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Abstract Deep learning compilers help address the difficulties of deploying deep learning models on diverse types of

hardware. Testing deep learning compilers is highly crucial, because they are impacting countless AI applications that use

them for model optimization and deployment. To test deep learning compilers, random testing, the testing method popularly

used for compiler testing practices, faces the challenge of generating semantically valid test inputs, i.e., deep learning models

that satisfy the semantic model specifications (in short semantic specifications). To tackle this challenge, in this paper,

we propose a novel approach named Isra, including a domain-specific constraint solver that resolves the constraints from

the semantic specifications without backtracking. We implement and apply our approach to three popular real-world deep

learning compilers including TVM, Glow, and a commercial compiler named SophGo. The evaluation results show that

Isra is more effective than the state-of-the-art approaches and the baseline approaches on constructing valid test inputs for

compiler-bug detection, and Isra successfully finds 24 previously unknown bugs in released versions of the three compilers.

These results indicate Isra’s effectiveness and practical value.
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1 Introduction

In recent years, deep learning has been widely used in software systems from various domains, such as
autonomous driving, e-commerce, and smart cities. Given that deep learning models become increasingly
large and complicated, there are emerging needs to deploy versatile deep learning models on different
types of hardware such as graphics processing unit (GPU), field programmable gate array (FPGA), and
tensor processing unit (TPU) [1]. To reduce the burden of optimizing deep learning models and to
address the difficulty of model deployment on hardware, deep learning compilers have been developed,
such as TVM [2], Glow [3], and XLA [4]. These deep learning compilers have been widely used for
the optimization and deployment of deep learning models, especially those with critical performance
requirements.

Testing a deep learning compiler is vital for two main reasons. First, if a deep learning compiler used
by AI applications contains bugs, the deployed AI applications can exhibit serious failing behaviors. For
example, a critical bug of TVM’s SPIRV codegen led to incorrect results for a TVM-optimized model’s
output, which affected all users who use TVM for their model deployment on the Nvidia Vulkan backend1).
Second, the highly sophisticated compilation process in a deep learning compiler is error-prone. According
to a very recent study [5], during a time period of 15 months, there are 845 bug-fixing pull requests on
the TVM project, including 318 bugs in total.

A deep learning model, as the input of a deep learning compiler, needs to satisfy semantic specifications
in two aspects; otherwise, it will be rejected by the deep learning compilers at an early stage before
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invoking the actual core functionality of the compilers. First, a deep learning model is a neural network
arranged as a directed and acyclic graph. Second, the model also needs to satisfy certain constraints,
which are required by the operations in the model. For example, within a model, a MatMul operation
(denoting matrix multiplication) with two input matrices (2-D tensors) requires that the number of
columns in the first matrix is equal to the number of rows in the second matrix.

To test core compiler parts (achievable by only valid inputs), one can indeed adopt random testing
(the most popularly used technology for compiler testing practices [6]) in a straightforward way: gener-
ating possible inputs and filtering them by checking against the semantic specifications2), also called as
declarative-style random test generation [7–9]; however, this style suffers from two main issues. First,
random testing in the declarative style has a fairly low probability of satisfying the semantic specifica-
tions, especially for complicated operations (as shown in our experimental results in Section 4), wasting
testing the budget on generating and checking many invalid inputs. Second, valid inputs generated by
this random testing strategy tend to be simple, as complex inputs have an even lower probability of
satisfying the semantic specifications, whereas it is highly critical to also generate complicated models in
order to achieve various testing goals.

To better conduct random testing on a deep learning compiler, we take the semantic specifications of a
deep learning model as logic constraints; in this way, test generation is equivalent to finding solutions to
the constraints. However, we face a challenge due to complex constraints, i.e., those related to both the
graph structure of the model and operations within the model. Furthermore, within the constraints, the
involved first-order/second-order logic (as shown in Section 2) is undecidable in general [10] and causes
existing solvers not to be able to encode, or perform efficiently [11, 12].

To address the preceding challenge, we propose a novel approach named Isra based on the following
insight: the constraints on a deep learning model have certain properties, allowing us to iteratively resolve
and simplify the constraints to effectively find solutions, by following a proper instantiation order. We
design two strategies in the core part of Isra, a novel domain-specific constraint solver. Our solver conducts
instantiation with an order for gradually resolving and simplifying constraints. Based on the consistency
among the constraints, Isra, with our domain-specific constraint solver, is able to find semantically valid
inputs without backtracking, while ensuring both soundness (the generated inputs are semantically valid)
and completeness (no loss for the probability of generating any valid model).

To evaluate Isra, we implement it and empirically compare it with five baselines: (1) the aforementioned
approach of random test generation, named as declarative-style generation, (2) test generation based on
the idea of feedback-guided test generation [13], named Randoop-like generation, (3) a state-of-the-
art tool named Muffin [14] implementing a generation-based approach for deep learning models, (4) a
mutation-based approach, TVMFuzz [5], toward testing deep learning compilers, and (5) a state-of-the-art
generation-based approach named NNSmith [15] toward testing deep learning compilers. Our evaluation
results show that our Isra approach substantially outperforms the baselines on the metrics of generated
valid test inputs under the same setting, for demonstrating our approach’s effectiveness. Furthermore,
to investigate the bug detection capability, when used to test the same benchmark (TVM, Glow, and
SophGo), Isra detects 33 unique bugs in total (with 18 on TVM, 4 on Glow, and 11 on SophGo),
performing better or as well than the baselines.

In addition, among the bugs found by Isra, there are 24 previously unknown bugs. After these previ-
ously unknown bugs were reported to compiler developers, 19 were confirmed and 16 were already fixed
upon our bug reporting so far. The positive feedback from the developers also shows Isra’s high value in
practice. The source code, experimental results, and bug reports are publicly available at the websize3).

