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Abstract The modeling and control of networks over finite lattices are studied via the algebraic state space approach.

Using the semi-tensor product of matrices, we obtain the algebraic state space representation (ASSR) of the dynamics

of (control) networks over finite lattices. Basic properties concerning networks over sublattices and product lattices are

investigated, which shows the application of the analysis of lattice structure in the model reduction and control design of

networks. Then, algorithms are developed to recover the lattice structure from the structure matrix of a network over a

lattice, and to construct comparability graphs over a finite set to verify whether a multiple-valued logical network is defined

over a lattice. Finally, numerical examples are presented to illustrate the results.
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1 Introduction

The Boolean networks were first introduced by Kauffman [1] to model genetic regulatory networks. They
were later generalized as multiple-valued logical networks to improve the accuracy of logical variables.
The theory of Boolean algebra [2], where the value of a logical node is quantized to zero or one, and the
theory of n-valued logic [3] can be unified into general classes of algebras. These notions were generalized
previously [4] to the so-called Post algebra, which, by revealing itself as a special class of finite lattices,
provided a way of treating multiple-valued algebra from the perspective of lattice theory [5, 6].

Lattices are common objects in combinatorics, and networks over lattices can be commonly found
in the modeling and control of communication networks [7, 8], as well as systems biology [9]. Since
multiple-valued logical networks can be considered as defined over Post algebras, which are special cases
of lattices, one can generally consider a network where each node takes value in a finite lattice, and the
evolution depends on the sup and inf operations between the states. These networks are common in
various applications. For example, distant data verification and breakdown restoration in multi-agent
systems with a logically linked list of entries and distributed ledger can be modeled using Allen-Givone
algebra, which can be viewed as a special class of lattices [10, 11]. Meanwhile, the fuzzy bisimulation of
nondeterministic transition systems is modeled using residuated lattices [12,13], whereas the asynchronous
dynamics of a gene network with multiple expression levels can be modeled using operators defined on
a finite lattice [14]. Moreover, if the nodes of networks are defined over lattices such as the finite sets
of Eisenstein integers [15], revealing the underlying partial order or dimensions of the lattice will benefit
the analysis of the network structure.

On the other hand, networks over lattices have simple logical expressions because of their properties
such as the commutativity and idempotency of the generating operators, making them mathematically
easier to present. From the underlying algebraic structure of these networks, one would expect that the
following properties hold: restricting such a network to a sublattice provides an invariant subnetwork, and
the control properties of networks over product lattices are completely determined by their decomposed
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subnetworks over sublattices. These properties reduce the complexity of analysis and control design of
such systems, as we show in this paper.

However, to the authors’ knowledge, investigations on general (control) networks over lattices are
scarce. Two problems are the possible reasons for this scarcity. First, given the input-output relation of
a finite-valued network, we cannot always recognize whether it is defined over a lattice. Second, when
a network is indeed expressed through the composition of basic operators on a lattice, the expression of
the nonlinear dynamics is not easily simplified for deriving a transition law, impeding the analysis of the
network.

We now consider the first problem. Since networks over lattices may encode information of the un-
derlying partial order structure in its algebraic expression, from the dynamics of a given multiple-valued
logical network, one may recognize the basic operators serving as “bricks” or “building blocks” that gen-
erate the system and hence determine if it is actually defined over a lattice. The problem of verifying
whether a network can be considered as one defined over a lattice (and further reconstructing this lattice
structure if possible) is of practical importance as it is a special case of the NP-hard constraint satisfac-
tion problems [16]. Expressing a k-valued network over a lattice is not only practically useful but also
theoretically challenging. It is well known that even expressing a 3-valued logical network into a 3-valued
logical form is difficult in general, and the k-valued case is even more complicated [17]. There have been
investigations on the generating systems of function algebras (see, e.g., Part II of [18]), but as far as
the authors are concerned, only a few research works have been done for designing a lattice structure
on a finite set to make a (control) network be generated by the basic operators on the lattice, which
is an important issue as we sometimes only have the desired input-output relation of a system and we
would like to realize it using simple generating functions [19]. For example, if the desired transition law
of a network can be written explicitly in terms of operators on a lattice, then the system design can be
executed on the basis of formal calculations over these operators. This can be viewed as a discrete-state
analog of the circuit realization problem [20, 21].

Concerning the second problem, we introduce the semi-tensor product (STP) of matrices as a tool.
Since 2009, it has been applied to the study of Boolean networks [22], providing a convenient way to
represent the dynamics into algebraic equations and promoting the development of the theory of finite-
valued networks. In this respect, investigations have emerged mainly in two directions. One is the
control problems of Boolean networks, such as controllability [23], observability [24,25], stabilization [26],
tracking [27], and decoupling [28]. Another direction is extending the values of states in networks from
the Boolean case (where they are binary) to k-valued, mixed [29], finite ring [30, 31], and finite field
cases [32–34]. The STP enables simplifying the expression of a finite-valued control network to a unified
bilinear form and thus the analysis of its control properties. This method has been applied to general finite
state machines as well [35]. However, a main obstacle to the application of STP is that its computational
complexity increases exponentially with the number of nodes in the networks. There have been several
approaches proposed for this problem, such as aggregation [36] and pinning control [37].

This paper aims to provide a framework for (control) networks over finite lattices to solve the above
problems. Using STP, the algebraic state space representation (ASSR) of such networks is derived,
allowing us to analyze a system with existing results in multiple-valued logical networks. We show
that when the lattice is the product of some finite lattices, the control properties are determined by the
subnetworks defined over factor lattices. Further, from a network over a lattice, we recover the underlying
lattice structure from its ASSR. When the existence of underlying partial order relations is unknown for
an arbitrarily given network, we give the necessary conditions for it to be a network over a lattice and try
to construct such a partial order to allow the network to be generated by some classes of basic operators
over a lattice. Compared with existing methods of analyzing networks over finite rings [30] and finite
fields [32,34], our algorithm, for the first time, provides a method for reconstructing algebraic structures
over dynamics, whereas there have been no existing results derived for recovering ring or field operations
such as addition and multiplication that builds network dynamics. Meanwhile, our algorithm provides
a way to reduce the computational complexity of systems by decomposing networks into subnetworks
over factor lattices. Compared with existing methods for model reduction of logical networks, such
as aggregation [38], our method has no restrictions on the topological structures of a network and is
applicable for general networks over product lattices.

The rest of this paper is organized as follows. Section 2 provides preliminaries about the STP and
lattice theory. Section 3 studies networks over finite lattices under the framework of algebraic state
space and vector expressions. First, it gives criteria for a finite set endowed with an operator to be a
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lattice; then, it investigates the basic properties of networks over product lattices. Section 4 is devoted
to constructing and recovering the underlying lattice structures for finite-valued networks, designing
algorithms to construct partial order so that a given network can be viewed as generated by the basic
operators of a lattice. These results are illustrated by numerical examples in Section 5. Section 6 consists
of conclusion and further problems.

