

)4

+

(

∫ T

τ

|σ|2dt

)2




6 C|λ− λ′|4

{

C

[

1 + |x|4 +

(
∫ τ

0

|b̃|dt

)4

+

(
∫ τ

0

|σ̃|2dt

)2
]

+

(

∫ T

τ

|b|dt

)4

+

(

∫ T

τ

|σ|2dt

)2






6 C|λ− λ′|4.

(iii) Estimate |∆Ȳ1| and |∆Ȳ2|. By (9) and (10), ∆Ȳθ = ∆Jθ,1[v̄]+∆Jθ,2[v̄]. First, estimate ∆Jθ,1[v̄],

|∆Jθ,1[v̄]|

=

∣

∣

∣

∣

1

2
E

{
∫ τ

0

[

∆
〈

ãθ
¯̃Xθ,

¯̃Xθ

〉

+∆ 〈c̃θ v̄, v̄〉
]

dt+∆
〈

G̃θ
¯̃Xθ(τ),

¯̃Xθ(τ)
〉

}
∣

∣

∣

∣

6
1

2
E

{
∫ τ

0

[∣

∣

∣
∆
〈

ãθ
¯̃Xθ,

¯̃Xθ

〉∣

∣

∣
+ |∆ 〈c̃θ v̄, v̄〉|

]

dt+
∣

∣

∣
∆
〈

G̃θ
¯̃Xθ(τ),

¯̃Xθ(τ)
〉∣

∣

∣

}

.

We only give the estimates of the first term on the right side of the inequality above. As v̄ is a linear
feedback of the optimal state, the estimates of the rest of the terms are similar. By Young’s inequality
and Fubini’s theorem, among others, we have

E

[
∫ τ

0

∣

∣

∣
∆
〈

ãθ
¯̃Xθ,

¯̃Xθ

〉
∣

∣

∣
dt

]

= E

[
∫ τ

0

∣

∣

∣

〈

ãθ
¯̃Xλ
θ ,

¯̃Xλ
θ

〉

−
〈

ãθ
¯̃Xλ′

θ , ¯̃Xλ′

θ

〉∣

∣

∣
dt

]

= E

[
∫ τ

0

∣

∣

∣

〈

ãθ

(

¯̃Xλ
θ + ¯̃Xλ′

θ

)

,∆ ¯̃Xθ

〉
∣

∣

∣
dt

]

6 CE

{
∫ τ

0

∣

∣

∣

¯̃Xλ
θ + ¯̃Xλ′

θ

∣

∣

∣

∣

∣

∣
∆ ¯̃Xθ

∣

∣

∣
dt

}

6 C

∫ τ

0

{

E

[

∣

∣

∣

¯̃Xλ
θ

∣

∣

∣

2

+
∣

∣

∣

¯̃Xλ′

θ

∣

∣

∣

2
]}

1

2

{

E

[

∣

∣

∣
∆ ¯̃Xθ

∣

∣

∣

2
]}

1

2

dt

6 C |λ− λ′| .

Thus, |∆Jθ,1[v̄]| 6 C |λ− λ′|. Similarly, dealing with |∆Jθ,2[v̄]|, we have

|∆Ȳθ| 6 |∆Jθ,1[v̄]|+ |∆Jθ,2[v̄]| 6 C |λ− λ′| .

Therefore, Ȳ λ
1 and Ȳ λ

2 are continuous w.r.t. λ.
The proof is complete.
Now, we discuss the optimal parameter λ̄ satisfying (5) in two cases.
Case 1. Ȳ 0

1 6 Ȳ 0
2 or Ȳ 1

1 > Ȳ 1
2 . Then, it is easily verified that

(λ̄, v̄) =

{

(0, v̄0), if Ȳ 0
1 6 Ȳ 0

2 ,

(1, v̄1), if Ȳ 1
1 > Ȳ 1

2

satisfies (5).
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Case 2. Ȳ 0
1 > Ȳ 0

2 and Ȳ 1
1 < Ȳ 1

2 . By the intermediate value theorem of continuous functions, there
exists a constant λ̄ ∈ (0, 1) s.t. Ȳ λ̄

1 = Ȳ λ̄
2 . In this case, (λ̄, v̄λ̄) still satisfies (5).