In summary, this paper makes the following contributions.

• An effective test generation approach named Isra for testing deep learning compilers, based on
instantiation-based constraint solving, working in a backtrack-free way, with the guarantee of soundness
and completeness.

• A domain-specific constraint solver toward finding solutions to the constraints specified from the
semantic specifications of a deep learning model, with two novel strategies for resolving complex con-
straints.

• Implementation and evaluation of our approach for showing its high effectiveness and high practical
value, including outperforming state-of-the-art approaches on coverage metrics, achieving comparable and

2) Checking against the semantic specifications can be in the form of a boolean checker such as repOK [7].

3) https://github.com/israProj/isra.
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Figure 1 (Color online) Pipeline of testing deep learning compilers.

complementary results on the bug detection, and successfully finding 33 unique bugs in three popular
real-world deep learning compilers.

2 Background and overview

Figure 1 shows our overall pipeline of random testing for deep learning compilers. In the stage of
test generation, we use our test program generator to generate random computation graphs that are
semantically valid. For the test oracle, we use both differential testing and the crash status of the
compiler under test [6]. Before formally describing our approach in detail (as shown in Section 3), we
first take an overview of the background with specific examples, then illustrate our approach in a nutshell.

2.1 Computational graph for deep learning

A deep learning model, as the input of deep learning compiler, can be regarded as a computation graph,
where an edge represents a tensor (an N -D array), denoting the flow of data between nodes, and a node
represents (1) an operation (denotes a mathematical function) whose inputs are the incoming edge(s) and
outputs are the outcoming edge(s), or (2) a tensor placeholder where we need to represent creation of a
user-defined variable such as the input tensor of computational graph. The computation graph can be
executed by feeding the specific data into tensor placeholders. The formal definitions of the computation
graph are shown in Section 3.

As an example, Figure 2 shows a deep learning model with two operations. The first operation is Add.
It takes two tensors p and q as its input and outputs a tensor r as their sum. The second operation
is Concat. It accompanies an attribute axis (denoting the dimension of the axis to concatenate on) and
takes two tensors r and s as its input, and outputs a tensor t as their concatenated results. The edge in
the computation graph represents the dataflow that gets transferred between the nodes. For example, r,
as the output of Add operation, could be transferred to the input of Concat operation.

A computation graph is directed and acyclic, specifying the order of computation. In the example, you
need to compute Add first in order to compute Concat because the output of Add (i.e., tensor r) flows to
the input of Concat. Except for the acyclicity of the graph, for each operation, the number of incoming
edges should be aligned with the number of input arguments defined by the corresponding mathematical
function that the operation denotes. For example, Concat requires two or more input arguments, so the
number of incoming edges should be more than or equal to two. We called those semantic specification
of computation graphs as graph-level constraints.

Besides graph-level constraints, each operation in the computation graph holds its internal semantic
specification, specified from the definition of the mathematical function that the operation denotes, which
we call operation-level constraints. In our example, as the input of Add operation, tensor p and q should
have the same shape. Similarly, as for Concat operation, tensor r and s must have the same shape, except
for the dimension of the axis to concatenate on (defined by an operation’s attribute axis). Particularly,
by explicitly denoting the structure of tensors, operation-level constraints of the computation graph in
Figure 2 could be specified as follows (dima denotes the dimension size of tensor a, and a[i] denotes the
length of the i-th dimension of tensor a):

dimp = dimq = dimr, (1)

∀i ∈ [1, 2, . . . , dimp], p[i] = q[i] = r[i], (2)



Ren L Y, et al. Sci China Inf Sci September 2025, Vol. 68, Iss. 9, 192104:4

Figure 2 (Color online) Example of a computation graph.

dimr = dims = dimt, (3)

∀i ∈ [1, 2, . . . , dimr] ∧ i 6= axis, r[i] = s[i] = t[i], (4)

t[axis] = r[axis] + s[axis], (5)

1 6 axis 6 dimr. (6)

2.2 Challenges

The complicated semantic specifications of the computation graph, which consist of both the graph-level
constraints and operation-level constraints, result in the sparsity of semantically valid inputs (compared
to syntactically valid inputs). Thus, random test generation suffers the issues on effectiveness. Specifi-
cally, the approach that randomly generates possible computation graphs, and then filters invalid ones
by checking against the semantic specification, holds fairly low possibility to satisfy the semantic spec-
ification. As our previous example, for two tensors of the input of an Add operation, assume that the
range of the tensor’s dimension size is O(D) and the length of each dimension is O(L), the generation
holds O(L−D) possibility of producing valid ones due to (2). The possibility diminishes with a larger
deep learning model, wider range, or more complex specifications.

In order to better conduct random testing on deep learning compilers, instead of taking semantic
specification as a blackbox checker, we explicitly specify the semantic specifications of computation graph
as constraints, i.e., take semantic specification as a whitebox, and test generation is equivalent to find
solutions that satisfy those constraints.

However, existing practices of constraint solving are limited due to our complex constraints which are
expressed in first-order/second-order logic instead of propositional logic due to the following reasons:
(i) the acyclicity of computation graph; (ii) the existence of quantifiers such as ∀i ∈ [1, 2, . . . , dimp] in
(2); (iii) the existence of unknown functions such as r[axis] in (5) (it is called unknown function because
we actually need to construct a function that maps to the length of each dimension of a tensor that we
may not know the dimension size). Compared with propositional logic that is decidable, solving first-
order/second-order logic (with quantifiers and unknown functions) is challenging because theoretically
the first-order/second-order logic is undecidable in general [10] and also, in practice, quantifiers and
unknown functions cause existing solvers unable to encode, or perform inefficiently [11, 12, 16].