Before ending this introduction, we give a list of notations used in this sequel:
(1) Mm×n: set of m× n-dimensional real matrices;
(2) Col(A) (Row(A)): set of columns (rows) of A; Coli(A) (Rowi(A)): i-th column (row) of A;
(3) δin: i-th column of the identity matrix In;
(4) Dk := {0, . . . , k − 1};
(5) ∆k := Col(Ik);
(6) Lm×n: set of logical matrices (a matrix L ∈ Mm×n is called a logical matrix if Col(L) ⊂ ∆m);
(7) δm[i1, . . . , in]: brief notation for logical matrices; that is, δm[i1, . . . , in] :=

[

δi1m, . . . , δinm
]

;
(8) A ×B B: Boolean product of A ∈ Bm×n, B ∈ Bn×p, that is, [A ×B B]i,j = 0 if [AB]i,j = 0, and

[A×B B]i,j = 1 if [AB]i,j > 0, i = 1, . . . ,m, j = 1, . . . , p.

2 Preliminaries

2.1 STP and algebraic expression of multiple-valued networks

We first give a brief review of the STP of matrices, which is the main tool in this paper. We refer to
Cheng et al. [39] for details.

Definition 1. Let A ∈ Mm×n, B ∈ Mp×q be real matrices and the least common multiple of n and p

be t = lcm{n, p}. The STP of A and B, denoted by A⋉B, is defined as

(

A⊗ It/n
) (

B ⊗ It/p
)

, (1)

where Ik is the k × k identity matrix and ⊗ is the Kronecker product.

Throughout this paper, all products are assumed to be STPs and the symbol ⋉ is usually omitted.
When the dimensions of two matrices are compatible, the STP is the same as the conventional matrix

product, and the laws concerning associativity, distributivity, transpose, and inverse hold for it as well.
Further, it has the following properties concerning commutativity.

Proposition 1 ( [39]). Let X ∈ R
m be a column vector and M be a matrix. Then, X ⋉ M =

(Im ⊗M)⋉X .
Given two column vectors X ∈ R

m and Y ∈ R
n, then

W[m,n] ⋉X ⋉ Y = Y ⋉X, (2)

where W[m,n] ∈ Mmn×mn is the (m,n)-order swap matrix defined as

W[m,n] = δmn[1,m+ 1, . . . , (n− 1)m+ 1, 2,m+ 2, . . . , (n− 1)m+ 2, . . . ,m, 2m, . . . , nm].

Definition 2. (1) Let xi ∈ Dki
, i = 1, . . . , n. A map f :

∏n
i=1 Dki

→ Dk0
is called a multiple-valued

logical function. If k1 = k2 = · · · = kn = k0, f is called a k0-valued logical function.
(2) Let xi(t) ∈ Dki

, fi :
∏n

i=1 Dki
→ Dki

, i = 1, . . . , n. The system















x1(t+ 1) = f1(x1(t), . . . , xn(t)),
...

xn(t+ 1) = fn(x1(t), . . . , xn(t))

(3)

is called a multiple-valued logical dynamic system.
If k1 = k2 = · · · = kn = k0, the system is called a k0-valued logical dynamic system.

Identify i ∼ δik, i = 1, . . . , k − 1, and 0 ∼ δkk . Then, x ∈ Dk can be expressed as x ∈ ∆k. The latter
is called the vector expression of a logical variable. Using this and the above properties of STP, one can
express a multiple-valued logical function and a network in the algebraic state space.
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Theorem 1 ( [40]). Given a multiple-valued logical function f :
∏n

i=1 Dki
→ Dk0

denoted as y =
f(x1, . . . , xn), there exists a unique Mf ∈ Lk0×k, where k =

∏n
i=1 ki, such that, in vector expression, we

have

y = Mf ⋉
n
i=1 xi.

Mf is called the structure matrix of f .

Applying Theorem 1 to each equation of (3), we have















x1(t+ 1) = M1 ⋉
n
i=1 xi(t),

...

xn(t+ 1) = Mn ⋉
n
i=1 xi(t),

(4)

where Mi is the structure matrix of fi, i = 1, . . . , n.

Theorem 2 ([40]). Denote x(t) = ⋉
n
i=1xi(t). Then, Eq. (4) can be expressed as

x(t+ 1) = Mx(t), (5)

where M = M1 ∗ · · · ∗Mn and ∗ is the Khatri-Rao product of matrices. Then, Eq. (5) is called the ASSR
of the multiple-valued logical network (3), and M is called its structure matrix.

2.2 Finite lattices

Next, we review the basic notions of lattice theory.

A lattice is a partially ordered set (L,6), where each pair of elements x, y ∈ L has a least upper bound
(denoted by x ∨ y or sup(x, y)) and a greatest lower bound (denoted by x ∧ y or inf(x, y)). For example,
define a partial order on N as a 6 b ⇔ a|b, and let a ∨ b be the least common multiple and a ∧ b the
greatest common divisor of two integers a and b; then, (N,6) is a lattice. Let L := {0, 1}; then, L is a
lattice under a natural order if we define the operators ∨ and ∧ as disjunction and conjunction of the
Boolean variables, respectively.

An alternative definition is that a lattice is a tuple (L,∧,∨), where ∧,∨ are binary operators on L

satisfying commutativity, associativity, idempotency, and the absorption property. As only finite lattices
are considered in this paper, we adopt Definition 3.

Definition 3 ([41]). A finite set L is called a lattice if there exists a binary operator ∨ on L satisfying

(i) x ∨ x = x;

(ii) x ∨ y = y ∨ x;

(iii) (x ∨ y) ∨ z = x ∨ (y ∨ z);

(iv) ∃0 ∈ L, s.t. w ∨ 0 = w, ∀w ∈ L,
where x, y, and z are arbitrary elements in L.

Remark 1. If we define a new binary operator ∧ on L as a ∧ b :=
∨

u∈S u, where S := {u ∈ L|u 6

a, u 6 b}, then the triple (L,∧,∨) coincides with the conventional definition of a lattice. This means
that there exists a partial order 6 on L such that ∨, ∧ are the least upper bound and the greatest lower
bound operators under this order and (L,6) admits unique maximal and minimal elements. The proofs
can be found in previous studies [41, 42].

A lattice L, like other partially ordered sets, can be completely characterized by its Hasse diagram [42]:
a graph whose vertices are the elements in the lattice. In the Hasse diagram of a lattice, there is an edge
between two vertices a, b if and only if the elements represented by these two vertices are comparable
(a 6 b or b 6 a) and if b covers a, which means a 6 b and there is no element c ∈ L such that a 6 c 6 b.
Then, b is drawn “above” a (i.e., with a higher vertical coordinate).