Now, we further characterize λ̄ by explicitly computing Ȳ λ
1 and Ȳ λ

2 .
Define

K = −
(

Rλ +D⊤PD
)−1 (

B⊤P +D⊤PC
)

,

H = −
(

Rλ +D⊤PD
)−1 (

B⊤φ+D⊤Pσ
)

.

Similarly, define K̃ and H̃.
Set V1(X̄) = 1

2

[

X̄⊤XX̄ + YX̄
]

, where







































Ẋ+ X (A+BK) + (A+BK)⊤ X

+

[

a1 0

0 0

]

+K⊤c1K+ (C +DK)
⊤
X (C +DK) = 0,

X(T ) =

[

G1 0

0 0

]

,

(36)



















Ẏ+ Y (A+BK)

+2 (DH+ σ)⊤ X (C +DK) + 2 (BH+ b)⊤ X+ 2H⊤c1K = 0,

Y(T ) = 0.

(37)

Then, let V2(
¯̃X) = 1

2 [
¯̃X⊤X̃

¯̃X + Ỹ
¯̃X ], where











































˙̃
X+ X̃

(

Ã+ B̃K̃

)

+
(

Ã+ B̃K̃

)⊤

X̃

+

[

ã1 0

0 0

]

+ K̃⊤c̃1K̃+
(

C̃ + D̃K̃

)⊤

X̃

(

C̃ + D̃K̃

)

= 0,

X̃(τ) =

[

G̃1 0

0 0

]

+KX(τ)K⊤,

(38)























˙̃
Y+ Ỹ

(

Ã+ B̃K̃

)

+2
(

D̃H̃+ σ̃
)⊤

X̃

(

C̃ + D̃K̃

)

+ 2
(

B̃H̃+ b̃
)⊤

X̃+ 2H̃⊤c̃1K̃ = 0,

Ỹ(τ) = Y(τ)K⊤.

(39)

Applying Itô’s formula to V1(X̄) and V2(
¯̃X), we obtain

Ȳ λ
1 =

1

2

[

x⊤
X̃(0)x+ Ỹ(0)x

]

+
1

2

∫ τ

0

[

(

D̃H̃+ σ̃
)⊤

X̃

(

D̃H̃+ σ̃
)

+ Ỹ

(

B̃H̃+ b̃
)

+ H̃
⊤c̃1H̃

]

dt

+
1

2

∫ T

τ

[

(DH+ σ)⊤ X (DH+ σ) + Y (BH + b) +H
⊤c1H

]

dt. (40)

Similarly, we can derive that

Ȳ λ
2 =

1

2

[

x⊤X̃ (0)x+ Ỹ(0)x
]

+
1

2

∫ τ

0

[

(

D̃H̃+ σ̃
)⊤

X̃
(

D̃H̃+ σ̃
)

+ Ỹ
(

B̃H̃+ b̃
)

+ H̃
⊤c̃2H̃

]

dt
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+
1

2

∫ T

τ

[

(DH+ σ)
⊤ X (DH+ σ) + Y (BH+ b) +H

⊤c2H
]

dt, (41)

where






































Ẋ + X (A+BK) + (A+BK)
⊤ X

+

[

0 0

0 a2

]

+K⊤c2K+ (C +DK)
⊤ X (C +DK) = 0,

X (T ) =

[

0 0

0 G2

]

,

(42)



















Ẏ + Y (A+BK)

+2 (DH+ σ)
⊤ X (C +DK) + 2 (BH+ b)

⊤ X + 2H⊤c2K = 0,

Y(T ) = 0,

(43)











































˙̃X + X̃
(

Ã+ B̃K̃

)

+
(

Ã+ B̃K̃

)⊤

X̃

+

[

0 0

0 ã2

]

+ K̃⊤c̃2K̃+
(

C̃ + D̃K̃

)⊤

X̃
(

C̃ + D̃K̃

)

= 0,

X̃ (τ) =

[

0 0

0 G̃2

]

+KX (τ)K⊤,

(44)























˙̃Y + Ỹ
(

Ã+ B̃K̃

)

+2
(

D̃H̃+ σ̃
)⊤

X̃
(

C̃ + D̃K̃

)

+ 2
(

B̃H̃+ b̃
)⊤

X̃ + 2H̃⊤c̃2K̃ = 0,

Ỹ(τ) = Y(τ)K⊤.