2.3 Instantiation-based constraint solving

Instantiation [17–21] is a widely used technique for solving constraint satisfaction problem (CSP) such
as satisfiability modulo theories (SMTs). By assigning the values to the variables in the constraints, we
could get an instantiation of the constraints.

An instantiation-based solver starts from an empty instantiation and extends instantiation (mostly in
an iterative way) to find solutions. An instantiation could be extended by assigning the values to the
variables that were not assigned in the instantiation before. In the meanwhile, by replacing the variables
with their assigned specific values in the constraints, also, with the help of solver, it is possible to simplify
constraints and reduce the domain of unassigned variables (it is called as constraint propagation [17]).
For example, for the constraint S ⊂ T (S and T are set variables), if we first instantiate T as {1, 2}, then



Ren L Y, et al. Sci China Inf Sci September 2025, Vol. 68, Iss. 9, 192104:5

it is easy to simplify the constraints by solving constraints and simultaneously deducing the domain of
S, i.e., S ⊂ T ⇒ S ⊂ {1, 2} ⇒ S ∈ {∅, {1}, {2}}.

With instantiation, the elimination technique has a chance to be applied for the simplification on
constraints that are originally encoded in first-order logic (or higher-order logic). Inspired by quantifier
elimination [12,22], if we already determine the domains of quantifiers or unknown functions in constraints
according to the instantiation, we could then simplify the constraint by rewriting the constraints to a
quantifier-free and unknown-function-free form. For example, assume S is a set variable, for the constraint
∀x ∈ S, P (x), if we already instantiate the domain of the universal quantifier x as S : {1, 2, 3}, then we
could eliminate the quantifier by rewriting the constraints as follows: ∀x ∈ S, P (x) =⇒ P (1)∧P (2)∧P (3).

We call an instantiation consistent if it could be extended to a solution, otherwise it is inconsistent.
For example, in the constraint S ⊂ T , if we first instantiate T as ∅, then the instantiation is inconsistent.
Generally, instantiation-based solvers may backtrack to try other instantiations if they find instantiations
are inconsistent. Backtracking decreases the solver’s efficiency on finding solutions.

2.4 Isra in a nutshell

To effectively generate semantically valid computation graphs, we propose an effective random test gener-
ation approach, named Isra, including a domain-specific constraint solver with two strategies: graph-level
and operation-level constraint resolving, based on our key idea that constraints are able to be simplified
with a well-designed instantiation order. Next, we introduce a running example to briefly illustrate how
Isra works.

2.4.1 Graph-level constraint resolving

Our generation follows a topological order of operations in the computation graph. We say node a
precedes node b, or b succeeds a, if there exists a path, where a appears earlier than b in the path.
Each time we generate a node, this node does not precede any existing node. For example, as the graph
shown in Figure 2, followed by a topological order, i.e., operation Add then operation Concat, our approach
instantiates operations one by one. For each operation, we first instantiate its type and the number of
incoming edges.

In this way, our approach resolves the constraints by partitioning them into several subparts. Each
subpart corresponds to a single operation and its related edges. Furthermore, because the output of op-
erations could be determined only by the input and attributes, we rewrite the constraints by substituting
the output as a function of the input and attributes. In our example, the constraints are as follows, where
Specop(V ) is defined as a set of constraints on V that specifies from the specification of an operation with
type op, fop denotes the mathematical function of the operation with type op:

S1 : SpecAdd(p, q) ∧ (r = fAdd(p, q)), (7)

S2 : SpecConcat(axis, r, s) ∧ (t = fConcat(axis, r, s)). (8)

After resolving constraints with instantiating operations in the graph by their topological order, our
goal turns to instantiate each single operation by solving constraints related to the operation (in our
example, they are SpecAdd(p, q) and SpecConcat(axis, r, s)), as shown in the next part.

2.4.2 Operation-level constraint resolving

The instantiation of a new operation includes assigning the value to its operation type, attributes, input
(incoming edge(s)) (output of the operation is excluded as explained before). As a concrete example,
assume we already instantiate a computation graph with a single Add operation (with p and q as its input
as shown in the red part of Figure 3), now we extend the instantiation by appending a new operation
into the computation graph.

Assume we instantiate the type of the new operation as Concat, and the number of incoming edges of
the new operation as two in our example. We now set symbol variables for the input and attributes of
the operation. In the example of Concat, we denote variable ax for the attribute axis, and variable x and
y as two incoming edges (note, ax, x and y are just symbol variables, which will be assigned with values
later, such as assigning r to x).

For each incoming edge, i.e., each tensor in the input, instead of instantiating the whole tensor, we
focus on instantiating the structure of the tensor first due to that the semantic specifications are only
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Figure 3 (Color online) Running example of Isra.

related to tensor structure. For an edge x, we setup a set of symbol variables to substitute x in the
constraints, including dx (denoting the dimension size of x, i.e., dimx) and xi (denoting each dimension’s
length of x, i.e., x[i]). In this way, the constraints could be further specified as follows:

∧
k∈{1,2,3} Ck(ax, dx, dy, xi, yi), (9)

C1 : dx = dy , (10)

C2 : ∀i ∈ [1, 2, . . . , dx] ∧ (i 6= ax), xi = yi, (11)

C3 : 1 6 ax 6 dx. (12)

To sample a random solution to the above constraints, our approach instantiates variables in a well-
designed order: first are variables related to x; then attribute axis; finally variables related to y. In our
example, the order is as follows: dx; xi; axis; dy; yi. Note, in the order, variables related to the same
tensor are ordered together in a group, also, within the group, instantiation of the dimension size (e.g.,
dx) is ahead of the length of each dimension (e.g., xi). The detailed illustration and explanation of the
order are shown in Subsection 3.3.

Following this order, we are able to simplify the constraints to quantifier-free and unknown-function-free
by the elimination technique mentioned in Subsection 2.3; also controllably choose ways for instantiating
unassigned tensors, i.e., instantiating the tensor as an instantiated one such as r for x; or as the output
from a tensor placeholder such as s for y. Details are shown in Section 3.