For example, consider a lattice L = {P1, P2, P3, P4} whose Hasse diagram is as in Figure 1. One can
see that P1 is the greatest element and P4 the least, whereas P2 and P3 are incomparable, P2 ∨ P3 = P1,
P2 ∧ P3 = P4.
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Figure 1 Hasse diagram of a four-element lattice L.

3 Networks over finite lattices

We first use the STP to give an example of how the algebraic state space can help solve the problems in
lattice theory.

Because an operator over a finite set is a logical function (according to Definition 2), we can easily
adapt the STP framework to networks over finite lattices. For example, Proposition 2 gives criteria for
a finite set endowed with a binary operator to be a lattice.

Proposition 2. Let L be a finite set of cardinal k and f a binary operator over L with a structure
matrix M = [M1, . . . ,Mk], where Mi ∈ Lk×k, i = 1, . . . , k. Then, (L, f) is a lattice if and only if M
satisfies the following conditions:

(i) Mdiag(δ1k, . . . , δ
k
k) = Ik;

(ii) MW[k,k] = M ;
(iii) M2 = M(Ik ⊗M);
(iv) ∃i ∈ Dk, s.t. Mi = Ik.

The proof follows directly from the basic properties of STP stated in the previous section. This gives
a convenient way to verify using the structure matrix whether a binary function over a finite set defines
a lattice.

3.1 ASSR of control networks over lattices

Let F : Ln → L be an n-ary function on L. If F is obtained from the composition of ∨ and ∧ on L, we
call it a lattice function. That is, up to inserting parentheses, F is written in the following form:

F (x1, . . . , xn) = xi1 © xi2 © · · · © xiN , i1, . . . , iN ∈ {1, . . . , n}, N > 0,

where the operator © is either ∨ or ∧. Because lattice functions are special cases of multiple-valued
logical functions, we may apply the STP method to model networks over finite lattices.

In general, a network over a finite lattice L has the form of (3), where xi(t) ∈ L are state variables and
the maps fi : L

n → L are lattice functions, i = 1, . . . , n. When L = D2, the system becomes a standard
Boolean network.

When there are controls u1(t), . . . , um(t) ∈ L in the network, its dynamics can be expressed as














x1(t+ 1) = g1(x1(t), . . . , xn(t);u1(t), . . . , um(t)),
...

xn(t+ 1) = gn(x1(t), . . . , xn(t);u1(t), . . . , um(t)),

(6)

where gi are lattice functions, i = 1, . . . , n.
Assume that card(L) = κ. Since the systems over finite lattices belong to the class of multiple-valued

logical systems, by Theorem 2, using STP, Eq. (3) can be converted into its ASSR as

x(t+ 1) = Mx(t), (7)

where x(t) = ⋉
n
j=1xj(t), M ∈ Lκn×κn , and Eq. (6) becomes

x(t+ 1) = Pu(t)x(t), (8)

where u(t) = ⋉
m
s=1us(t), P ∈ Lκn×κn+m .

The STP provides a way to rewrite the nonlinear control system (6) to a simplified and unified form,
giving it a mathematically neat expression. We give a pedagogical example to illustrate how ASSR is
derived.
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Example 1. Consider a four-element lattice L with a Hasse diagram as shown in Figure 1. Setting
Pi ∼ δi4, i = 1, 2, 3, 4, and using the formula of the operators ∨, ∧ derived from the diagram as

P1 ∨ P2 = P1, P1 ∨ P3 = P1, P1 ∨ P4 = P1, P2 ∨ P3 = P1, P2 ∨ P4 = P2, P3 ∨ P4 = P3,

P1 ∧ P2 = P2, P1 ∧ P3 = P3, P1 ∧ P4 = P4, P2 ∧ P3 = P4, P2 ∧ P4 = P4, P3 ∧ P4 = P4,

we can solve the structure matrix of the operators ∨ and ∧ respectively (for details of the calculation
of the structure matrices of finite-valued functions, one may refer to Cheng et al. [40]); that is, ∀x, y ∈
{P1, . . . , P4},

x ∨ y = M∨xy, x ∧ y = M∧xy,

M∨ = δ4[1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 3, 3, 1, 2, 3, 4],

M∧ = δ4[1, 2, 3, 4, 2, 2, 4, 4, 3, 4, 3, 4, 4, 4, 4, 4].

Here, we make no distinction between an element in the lattice and its vector expression. Next, we
assume that a network over L is defined as

{

x1(t+ 1) = x1(t) ∨ (x2(t) ∧ u(t)),

x2(t+ 1) = x1(t) ∨ x2(t) ∨ u(t).
(9)

Then, using the commutative properties in Proposition 1, the following component-wise ASSR is easily
constructed from the structure matrices of the operators.

{

x1(t+ 1) = M1u(t)x(t),

x2(t+ 1) = M2u(t)x(t),

where x(t) = x1(t)x2(t), and

M1 = M∧(I4 ⊗M∨)W[4,16],

M2 = M∨(I4 ⊗M∧)W[4,16].

Then, by a construction similar with (5), the ASSR is x(t+ 1) = Mu(t)x(t), where

M = M1 ∗M2

= δ16[1, 1, 1, 1, 5, 6, 5, 6, 9, 9, 11, 11, 13, 14, 15, 16, 1, 5, 1, 5, 6, 6, 6, 6, 9, 13, 11, 15, 14, 14, 16, 16, 1, 1,

9, 9, 5, 6, 13, 14, 11, 11, 11, 11, 15, 16, 15, 16, 1, 5, 9, 13, 6, 6, 14, 14, 11, 15, 11, 15, 16, 16, 16, 16].

Remark 2. Note that one advantage of networks over lattices is that they are composed of basic binary
operators; thus, we may use STP to solve the structure matrix solely from its operator expression, which
cannot be done for arbitrary multiple-valued networks. The ASSR makes the computation and analysis
of system (6) much easier as it allows one to use existing results in multiple-valued logical networks to
investigate the control properties of the system. For example, one may consider problems such as the
controllability and observability of (9).

Example 2. Consider the controllability problem of the network (9). Denote the matrix M by
[M1, . . . ,M16], where Mi ∈ L16×16. Following [40], construct its controllability matrix as

C =

16
∑

j=1

(

16
∑

i=1

Mi

)(j)

. (10)

Taking the addition and multiplication in (10) to be of Boolean type (that is, 1 + 1 = 1), we solve the
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controllability matrix as

C =











































































1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0

0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0

0 0 0 1 0 0 1 1 0 1 0 0 1 1 0 0

0 0 0 1 0 0 1 0 0 1 0 1 1 0 1 0

0 0 0 1 0 0 1 1 0 1 0 1 1 1 1 1











































































,

which gives full information on the controllability of each state in (9). That is, a state δi16 is controllable
from δ

j
16 if and only if the (i, j)th entry of C is nonzero (for details, one may refer to Zhao et al. [43]).

Another special property for networks over lattices is that the subnetworks defined over a sublattice
of L are invariant subspaces of the network over L; that is, the dynamics starting from a point in the
sublattice will remain in it.