(45)

Eqs. (36), (38), (42), and (44) are Lyapunov equations; thus, they are uniquely solvable with nonnegative
definite solutions (cf. Lemma 7.3 in Yong and Zhou [5]). Therefore, the linear differential equations (37),
(43), (39), and (45) are uniquely solvable.

The analysis above is summarized in the following theorem.

Theorem 2. Let Assumption 1 hold. Then, λ̄ ∈ [0, 1] s.t. v̄ defined by (30) is a robust optimal control
of the TSLQU problem.

Furthermore, (i) λ̄ = 0 if Ȳ 0
1 6 Ȳ 0

2 , (ii) λ̄ = 1 if Ȳ 1
1 > Ȳ 1

2 , and (iii) λ̄ takes values in (0, 1) s.t. (40) =
(41).

4 Numerical simulation

By the complicated representations of (40) and (41), obtaining analytical solutions of (40) and (41)
is scarcely possible. Therefore, we present a numerical simulation to illustrate the effectiveness of our
proposed robust optimal control.

Set x1 = x2 = 1, A1 = A2 = Ã1 = Ã2 = 1, B1 = B2 = B̃1 = B̃2 = −1, C1 = C2 = C̃1 = C̃2 = 10−2,
D1 = D2 = D̃1 = D̃2 = 10−4, b1 = b2 = b̃1 = b̃2 = σ1 = σ2 = σ̃1 = σ̃2 = 10−2, K1 = 1, K2 = 1.2,
G1 = G2 = G̃1 = G̃2 = 0.5, a1 = ã1 = 0.5, a2 = ã2 = 5, c1 = c̃1 = 1, c2 = c̃2 = 0.6.

Using numerical algorithms, we draw curves of Ȳ λ
1 and Ȳ λ

2 in Figure 1. At λ̄ = 0.49, we obtain that
Ȳ λ̄
1 = Ȳ λ̄

2 = 1.293. In Figure 2, we present the relation between Ȳ λ
1 and Ȳ λ

2 .
We explain the tradeoff between robustness and optimality in Figure 1. Suppose that the true system

situation is θ = 2, which is not known by the decision maker. On the one hand, the optimal value of
the system under θ = 2 is Ȳ 0

2 = 1.248, which is smaller than Ȳ λ
2 = 1.293. Then v̄λ̄ is not optimal for

the system under θ = 2. On the other hand, if the decision maker misjudges the system state as 1 and
therefore chooses v̄1 as an optimal control, then his cost in this circumstance is Ȳ 1

2 = Y2[v̄
1] = 1.648,

which is obviously larger than Ȳ 0
2 = 1.248. Now, suppose the decision maker chooses the robust control
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Figure 1 (Color online) Curves of Ȳ λ

1
and Ȳ λ

2
. Figure 2 Relation between Ȳ λ

1
and Ȳ λ

2
.

v̄λ̄ instead. Then, we can see that Ȳ λ
2 − Ȳ 0

2 = 0.045, which is the system’s loss caused by the robust
optimal control v̄λ̄, is significantly smaller than Ȳ 1

2 − Ȳ 0
2 = 0.4, which is the loss caused by the misjudging

of the system state and the choice of v̄1. Similarly, the analysis of θ = 1 can be obtained. Therefore, v̄λ̄

is effective in dealing with system uncertainty.

5 Conclusion

This paper was devoted to solving the TSLQU problem. Using the convex variational method and
convergence technique, a necessary and sufficient optimality condition was obtained. The existence of a
robust optimal control was verified, and an optimal parameter was further characterized. Nonetheless,
the uniqueness of the optimal parameter was unknown. In the future, we hope to further study the
uniqueness of the optimal parameter using methods of functional analysis. Another interesting topic is
whether the approaches in our paper still hold for a partially observable state equation with abruptly
jumping states. We aim to come back for these topics in subsequent studies.
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