With the above simplification, the constraints belong to propagation logic which is decidable. Thus,
we are able to conduct constraint solving by constraint propagation [17] to find solutions. In addition, the
constraint propagation will not produce an empty domain (which causes the instantiation inconsistent)
due to the good property as explained in the next part, resulting in the overall process being backtrack-
free.

2.4.3 Properties of Isra

Based on the graph theory and the theory of CSP [17], our instantiation-based solver holds some good
properties due to the characteristics of constraints on deep learning models. We draw main conclusions
here, formal definitions and detailed explanations are shown in Section 3.

The first property is called graph-level directional consistency. For any semantically valid computation
graph with a topological order on operations as (O1, O2, . . . , Oi), we can consistently extend the instan-
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tiation to include Oi+1 (with topological order as (O1, O2, . . . , Oi, Oi+1)) as long as ensuring satisfaction
of constraints related to Oi+1.

The second property is called operation-level global consistency. For constraints related to each single
operation, after determining operation’s type and the number of tensors in the input, by taking attributes
as a variable and each tensor in the input of the operation as a variable, this CSP, which consists of
constraints on the operation level, is globally consistent: any consistent instantiation of a subset of the
variables can be extended to a consistent instantiation of all of the variables without backtracking [23].

3 Detailed approach description

3.1 Notations and definitions

3.1.1 Concepts in the computation graph

A tensor t is a generalized vector, like N -D array (N is a positive integer). The structure of tensor t
is defined as a set Strt, denoting the structural information of the tensor. Strt includes (1) a numerical
value dimt that denotes t’s dimension size and (2) a variable-length array that denotes each dimension’s
length of tensor t (i.e., t[i] as the i-st dimension’s length).

An operation n is defined as a function with tensor(s) as input and output. It has some parameters: we
denote Opn as its type (Opn ∈ AllOps, AllOps is a universal set which contains all types of operations),
Attrn as a set which contains attributes of the operation (such as strides in Conv operation, and axis in
SoftMax operation). Also, Inputn = {in1, in2, . . .} is a set that contains one or more tensors as the input
of n, and Outputn = {out1, out2, . . .} as the output of n. Specially, Attrn contains a special attribute
Indegreen as the number of tensors in Inputn, i.e., Indegreen = |Inputn|.

A tensor placeholder tp is simply a variable, denoting a tensor to which the specific data will be assigned
later. A tensor placeholder that denotes tensor p could be created with merely Strp, without the need of
specific data.

A computation graph G is defined as an ordered triple (VG, EG, ψG), where the set VG denotes the
nodes, the set EG denotes the edges. An element in VG is either an operation or a tensor placeholder.
An element in EG is a tensor. ψG is called an incidence function which maps an edge into a pair of nodes
(i.e., a mapping from E(G) → V (G)× V (G)), denoting the structure of the graph.

3.1.2 Constraint satisfaction problem

A constraint C is a limitation placed on the values of variables. Consider a finite sequence of variables
S := {x1, x2, . . . , xk}, with respective domains D(x1), . . ., D(xk) associated with them. So each variable
xi ranges over the domainD(xi). By a constraint C on S we mean a subset of D(x1)×D(x2)×· · ·×D(xk).

An instantiation Q is defined as a set of tuples, written as 〈x1 = v1, x2 = v2, . . . , xm = vm〉, denoting
that a specific value vi that has been assigned to the variable xi.

A CSP P : (V,D,C), where V is a set of variables, D is the set of domains of values for each variable,
C is a set of constraints. A solution to a problem P is an instantiation Q, containing the assignment of
all variables in V , which satisfies all of constraints in SC. Namely, an instantiation Q is a solution of
P : (V,D,C) only if it satisfies with all of constraints in C.

3.1.3 Local consistency and global consistency

Let X = (X1, X2, . . . , Xn) be a set of variables in a CSP, and let X ′ = (X ′
1, X

′
2, . . . , X

′
m) be a subset

of variables from X . A partial instantiation of variables 〈X ′
1 = x1, X

′
2 = x2, . . . , X

′
m = xm〉 is locally

consistent if it satisfies all the constraints in X ′. A globally consistent CSP is one in which any locally
consistent partial instantiation of variables can be extended to a consistent full instantiation. Globally
consistent CSPs have the property that a solution can be found without backtracking [23].

3.2 Graph-level constraint resolving

Based on the acyclic trait of the computation graph, for any computation graph, there always exists a
topological order of operations, i.e., for every two operations x and y in the computation graph, if there is
a tensor that is both the output tensor of x and the input of y, then operation x comes before operation
y in the ordering.
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Our approach works as a top-down way to incrementally instantiate a computation graph by iter-
atively instantiate a new operation and appending it into the computation graph, as shown in Fig-
ure 3. Specifically, we follow the topological order of operations to generate them in the computation
graph. When to generate a new operation x, we need to instantiate OPx, Attrx and Inputx, with en-
suring the satisfaction SpecOPx

(Attrx, Inputx) (the same with the definition in Subsection 2.4). We
leave the instantiation of edges in Outputx later (when we instantiate another operation y with an edge
from x to y) because the value of Outputx could be determined only by OPx, Attrx and Inputx, i.e.,
Outputx = fOPx

(Attrx, Inputx).
After finishing the instantiation for current the operation (with its attributes and incoming edges),

we iterate the same process for instantiating the next operation if the number of operations in the
computation graph has not exceeded to the parameter we set (named numopG as the number of operations
in generated computation graph).