Example 3. Recall system (9) and remove the controls in the network. Assume S = {P1, P2, P4} ⊂ L,
which is clearly a sublattice of L. Reassign the nodes as P1 ∼ δ13 , P2 ∼ δ23 , and P4 ∼ δ33 . It is easy to
figure out that, setting z = x|S , we have

z(t+ 1) = M |Sz(t),

where M |S = δ9[1, 1, 1, 4, 5, 5, 7, 8, 9].
If we add the controls back and restrict them to the sublattice S, then it turns out that the system is

a control-invariant subspace, which can be viewed as defined over the sublattice with the dynamics

z(t+ 1) = P |Su(t)z(t),

where
P |S = δ9[1, 1, 1, 2, 5, 5, 3, 6, 9, 1, 2, 2, 5, 5, 5, 6, 6, 9, 1, 2, 3, 5, 5, 6, 9, 9, 9].

3.2 Control networks over product lattices

Next, we consider the networks over a special class of finite lattices, which are the Cartesian product of
some finite lattices. Suppose L = L1×· · ·×Lp, where Li is a finite lattice of the cardinal ki, i = 1, . . . , p.
Define the partial order relation 6 on L by

(x1, . . . , xp) 6 (y1, . . . , yp) ⇔ x1 6 y1, . . . , xp 6 yp.

Then, a network over L with ASSR (8), denoted by Σ, can be decomposed into several factors Σ1, . . . ,Σp,
where the factor Σi is a network consisting of the corresponding ith factor of the state (x1(t), . . . , xp(t)),
with the binary operations in Li, i = 1, . . . , p.

Then, a decomposition theorem follows.

Theorem 3. The system Σ is controllable (observable, synchronizable, stabilizable) if and only if the
factor systems Σi, i = 1, . . . , p are controllable (observable, synchronizable, stabilizable).
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Proof. We only need to show that a network defined over a product lattice of L1 and L2 can be decomposed
into two systems Σ1 and Σ2, which are defined over L1 and L2, respectively; that is, any trajectory
{z(t)|t > 0} ⊂ L starting from a point (x0, y0) can be decomposed into two trajectories {x(t, x0)|t >

0} and {y(t, y0)|t > 0} starting from points x0 ∈ L1 and y0 ∈ L2, respectively, such that z(t) =
(x(t, x0), y(t, y0)), ∀t > 0. Because a factor of a product lattice can be viewed as a sublattice, factor
lattices are invariant subspaces; such decomposition is obvious, and the conclusion follows.

Remark 3. For a network over the above product lattice with an ASSR (7), the ASSR of its subsystem
over the factor lattice Li, i = 1, . . . , p is derived as

x̃i(t+ 1) = Hi ×B M ×B HT
i x̃

i(t),

where x̃i(t) ∈ ∆kn
i
and Hi ∈ Lkn

i
×kn is the structure matrix of the projection map L → Li. This is

because Li is invariant with respect to the evolution of the subnetwork Σi. For details of the construction
of the above structure matrix, one may refer to Ji et al. [36].

As is known, when we adopt the STP method, the complexity of the analysis of the logical network
increases exponentially with respect to the number of nodes [22,23]. Applying Theorem 3, we may reduce
the complexity of the analysis of the network over a product lattice L = L1 × · · · ×Lp by decomposing it
into systems over subsystems over sublattices Li, i = 1, . . . , p and reducing its dimension. For example,
suppose that the network has n nodes, card(Li) = ki, and k = k1 · · · kp. Then, the dimension of the
ASSR of the system is kn. If the complexity of executing an algorithm for the analysis of the network is
O(kn), then, after the decomposition, the complexity is reduced to O(

∑p
i=1 k

n
i ), which greatly eases the

computation load.
For an application of Theorem 3, we give an example of systems evolving over product lattices. Consider

the following linear switched system with logical switching [44]:

x(t+ 1) = Aσ(t)x(t) +Bσ(t)u(t), (11a)

η(t) = Q(x(t)), (11b)
{

λ(t+ 1) = γ(λ(t), η(t)),

σ(t) = β(λ(t), η(t)),
(11c)

where Q : D → Dk is a quantizer, D = [η1, ξ1) × · · · × [ηn, ξn) ⊂ R
n, σ(t) ∈ DN is the switching signal,

Eq. (11c) is an ℓ-valued logical dynamic system with γ, β logical functions, λ(t) ∈ Dℓ is a logical variable,
k, N , and ℓ are integers, Ai and Bi are matrices, and ηi < ξi are real numbers, i = 1, . . . , N . x(t) ∈ D

is the continuous-state variable. Commonly, the sampling of the switching signal is based on coordinate
partitions [45]; that is, the quantizer Q is defined as

Q(x1, . . . , xn) = αi1,i2,...,in , if β1
i1 6 x1 < β1

i1+1, β2
i2 6 x2 < β2

i2+1, . . . , βn
in 6 xn < βn

in+1,

where αi1,...,in ∈ Dk is pairwise distinct over i1 = 1, . . . , N1, i2 = 1, . . . , N2, . . ., in = 1, . . . , Nn, with
N1, . . . , Nn integers. In short, the quantizer assigns each state x = (x1, . . . , xn) ∈ R

n an integer in
Dk, according to the interval [βj

ij
, β

j
ij+1) that each component xj lies in, and the domain D ⊂ R

n is
partitioned as

D =
{

[β1
1 , β

1
2) ∪ [β1

2 , β
1
3) ∪ · · · ∪ [β1

N1
, β1

N1+1)
}

× · · · ×
{

[βn
1 , β

n
2 ) ∪ [βn

2 , β
n
3 ) ∪ · · · ∪ [βn

Nn
, βn

Nn+1)
}

.

Apparently, such partition of D ⊂ R
n gives rise to a product lattice structure over Dk, and Dk can hence

be decomposed into components DN1
× · · · × DNn

. As the discretization of the linear switched system
(11a) with respect to the quantizer (11b) is a finite transition system over Dk, if the dynamics of the
discretized transition system of η(t) is expressed using the operators over this lattice, then the system
after discretization becomes a dynamics evolving on a product lattice. The analysis of system (11) relies
on the mergence of the discretized variable η(t) and the logical variable λ(t) [44]. Therefore, when η(t)
evolves over a product lattice, using the decomposition of the system over factor sublattices, the analysis
for the merged system can be simplified.

However, the full potential of Theorem 3 is not yet revealed if the underlying lattice structure of the
network is known a priori, because in this case, one can see from the beginning that the system is built up
from subsystems over sublattices. In Section 4, we focus on (control) networks whose lattice structure is
unknown, and Theorem 3 is useful for those systems found by our algorithms to be defined over product
lattices.
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4 Recovering lattice structures

After presenting the general expressions and control property analysis of networks over lattices, we
consider the verification of such networks. As aforementioned, networks over lattices are special cases of
multiple-valued logical networks. Thus, a natural question arises: how can one recognize them from the
vast class of networks over finite sets? Further, how can one construct or recover the order relationships
on underlying sets from the algebraic state space expressions of networks?