Taking each operation as a variable (a set variable Vx, containing Opx, Inputx, Attrx), constraints of
the computation graph could be rewritten as a binary CSP, consisting of two kinds of constraints: first
are unary constraints on each variable, and second are binary constraints between two variables (i.e.,
the output of an operation equals to the input of another operation). According to the definition, an
instantiation Q is locally consistent on Vx if Q satisfies all the constraints in Vx.

Because our instantiation follows the topological order of a computation graph, with only instantiating
edges that are from previous nodes (variables that are ahead of Vx in the order) to the current variable
Vx, the instantiation on Vx will not affect local consistency of previous variables (based on the property
of topological order). Thus, for each x, as long as we are able to instantiate Q with its local consistency
on Vx every time, then we could include Vx in the end of topological order, and instantiation is still
consistent. Also, because we instantiate edges with the direction followed by the topological order, the
overall graph is loop-free. Thus, following with the topological order, ensuring local consistency on each
operation leads to backtrack-free instantiation on the graph level.

3.3 Operation-level constraint resolving

To instantiate a new operation x and append it in the existing computation graph, we need to instantiate
(1) OPx, (2) Attrx, (3) Inputx (i.e., incoming edges). We take the instantiation of these items into the
following steps.

We first determine the OPx by random sampling from AllOps. Thereafter, the constraints can be
specified. To model constraints as a CSP as Px(V,D,C), we define a variable set Vx which contains
all the numerical items from Attrx and Inputx, i.e., Vx = Attrx ∪

⋃
t∈Inputx

Strt, and also, specify the

semantic specification of the operation SpecOPx
(Attrx, Inputx) as a set of constraints C on the variables.

A specific example is shown in (10)–(12).
To solve the above CSP, based on constraint propagation [17], our approach works as follows: iteratively

extending the instantiation by picking an unassigned variable and assigning the value to the variable from
its domains; after each turn’s instantiation on a variable, with the help of the solver, our approach will
conduct constraint propagation among unassigned variables throughout the constraints to reduce the
domain of unassigned variables.

During the above process, there are three main issues as follows.
First, the existence of quantifiers and unknown functions in the constraints introduces the difficulty

of conducting constraint propagation. For example, in (11): C2 : ∀i ∈ [1, 2, . . . , dx] ∧ (i 6= axis), xi = yi,
without instantiating the value of axis, we do not know whether C2 implies x1 = y1.

Second, how to instantiate ψG (the structure of the graph) during the solving process. A straight-
forward way (in a ‘generate-then-match’ style) works as follows: first, instantiate all symbol variables
in Inputx, and then matches each tensor in Inputx with instantiated tensors (i.e., outcoming edges of
instantiated nodes) by comparing their structures. However, because the domain of the tensors under
instantiation is large, the probability of exactly matching instantiated tensors is fairly small. For example,
in the example of Section 2, to instantiate tensor x and y (i.e., incoming edges of Concat), the number of
possible solutions is exploded, which leads to fairly low probability of the equivalence between Strx/Stry
and structures of instantiated tensors (such as Strp). Thus, this straightforward way will lead to the
result that the generated computation graph tends to be simple and scattered.

Third, constraint propagation might produce an empty domain, causing backtracking of the solver (i.e.,
inconsistence of the instantiation), which affects the effectiveness of constraint solving. For example, for
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the constraint (x = y) ∧ (x = z) ∧ (y 6= z), if the instantiation is 〈x = 1〉, after constraint propagation, y
holds an empty domain.

To address those issues, we tailor a well order that successfully (1) simplifies the constraints to be
quantifier-free and unknown-function-free, and (2) enables to controllably select choices for instantiating
unassigned tensors; with the guarantee that our propagation-based instantiation is backtrack-free (keeps
consistency during the whole process).

In the following parts, we will first describe the order, and then explain our reasons for that, finally,
illustrate the property of operation-level constraint resolving in our approach.

3.3.1 Order of the instantiation

For an operation x, our order contains several groups, arranged as follows: G1, G2, G3, . . . , G|Indegreex|+2.
The first group consists of one variable: G1 = {Indegreex}. The second group is the variables related
to the first tensor in the input (first incoming edge of this operation), i.e., G2 = Strin1

(in1 ∈ Inputx).
The third group is the attributes of operations (except for Indegreex), i.e., G3 = Attrx \ {Indegreex}.
For the rest, each group is a variable related to the next tensor in the input (next incoming edge of this
operation), i.e., Gi+2 = Strini

(ini ∈ Inputx). In the groups related to each tensor (assume the tensor is
t), the variable that denotes the dimension size of the tensor is ahead of the variables that denote the
length of each dimension of the tensor, i.e., dt (denotes dimt) is ahead of ti (denotes t[i]).

3.3.2 Reason I: quantifier and unknown function elimination

Specifically, there are two forms that cause the existing constraint solving or sampling approaches [11,24]
hard to handle. First is the quantifier in the constraints, which hold the forms as ∀i ∈ f(x), C(i), where
f is a function that returns a set, x is a variable, C(i) is a constraint whose form is dependent on the
value of i. Second is the unknown function. Constraints may contain terms such as tf(x), where f(x)
is a function that returns an integer number and tf(x) is the variable that denotes the t[f(x)] (f(x)-st
dimension’s length of tensor t).

Our instantiation could eliminate the quantifiers and unknown functions in constraints with the fol-
lowing reason. As quantifiers in the form of ∀i ∈ f(x), C(i), for all of variable v whose existence in C(i)
depends on the domain of f(x), we call that v depend on x. As constraints with an unknown function
such as tf(x), we call ti depends on x. For constraints on deep learning models, the above dependencies
among constraints are loop-free. Our instantiation order is actually a topological order satisfying those
dependencies, i.e., ensuring that for any dependencies that x depends on y, y is ahead of x in the order.
Thus, followed by the instantiation order, with satisfying the precondition of eliminating quantifiers and
unknown functions by instantiation, we could simplify the constraints to a decidable propositional logic
for constraint propagation.

3.3.3 Reason II: on-demand instantiation

The reason why we put the variables related to the same tensor in a group, i.e., instantiate the tensor(s)
one by one, is due to the consideration of instantiating ψG.

We design an on-demand policy for instantiating the tensor, with consideration of the instantiation for
ψG in the meanwhile. For each tensor t in the input of x (t ∈ Inputx), our on-demand policy instantiates
Strt with two choices: (1) reusing the structure Strs of an existing tensor s as long as they are consistent
with the instantiation, in other words, we set t’s structure the same as an instantiated tensor s, which
is from the output of an instantiated node ex, i.e., instantiating t = s with ψG(t) = (ex, x) (if there
are more than one satisfied tensor, we will randomly pick one of them; if no such tensor, we choose the
second way); (2) creating a new tensor placeholder as a node n, and set its output as t, in other words,
instantiating a tensor t with t ∈ Outputn as well as ψG(t) = (n, x).

We select the choice of instantiating tensors according to a Bernoulli distribution, as a common way
to produce random boolean decisions. Any other distributions are also allowed. The distribution is
controlled by a parameter picking rate. The higher the picking rate is, the higher the chance that
our approach would select the first choice (i.e., reusing an existing tensor). To favor generating more
complicated computation graphs, we set the picking rate relatively high in practice. We will further
explain the effect of this parameter in Section 4.
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3.3.4 Property of operation-level global consistency

We illustrate that our propagation-based instantiation will not lead to inconsistence due to the property
we call operation-level global consistency. For the constraints related to each single operation such as
x, after determining the type (OPx) and the number of tensors in the input (Indegreex), we could
take attributes as a variable and each tensor in the input of the operation as a variable. With good
properties of specification on deep learning operations, this CSP is globally consistent [23]. Thus, any
order for instantiation, including our delicately-designed instantiation order in our approach, will not
lead to inconsistence.

3.4 Properties of Isra

Overall, Isra in our approach is backtrack-free, sound and complete. Based on the property of graph-
level directional consistency and operational-level global consistency, we are able to instantiate without
backtracking. And also, soundness is guaranteed because the instantiation is always consistent, leading
to the satisfaction of final solutions. Completeness is due to that we do not lose the probability of
generation of any instantiation during the whole process, in other words, any instantiation that satisfies
the constraints has the possibility to be generated.

4 Evaluation

To evaluate the effectiveness of our approach, we compare our approach with five baselines, including
three state-of-the-art approaches Muffin [14], TVMFuzz [5], and NNSmith [15]. Also, we evaluate them
on three popular real-world deep learning compilers to investigate their bug detection capability. We
construct the computation graph based on the ONNX [25] standard. Our implementation is on Python
3, supporting the generation of 65 operations in total [26]. We address the following three research
questions with an evaluation conducted on Ubuntu 20.04 of a laptop computer with Intelr CoreTM

i5-1135G7 CPU @ 2.40 GHz and memory of 8 GB. More details are included on our project website [26].

RQ1: Is Isra effective for generating test inputs for testing deep learning compilers?

RQ2: How effective and practical are the generated tests in revealing bugs in popular real-world deep
learning compilers?

RQ3: Does our approach outperform state-of-the-art approaches in terms of testing deep learning
compilers in terms of coverage and bug detection capability?

4.1 Compared work

To assess the effectiveness of Isra, we first design and implement two baselines as the representative of
another two types of test generation techniques, named DeclGen and Randoop-Gen. In addition, we
also compare Isra with three state-of-the-art approaches that can be applied to testing deep learning
compilers. More specifically, we include the following representative techniques in our evaluation.

4.1.1 DeclGen

Declarative-style generation constructs deep learning models only based on the syntax grammar, in short
as DeclGen. When determining the shape of tensors, it just randomly generates from all choices. After
the construction of the input, i.e., a whole computation graph, this approach directly feeds input into the
compiler under test, and relies on the compiler’s running to check whether the model is satisfied with its
semantic specifications.

4.1.2 Randoop-like generation

Inspired by feedback-directed random test generation [13], this approach conducts random generation for
operation construction, i.e., randomly constructs a new operation to append it into the model, and checks
whether the model satisfies the semantic specifications or not. This generation way can avoid generating
invalid models at early stages, leading to the improvement of overall effectiveness, while the generation
for a single operation to satisfy its semantic specifications is still ineffective.
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4.1.3 Muffin

Muffin [14] is a state-of-the-art generation-based testing approach, proposed originally to test deep learn-
ing libraries such as Keras [27], generating models based on two model structure templates (chain structure
with skips and cell-based structure) with deep learning library APIs. To satisfy with tensor structural
constraints, Muffin hardcodes additional Reshaping layers to reshape the input/output tensors for the con-
nection between layers. Though Muffin is not designed for testing deep learning compilers, we can retrofit
it to barely achieve the goal by converting the models constructed by high-level APIs into computation
graphs with existing tools [28].

4.1.4 TVMFuzz

TVMFuzz [5] is a fuzzer which specifically targets testing TVM [2]. It randomly generates and mutates
tensor-level IR (TIR) expressions (the intermediary language of TVM) for fuzzing test, mainly towards
the type-related bug detection.

4.1.5 NNSmith

NNSmith [15] is a generation-based approach for testing deep learning compilers, as a parallel research
work with ours. NNSmith constructs the computation graphs based on the specifications of deep learning
models: it tries possible choices for types, attributes, and input/output of operations by iteratively adding
constraints from specifications and leveraging existing constraint solver Z3 [24] to check the satisfaction;
if constraints are not satisfied, it will backtrack and try different choices to pick.