The aim of this section is twofold: first, to reconstruct the lattice structure on Dk from the structure
matrix of a network defined over a lattice of k elements; second, to verify if there exists a partial order
on Dk allowing a given network to be one defined over a lattice or at least be generated by some basic
operators on the lattice.

4.1 Recovering order relations through lattice functions

Consider a system over Dk with ASSR (7). The following algorithm can decompose it into a component-
wise expression, whose proof is straightforward.

Proposition 3. Consider a matrix M ∈ Lkn×kn . There exists a unique decomposition M = M1 ∗ · · · ∗
Mn, where Mi = RiM ∈ Lk×kn , and Ri = 1ki−1 ⊗ Ik ⊗ 1kn−i , where 1n is the n-dimensional row vector
with all entries equal 1.

In the following, we show that the information of comparability between the elements in a lattice can
be encoded in the structure matrix of any lattice function over it. That is, if M is the structure matrix
of an n-node network defined over a lattice, then any Mi constructed as in Proposition 3, which is the
structure matrix of the dynamics of the i-th node, i = 1, . . . , n, is enough to rebuild the lattice structure.

The case of 2-ary functions, which corresponds to a network of 2 nodes, is trivial because, by the
so-called absorption property, a binary lattice function can only be ∨ or ∧ (after some procedure of
simplification). Therefore, it suffices to check the conditions in Proposition 2 on its structure matrix and
recover the partial order by x ∨ y = y ⇔ x 6 y.

The general n-ary case requires a different approach. Without loss of generality, assume that functions
discussed in the following do not have “dumb” indices; that is,

∀i = 1, . . . , n, ∃ai 6= bi ∈ Dk, s.t.

f(x1, . . . , xi−1, ai, xi+1, . . . , xn) 6= f(x1, . . . , xi−1, bi, xi+1, . . . , xn).
(12)

Specifically, in network (3), if the index i is dumb in the function fj, it means that the variable xi does not
influence the one-step transition of the variable xj . In fact, one can verify if a variable in the expression
of a multiple-valued logical function is dumb using the method provided by [23] and further remove them
from the explicit expression of the function.

First, we point out the fact that given two comparable elements a and b in any lattice (L,∨,∧), the
operators ∨ and ∧ restricted to {a, b} behave in the same way as the disjunction and conjunction operators
over the classical Boolean algebra {0, 1}. Hence, we may try to use the “restricted” structure matrix of
a k-valued logical function to find all comparable pairs on Dk.

For an n-ary logical function f over Dk, consider its restriction to a pair of elements a, b ∈ Dk; that
is, the value that f(x1, . . . , xn) takes when x1, . . . , xn take values in {a, b} only. This transforms f to
another logical function fab : D

n
2 → Dk.

Denote by M ∈ Lk×kn the structure matrix of f . ∀a, b ∈ Dk. If their vector forms are δiak and δibk , then
identify them as δ12 and δ22 , respectively. By making no distinction between a variable and its vector form
(a ∼ δiak , b ∼ δibk , 1 ∼ δ12 , 0 ∼ δ22), we may express a variable x ∈ {a, b} through a Boolean one x̃ ∈ {0, 1}
in vector form as

x = δk[ia, ib]x̃. (13)

Hence, by substitution, the restriction of f on {a, b}n, viewed as a function fab : Dn
2 → Dk, has the

following vector form expression:

f(x1, . . . , xn)
∣

∣

{a,b}n = fab(x̃1, . . . , x̃n) = Mabx̃1 . . . x̃n, (14)
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where

Mab = M

n−1
∏

j=0

(I2j ⊗ δk[ia, ib]). (15)

The structure matrix (15) is obtained from (13) and the commutative properties in Proposition 1.

Theorem 4. Let Dk endowed with a partial order relation 6 be a lattice and f : Dn
k → Dk be a lattice

function satisfying (12). Given two elements a, b ∈ Dk with vector expressions δiak and δibk , respectively,
a and b are comparable (a 6 b or b 6 a) if and only if

Col(Mab) ⊂ {δiak , δibk }; (16a)

Col(M i
ab) ⊂ {δiak − δibk ,0}, i = 1, . . . , n, (16b)

Mabδ
1
2n = δiak , Mabδ

2n

2n = δibk , (16c)

where 0 = (0, . . . , 0) ∈ R
k, Mab is defined as in (15), and

M i
ab := MabW[2,2i−1]

(

1

−1

)

.

Proof. (Necessity) When a and b are comparable, since ∨ and ∧ restricted to {a, b} are identical to
disjunction and conjunction operators on the classical Boolean algebra {0, 1} (denoted by ∨2 and ∧2,
respectively), f |{a,b}n as a lattice function can be viewed as belonging to the class generated by ∨2 and
∧2. Hence, its image is in the set of {a, b}. By the property of these operators, f |{a,b}n is monotonic and
reproducing; that is (adopting the notations in (14)), ∀x̃1, . . . , x̃n ∈ {0, 1},

fab(x̃1, . . . , x̃n) ∈ {a, b},

fab(x̃1, . . . , x̃i−1, 1, x̃i+1, . . . , x̃n)− fab(x̃1, . . . , 0, . . . , x̃n) ∈ {a− b, 0}, ∀i = 1, . . . , n,

fab(1, . . . , 1) = a, fab(0, . . . , 0) = b,

where, in the second equation, the variables only differ in the ith entry, i = 1, . . . , n, and we can say that
f(x1, . . . , xn) 6 f(y1, . . . , yn) if xi 6 yi, xi, yi ∈ {a, b}, i = 1, . . . , n. Translating the above equations into
the vector expression yields

Mabx̃1 . . . x̃n ∈ {δiak , δibk },

Mabx̃1 . . . δ
1
2 . . . x̃n −Mabx̃1 . . . δ

2
2 . . . x̃n = MabW[2,2i−1](δ

1
2 − δ22)x̃1 . . . x̃i−1x̃i+1 . . . x̃n ∈ {δiak − δibk ,0},

Mabδ
1
2 . . . δ

1
2 = δiak , Mabδ

2
2 . . . δ

2
2 = δibk ,

∀x̃1, . . . , x̃n ∈ ∆2, i = 1, . . . , n,

which are (16a)–(16c), respectively.
(Sufficiency) Conversely, if f |{a,b}n satisfies the conditions (16a)–(16c), it can be viewed as generated

by ∨2 and ∧2 over the lattice {a, b} because, according to the classical result by Post [46], the class
of reproducing and monotonic n-ary functions over D2 are exactly the one generated by ∨2 and ∧2.
Therefore, a and b have the order relation obtained from these operators.

Theorem 4 shows that given any lattice function f over a k-element lattice, we can find all the compa-
rable pairs a, b in Dk by checking the conditions on corresponding Mab and further obtain an undirected
graph of k nodes, called the comparability graph, where there is an edge between two nodes if and only
if they are comparable.

Then, algorithms can be applied to the comparability graph, assigning to it an orientation to recover
the partial order on Dk, which is, however, not unique [47]. Details of these algorithms are stated later
in Subsection 4.2.

Remark 4. The significance of Theorem 4 is that, once the underlying lattice structure of a network
over a lattice is recovered, one may use it to simplify the analysis of control problems. For example, if
we find out that the network is defined over a product lattice, then the results in Subsection 3.2 can be
applied to decompose a network.
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4.2 Realization of the underlying lattice structure of a network

Next, we consider designing a lattice structure over Dk to make a k-valued network be generated by some
basic operators of the lattice. The only data available are those of the structure matrix. The construction
requires two steps: first, derive a relation from f according to Theorem 4; second, verify if it is a partial
order making Dk a lattice.

According to the results in Lau [18] (Chapter 11, Subsection 11.4), monotonic functions over a lattice
are generated by ∨ and ∧ and piecewise constant functions ma,b, defined as

ma,b(x) =

{

b, a 6 x,

0, otherwise.
(17)

We call ∨, ∧ and {ma,b}a,b∈Dk
basic operators on a lattice.

We present the following algorithm to construct a lattice structure onDk to make the network generated
by basic operators on this lattice.

Proposition 4. Consider a network over Dk with n nodes and its ASSR as x(t + 1) = Mx(t), where
x(t) = x(t) = ⋉

n
j=1xj(t), M ∈ Lkn×kn . Execute the following procedure to derive a partial order on Dk.

• Step 1. Apply Proposition 3 to decompose M into componentwise form M1, . . . ,Mn, where Mi is
the structure matrix of the i-th node xi(t + 1) = fi(x1(t), . . . , xn(t)) with ASSR xi(t + 1) = Mix(t),
i = 1, . . . , n. Remove the dumb indices in each function Mi (see the algorithm provided by Cheng [23]).

• Step 2. For the i-th function fi with structure matrix Mi, draw the corresponding graph Gi of n
nodes, where there is an edge between nodes a, b ∈ Dk if and only if (a, b) is a pair on which fi satisfies
the conditions (16a) and (16b). Take the conjunction of the graphs Gi, i = 1, . . . , n and denote it by G.

• Step 3. Give an orientation to the resulting graph G and verify whether it is transitive. If it is, then
the topological sorting of the oriented graph derives a partial order on Dk.

If the partial order derived from the network over Dk following the above procedure makes a lattice,
then the network is generated from the class of functions {∨,∧,ma,b}, where ∨ and ∧ are the sup and
inf operators of the lattice, respectively, and ma,b are piecewise constant functions defined as in (17),
a, b ∈ Dk.

Proof. The pairs on which the function with structure matrix Mi is monotonic (i.e., satisfies (16a)
and (16b), by the proof of Theorem 4) are candidates of comparable pairs to allow this function to be
generated from basic operators of a lattice (see Chapter 11 of Lau [18]). After checking the updating
function of the i-th node on each pair {a, b} ⊂ Dk, we obtain the comparability graph of the partial order
for the dynamics of the i-th node. Since only when two elements are comparable in the order relation
derived from each node can they be labeled as comparable in the partial order corresponding to the whole
system, one needs to take conjunction of the n graphs (i.e., there is an edge between {a, b} in the graph
G if and only if such edge exists for each graph Gi, i = 1, . . . , n) and check the conditions for being a
lattice on the corresponding order relation after orienting the graph.

Proposition 4 gives a criterion for whether a network can be realized through basic operators of some
lattice when only its structure matrix is known.

Remark 5. The procedure for constructing the graph G in Step 2 is depicted in pseudocode form as in
Algorithm 1. Let (N,E) be an undirected graph of k nodes, that is, N := {1, . . . , k}, and E := {e(a, b) :
Dk × Dk → {0, 1}}a,b∈1,...,k, where e(a, b) = 1 if and only if there is an edge between the vertices a and
b. Then, Algorithm 1 returns the adjacency information of the vertices.

Remark 6. The algorithm in Step 3 for transitive orientation has been well established since 1999 [47],
and we only give a sketch of it because of space limitations. Let G be a prime undirected graph with
vertex set V ; start with a partition {{v}, V \{v}}, and define it as an ordered list. Then, choose a pivot
vertex x ∈ V and split each partition class Y into two parts: the vertices adjacent to x (denoted by Ya)
and those non-adjacent to x (denoted by Yn). Then, place them in consecutive positions in the ordered
list. Let Yn occupy the earlier one in the two new positions if x proceeds Y and the latter if not. Then,
move on to another pivot vertex. Refining the partition following the procedure for choosing pivots, one
obtains an ordered partition where each class only contains a single element, which is the topological
sorting of the orientation. One may refer to previous studies [48, 49] for proofs and details.

In the end, we claim that there exist canonical expressions for monotonic functions over a lattice.
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Algorithm 1 Deriving the comparability graph from the ASSR.

Input: Structure matrices Mi ∈ Lk×kn , i = 1, . . . , n.

Output: Graph G = (N,E).

1: Set e(a, b) = 0, ei(a, b) = 0 for all a, b ∈ {1, . . . , k}, i = 1, . . . , n;

2: for i = 1 : n do

3: for a = 1 : k do

4: for b = 1 : a do

5: if ei(a, b) = 0 then

6: goto here;

7: else

8: Mab
i = Mi

∏n−1

j=0
(I

2j
⊗ δk[ia, ib]);

9: if Mab
i satisfies (16) then

10: ei(a, b) = 1;

11: else

12: ei(a, b) = 0;

13: end if

14: end if

15: here;

16: end for

17: end for

18: e(a, b) = e(a, b) ∧ ei(a, b);

19: end for

20: return N = {1, . . . , k}, E = {e(a, b)}a,b=1,...,k.

Figure 2 Hasse diagram of D2 × D3.

Proposition 5 ( [18], Subsection 11.4). If f : Dn
k → Dk is monotonic over a lattice (Dk,6), then

∀x = (x1, . . . , xn) ∈ Dn
k ,

f(x) =
∨

a=(a1,...,an)∈Dn
k

(

n
∧

i=1

mai,f(a)(xi)

)

, (18)

where mai,f(a) is defined as in (17).

One can see that additional constraints are needed to ensure that a function is a lattice function (i.e.,
generated solely by ∨ and ∧). However, finding such conditions would be difficult because of (18) as any
lattice function is monotonic and hence will always allow an expression that contains mab.

5 Numerical examples

This section provides numerical examples to illustrate the results in Sections 3 and 4.
We first consider the observability problem of a control network defined over a product lattice and see

how it can be solved by decomposing the system into subsystems over factor lattices.