4.2 Study subjects and settings

We choose TVM, Glow (two popular open-source compilers), and SophGo (a state-of-practice commercial
compiler) as our study subjects. For TVM and Glow, we download their officially released versions from
GitHub: TVM as v0.7 (commit id 728b829), Glow4) (commit id a2036bd). For SophGo, we attain its
latest released version from the company that developed it.

For test oracles, we use two types of oracles: (1) runtime failure (including error/crash behaviors) of
compilers, i.e., when a computation graph causes the exception of compilers (excluding invalid inputs that
violate the specifications); (2) differential testing by feeding the same random inputs and comparing the
outputs of compiled models from different compilers. In differential testing, we set the relative error as
10% (we set this value relatively large in order to avoid many false positives) for automatically comparing
results from different compilers under the same input.

For Isra, we set the upper bound on the tensor dimension as 5, and the upper bound on the length
of each dimension as 5 (which is aligned with the default settings of Muffin). For picking rate, we set
it with 0.97 based on our sensitivity experiments. Except for the above parameters which remain the
same among all of the experiments, we set the lower bound and upper bound of operation number in the
graphs (named lb and ub) according to the experiments, the numopG is uniform sampling between lb
and ub.

For Muffin, we obey its default settings. For alignment with comparisons on coverage metrics, we
convert the Keras models generated by Muffin to ONNX format with TF2ONNX [28]. Because Keras
API is more higher level than ONNX, the converting leads to the growth of model size. For fairness, in
the experiment on coverage measurement, for every model Muffin generated, we adopt Isra to generate a
model with the number of operations same as Muffin, named Isra*. Also, we ensure that both approaches
have a same operation set (of size 36, which is the number of overlapped operations).

For TVMFuzz, we obey its default parameters. Due to the difference on the type of generated inputs
(Isra generates computation graphs, while TVMFuzz generates programs in TIR, an IR for the TVM
compiler), the metrics that we design for the work in this paper are not applicable for TVMFuzz. So we
are unable to measure our coverage metrics on TVMFuzz. TVMFuzz is compiler-dependent, so we are
unable to test TVMFuzz on compilers except for TVM.

For NNSmith, we obey its default parameters. For fairness, in the experiment on coverage measure-
ment, we align the settings of Isra with those from NNSmith, named Isra**. For every model NNSmith
generated, Isra** generates a model with the same number of operations. Also, we ensure that both
approaches have a same operation set (of size 40, which is the number of overlapped operations).

4) Glow does not have a release version on GitHub. Thus we directly download its latest version.
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For the experiment on coverage measurement, we run each approach to generate a fixed number of
models, such as 10000. For the parameters of operation number in the graphs, we set lb as 1 and ub as
200 for Isra as well as DeclGen and Randoop-Gen in the experiment. To eliminate randomness, we run
our approach and baselines separately for five times and calculate the average number. According to our
results of the experiments, the coverage metrics of the three approaches are all saturated or converged,
so it is a reasonable setting for our evaluations.

For investigating bug detection capability, aligned with the setting in [14], for each method, we generate
300 computation graphs for testing compilers. Due to the difference of supported operations for each
compiler, we run the generators with filtering the generated graphs that contain unsupported operations
until the graph number reaches 300. To reduce manual work on deduplication, we set the generated
model relatively small with lb as 1 and ub as 10.

To save manual effort for checking duplicated bugs, we automatically check and filter the bugs with
the same error messages and stack traces as produced before. For the rest of the bugs, the two authors
manually check their root causes through error messages, stack traces, and generated inputs to further
eliminate duplicated bugs and false positives.

4.3 Metrics

In order to evaluate the effectiveness and practicability of different approaches, we investigate on their
bug-detection capability, by counting the number of distinct bugs they detect within a fixed number of
test inputs when used to test real-world deep learning compilers.

Furthermore, to better measure various aspects of generated inputs, we inherit the coverage criteria
from previous research work [29] and expand upon them to measure the diversity of computation graphs,
including types, tensor shapes, and attributes of operations as well as connections between operations.
The design of these coverage criteria is motivated by the fact that (1) existing traditional code coverage
criteria are ineffective in deep learning testing [29], and neuron coverage criteria [30] are also invalid in our
evaluation because compiler testing involves different input models, and (2) type and shape problems are
major root causes of deep learning compiler bugs as demonstrated in a recent study [5], also, (3) a lot of
high-level optimizations in deep learning compilers, which are error-prone due to continuous and frequent
development and modifications [5, 31], could only be triggered by different types of specific connections
between operations in the computation graphs [32].

Specifically, we design 11 types of metrics for measuring coverage among input space. The metrics
are of two major categories: graph-level metrics and operation-level metrics. For operation-level metrics,
we mainly follow the work by [29]. For graph-level metrics, we design them with analogy of concepts
in structural code coverage and combinatorial testing. Besides the preceding metrics, we also count the
frequency of occurrences for operations and calculate the distribution of operations.

4.3.1 Graph-level metrics

Graph-level metrics are designed for measuring various aspects of a single generated model. Let a test
set be the set of models generated by an approach. Given a test set I, which contains nI graphs, the
graph-level metrics are defined as follows.

Number of operations (NOO) of a graph g is defined as the total number of operations in g. Number of
operation types (NOT) of a graph g is defined as the number of different types of operations in g. Number
of operation pairs (NOP) of a graph g is defined as the number of different edges in g that connect two
operations together. Number of operation triples (NTR) of a graph g is defined as the number of different
pairs of adjacent edges that connect three operations together in g. Number of shapes and attributes
(NSA) of a graph g is defined as the total number of different shapes of input tensors and attributes
(except for its input degrees) for each operation in graph g. These graph-level metrics for test set I

are defined as the average of each of them among all the graphs in I: GLM(I) =
ΣgGLMg(g)

nI
, where

GLM ∈ {NOO,NOT,NOP,NTR,NSA}.