Example 4. Consider a network over the lattice D2×D3, where D2 = {0, 1}, D3 = {0, 1, 2} are ordered
as chains canonically. The Hasse diagram of the product lattice is shown in Figure 2.

The dynamics of the network is

{

x1(t+ 1) = x2(t) ∧ u(t),

x2(t+ 1) = x1(t) ∨ x2(t),
y(t) = x2(t). (19)

Converting (19) to ASSR, we respectively obtain the structure matrices of the dynamics and the output
as

L = δ36[1, 3, 3, 5, 5, . . . , 32, 33, 34, 35, 36] ∈ L36×216,
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E = δ6[1, 2, 3, 4, 5, 6, . . . , 1, 2, 3, 4, 5, 6] ∈ L6×36.

We consider the observability of the system (19), showing how existing results can be applied to the
ASSR and how it can be solved using its subnetworks over sublattices. Suppose x1(t) = (x1

1(t), x
1
2(t)),

x2(t) = (x2
1(t), x

2
2(t)), y(t) = (y1(t), y2(t)) ∈ ∆2 ×∆3. Then, one can respectively calculate the ASSR of

the corresponding subnetworks over the factor sublattices as

{

z1(t+ 1) = L̃1z1(t),

y1(t) = E1z1(t);

{

z2(t+ 1) = L̃2z2(t),

y2(t) = E2z2(t),

where z1(t) = x1
1(t)x

1
2(t), z2(t) = x1

2(t)x
2
2(t), and

L̃ = δ4[1, 2, 2, 2, 1, 2, 4, 4], E1 = δ2[1, 2, 1, 2],

L̃2 = δ9[1, 2, 3, 2, 2, 3, 3, 3, 3, 1, 2, 3, 5, 5, 6, 6, 6, 6, 1, 2, 3, 5, 5, 6, 9, 9, 9],

E2 = δ3[1, 2, 3, 1, 2, 3, 1, 2, 3].

First, consider the network over D2. Following Cheng et al. [50], construct an auxiliary network as

{

z1(t+ 1) = L̃1u(t)z1(t),

z∗1(t+ 1) = L̃1u(t)z
∗
1(t).

Set w(t) = z(t)z∗(t); then, the ASSR is

w(t + 1) = Gu(t)w(t),

where G = L̃1(I8 ⊗ L̃1)(I2 ⊗W[2,4])diag(δ
1
2 , δ

2
2).

Solving the output distinguishable pairs, we derive the set

W = {δ216, δ
4
16, δ

5
16, δ

7
16, δ

10
16 , δ

12
16 , δ

13
16 , δ

15
16}.

Then, the controllability matrix from ∆16 to W is

C1
W = IW

[

16
∑

i=1

(Gδ12 +Gδ22)
(i)

]

= [0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0],

where IW is the index matrix of W .
Therefore, the distinguishable pairs of subnetwork is S1 = {(δ14 , δ

2
4), (δ

1
4 , δ

3
4), (δ

1
4 , δ

4
4)}, and the system

is not observable.
A similar argument can be applied to the subsystem over D3, showing that

C2
W = [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0,

0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0],

and the distinguishable pairs of the subnetwork is

S2 = {(δ19 , δ
2
9), (δ

1
9 , δ

3
9), (δ

1
9 , δ

4
9), (δ

1
9 , δ

5
9), (δ

1
9 , δ

6
9), (δ

1
9 , δ

7
9), (δ

1
9 , δ

8
9), (δ

1
9 , δ

9
9), (δ

2
9 , δ

3
9), (δ

2
9 , δ

6
9), (δ

2
9 , δ

7
9), (δ

2
9 , δ

8
9),

(δ29 , δ
9
9), (δ

3
9 , δ

4
9), (δ

3
9 , δ

5
9), (δ

4
9 , δ

6
9), (δ

4
9 , δ

7
9), (δ

4
9 , δ

8
9), (δ

4
9 , δ

9
9), (δ

5
9 , δ

6
9), (δ

5
9 , δ

7
9), (δ

5
9 , δ

8
9), (δ

5
9 , δ

9
9)}.

Therefore, we conclude that the whole system is not observable. More precisely, (δi12 , δ
j1
2 ), (δi22 , δ

j2
2 ) ∈

(∆2 ×∆3)
2 is distinguishable if and only if (δi12 , δ

j1
2 ) ∈ S1, (δ

i2
2 , δ

j2
3 ) ∈ S2.

Next, we give an example of how the algorithm in Proposition 4 works for constructing a lattice
structure on a finite set from the structure matrix of a network so that this network can be expressed
through basic operators on the lattice.
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Figure 3 Comparability graphs corresponding to (a) M1, (b) M2, and (c) M3.

Figure 4 Transitive orientation of the conjunction of comparability graphs (a) and the Hasse diagram of the lattice (b).

Example 5. Consider the following network over D5 with 3 nodes and ASSR as

x(t+ 1) = Mx(t), (20)

where x(t) = x1(t)x2(t)x3(t), and

M = δ125 [1, 31, 61, 91, 121, 26, 31, 61, 91, 121, 51, 56, 61, 91, 121, 76, 81, 86, 91, 121, 101, 106, 111, 116, 121,

1, 32, 61, 92, 122, 32, 32, 67, 92, 117, 51, 57, 61, 92, 122, 82, 82, 92, 92, 117, 102, 107, 112, 117, 122, 1,

31, 63, 93, 123, 26, 31, 63, 93, 123, 63, 68, 63, 93, 118, 88, 93, 88, 93, 118, 103, 108, 113, 118, 123, 1,

32, 63, 94, 124, 32, 32, 69, 94, 119, 63, 69, 63, 94, 119, 94, 94, 94, 94, 119, 124, 119, 119, 119, 124, 1,

32, 63, 94, 125, 27, 32, 64, 94, 125, 53, 59, 63, 94, 125, 99, 94, 94, 94, 125, 125, 120, 120, 120, 125].

We aim to check if there is an underlying partial order on D5 to make this system be defined over a
lattice or to realize the transition law by some lattice operators.

Decomposing M according to Proposition 3, we derive the structure matrix of the dynamics of each
node as

Mi = 15i−1 ⊗ I5 ⊗ 153−i ∈ L5×53 , i = 1, 2, 3.

Next, we try to derive comparability graphs from them. Checking the conditions (16a) and (16b) on
M1, M2, and M3 for each pair of a, b ∈ D5, one can obtain their comparability graphs, as shown in
Figures 3(a)–(c) respectively. Then, take their conjunction to get the comparability graph of the system
(which is, naturally, the one in Figure 3(b)) and orient it according to the vertex-partitioning algorithm
in McConnell and Spinrad [48]. First, choose 1 as a source, and the initial partition is {{1}, {2, 3, 4, 0}}.
After a pivot on 2, as {3, 0} is not adjacent to 2, it goes before {2, 4}. Then, after a pivot on 3, we obtain
the topological sorting of the graph as

1 | 0 | 3 | 2 | 4, (21)

where an element is less than the ones following it in the sequence. Applying (21) to Figure 4(a) gives the
conjunction of comparability graphs a transitive orientation, as shown in Figure 4(b). Hence, we obtain
a partial order on D5, denoted by R.

Finally, after checking the conditions on this orientation for being a lattice over D5, we may draw the
Hasse diagram of this order relation, as shown in Figure 4.

Therefore, (D5, R) is the lattice structure that makes the network (20) become one generated by basic
operators on the lattice, and one can write it explicitly in these operators according to (18).
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Figure 5 Oriented comparability graph over D6 in Example 4.

6 Conclusion

In this paper, control networks over finite lattices were first considered. Using STP, the ASSR of such
networks was obtained, making control problems easily solvable. Algorithms were proposed to recover
the partial order from a lattice function and construct lattice structures for an arbitrary network to allow
it to be generated by basic operators over the lattice.

In various applications, the results in Subsection 3.2 and Section 4 can be combined: given a network
over an unknown lattice, one may first recover the order relation using Theorem 4 and then decompose
the system into subsystems defined over factor sublattices if the lattice is a product lattice. Theorem
3 helps to simplify the computation of the control properties. For example, if we apply the algorithm
in Proposition 4 to the network dynamics in Example 4, we can reconstruct the oriented comparability
graph as in Figure 5 and recover the lattice structure depicted in Figure 2. Then, decomposition can be
applied, reducing the complexity of the system analysis from O(62) to O(22 + 32).

However, although (due to the canonical expression (18)), the difficulty of finding restrictions on the
monotonic function class over a lattice to exclude the functions ma,b seems intrinsic, finding criteria for
multiple-valued logical functions to be generated solely by the operators ∨ and ∧ is a problem still worth
investigating.

Meanwhile, using the framework proposed in this paper, problems concerning switched, delayed, and
probabilistic networks over finite lattices can be further investigated.
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20 Garćıa-Mart́ınez M, Campos-Cantón I, Campos-Cantón E, et al. Difference map and its electronic circuit realization. Nonlinear

Dyn, 2013, 74: 819–830

https://doi.org/10.1016/0022-5193(69)90015-0
https://doi.org/10.2307/2370324
https://doi.org/10.2307/2371676
https://doi.org/10.1090/S0002-9947-1960-0112855-8
https://doi.org/10.1109/TIT.2015.2451623
https://doi.org/10.3390/quantum2010010
https://doi.org/10.3390/app12031263
https://doi.org/10.1109/TFUZZ.2022.3227400
https://doi.org/10.1016/j.jfranklin.2023.11.027
https://doi.org/10.1016/j.dam.2007.04.019
https://doi.org/10.1109/TCOMM.2013.050813.120759
https://doi.org/10.1016/S0960-0779(03)00063-8
https://doi.org/10.1007/s11071-013-1007-4


Ji Z P, et al. Sci China Inf Sci September 2025, Vol. 68, Iss. 9, 192201:16

21 Suneel M. Electronic circuit realization of the logistic map. Sadhana, 2006, 31: 69–78
22 Cheng D Z. Input-state approach to Boolean networks. IEEE Trans Neural Netw, 2009, 20: 512–521
23 Cheng D, Qi H. Controllability and observability of Boolean control networks. Automatica, 2009, 45: 1659–1667
24 Fornasini E, Valcher M E. Observability, reconstructibility and state observers of Boolean control networks. IEEE Trans

Automat Contr, 2013, 58: 1390–1401
25 Zhang K. A survey on observability of Boolean control networks. Control Theor Technol, 2023, 21: 115–147
26 Li H, Wang Y. Further results on feedback stabilization control design of Boolean control networks. Automatica, 2017, 83:

303–308
27 Zhang X, Wang Y, Cheng D. Output tracking of Boolean control networks. IEEE Trans Automat Contr, 2020, 65: 2730–2735
28 Li Y, Zhu J. Necessary and sufficient vertex partition conditions for input-output decoupling of Boolean control networks.

Automatica, 2022, 137: 110097
29 Lu J, Li H, Liu Y, et al. Survey on semi-tensor product method with its applications in logical networks and other finite-valued

systems. IET Control Theor Appl, 2017, 11: 2040–2047
30 Cheng D, Ji Z. On networks over finite rings. J Franklin Institute, 2022, 359: 7562–7599
31 Zou S, Zhu J. On sub-networks over proper ideals of dynamical networks over finite rings. In: Proceedings of the 42nd Chinese

Control Conference (CCC), Tianjin, 2023. 81–86
32 Lin L, Cao J, Zhu S, et al. Synchronization analysis for stochastic networks through finite fields. IEEE Trans Automat Contr,

2021, 67: 1016–1022
33 Lin L, Jiang Z, Lin H, et al. On quotients of stochastic networks over finite fields. IEEE Trans Control Netw Syst, 2024, 11:

878–889
34 Meng M, Li X, Xiao G. Synchronization of networks over finite fields. Automatica, 2020, 115: 108877
35 Yan Y, Cheng D, Feng J E, et al. Survey on applications of algebraic state space theory of logical systems to finite state

machines. Sci China Inf Sci, 2023, 66: 111201
36 Ji Z, Zhang X, Cheng D. Aggregated (Bi-)simulation of finite-valued networks. 2023. ArXiv:2303.14390
37 Zhong J, Liu Y, Lu J, et al. Pinning control for stabilization of Boolean networks under knock-out perturbation. IEEE Trans

Automat Contr, 2022, 67: 1550–1557
38 Zhao Y, Ghosh B K, Cheng D. Control of large-scale Boolean networks via network aggregation. IEEE Trans Neural Netw

Learn Syst, 2015, 27: 1527–1536
39 Cheng D, Qi H, Zhao Y. An Inroduction to Semi-tensor Product of Matrices and Its Applications. Singapore: World Scientific,

2012
40 Cheng D, Qi H, Li Z. Analysis and Control of Boolean Networks, A Semi-tensor Product Approach. New York: Springer,

2011
41 Bergman G M. An Invitation to General Algebra and Universal Constructions. 2nd ed. Berlin: Springer, 2015
42 Stanley R P. Enumerative Combinatorics. 2nd ed. Cambridge: Cambridge University Press, 2012
43 Zhao Y, Qi H, Cheng D. Input-state incidence matrix of Boolean control networks and its applications. Syst Control Lett,

2010, 59: 767–774
44 Guo Y, Gong P, Wu Y, et al. Stabilization of discrete-time switched systems with constraints by dynamic logic-based switching

feedback. Automatica, 2023, 156: 111190
45 Pola G, Di Benedetto M D. Control of cyber-physical-systems with logic specifications: a formal methods approach. Annu

Rev Control, 2019, 47: 178–192
46 Post E L. The Two-valued Iterative Systems of Mathematical Logic. Princeton: Princeton University Press, 1941
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