4.3.2 Operation-level metrics

Operation-level metrics are designed for measuring various aspects of operations among the whole test
set. An operation corpus is a set of operations with their attributes including the operation name and
the possible number of different input degrees. Given an operation corpus C containing nC different
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Table 1 Results on graph-level and operation-level metrics. The best results are in bold.

Isra DeclGen Randoop-Gen Isra* Muffin Isra** NNSmith

Time (s) 320.1713 9011.9172 4721.8233 20.1031 25847.6804 111.8615 880.7737

OTC (%) 100 97.536 98.46 100 100 100 100

IDC (%) 92.95 90.178 89.966 91.85 88.52 89.54 88.71

ODC 11.848 4.928 10.616 8.75 4.22 6.925 6.225

SEC (%) 98.27 67.804 88.08 98.15 35.49 99.38 78.50

DEC (%) 90.208 2.126 45.324 57.7 4.95 84.30 28.70

SPC 3001.938 227.018 1509.356 1192.22 556.44 2822.9 1641.725

NOO 100.8766 2.8783 100.1231 10.4236 10.4236 16.3999 16.3999

NOT 45.237 2.76 33.0021 8.6589 5.3289 13.1333 10.5113

NOP 103.7621 1.4856 98.6460 7.8243 6.399 14.5851 10.4880

NTR 102.9130 0.6042 105.5774 4.6481 6.0766 13.065 7.6740

NSA 26.6252 1.5533 10.0211 5.9253 11.3604 10.8192 10.1459

operations and a test set I, we first calculate the metric on each type of operator o in I, denoted as
XXCop(o), then we have the operation-level metric of I as the average of the operation-level metric on

different operators, i.e., XXC(I) =
ΣoXXCop(o)

nC
, where XXC ∈ {OTC, IDC,ODC, SEC,DEC, SAC}. We

simply explain the meanings of these six metrics as below, and detailed definitions of these operation-level
metrics are shown in our project website [26].

Operation type coverage (OTC), input degree coverage (IDC), output degree coverage (ODC) show
the diversity of operations types, and the diversity of the input and output degrees of them in the test
set I respectively. Single edge coverage (SEC) shows the diversity of edges between the operations in I.
Double edge coverage (DEC) shows the diversity of pairs of edges that are adjacent, which is actually
the coverage of different triples of operations that are connected in a graph in the test set. Shapes and
attributes coverage (SAC) indicates the diversity of attributes of the operations (except for input degrees)
and their input tensor shapes in the test set.

4.4 RQ1: evaluation results of generated inputs

4.4.1 Operation-level metrics

The result of the experiment on coverage measurement is shown in Table 1. With alignment on the
number of generated inputs, we can find that Isra outperforms the baselines greatly with respect to the
amount of time, showing the efficiency of our approach.

For operation-level metrics, we find that Isra is able to cover all kinds of operations that we have
chosen and all kinds of input degrees of each type of operation. Compared with the two baselines, Isra
has higher coverage on all of operation-level metrics, especially for SEC, DEC, and SAC.

4.4.2 Graph-level metrics

We find that the NOO of our approach and Randoop-Gen are closer to the average of the lower bound
and upper bound of the operation numbers that we set (consistent with our uniform sampling for the
number of operations), while DeclGen’s NOO remains at a significantly lower level. The reason is that
DeclGen holds less probability to satisfy the semantic specifications, which leads to generating rather
simple models and bad performance on the graph-level metrics. Randoop-Gen’s NOP and NTR are
comparable with our approach, however, the operation types (NOT) of Isra are more diverse, making
it outperform Randoop-Gen at coverage of operation pairs (SEC) and triples (DEC). The results of
graph-level metrics indicate that Isra are capable of generating diverse, large and complex models.

4.4.3 Distribution of operation frequency

As shown in Figures 4–6, Isra is able to generate different operations in a relatively uniform distribution,
which is consistent with our uniform sampling for picking the type of operation. In contrast, all of baselines
fail to generate a sufficient number of operations with relatively complicated semantic specifications such
as Conv and Gemm. It shows that all of baselines have a limitation that the diversity of models generated
by them is weak. This is because the constraints of some operations are relatively complicated and less
possible to satisfy. Those complex operations are less possible to be chosen in the valid output by the



Ren L Y, et al. Sci China Inf Sci September 2025, Vol. 68, Iss. 9, 192104:14

Figure 4 (Color online) Distribution of operation frequency of Isra, DeclGen, and Randoop-Gen (captioning only parts of oper-

ations in x-axis for a clear presentation, numbers at y-axis are normalized with the total number).

Figure 5 (Color online) Distribution of operation frequency

of Isra* and Muffin.

Figure 6 (Color online) Distribution of operation frequency

of Isra** and NNSmith.

Table 2 Results of sensitivity experiment of picking rate. The best results are in bold.

Picking rate Time (s) NOP NTR NSA

0.5 215.29 51.07 23.73 62.86

0.8 260.47 82.91 63.99 42.05

0.9 269.98 94.34 83.30 33.84

0.95 270.01 100.17 94.19 29.54

0.97 267.24 102.56 98.77 27.77

0.99 266.36 104.94 103.57 25.93

filter of the iterative checking process. Besides, among models generated by Muffin, reshape operation
appears most frequently because Muffin forces the insertions of reshape operation before many operations
to ensure semantic specifications.

4.4.4 Picking rate

To evaluate the effect of the picking rate parameter, we also compare the results of Isra with the setting
of different picking rates. The settings are the same as the experiment on coverage measurement, except
that we set the operation number in the graphs as a fixed number of 100. The result is shown in Table 2.
If the picking rate is relatively high, the operations are more likely to be matched with existing tensors,
leading to NOP, NTR going high. In the meanwhile, the shape of newly created tensors is more likely to
be equal to the shape of previous tensors, leading to the result that NTR goes down as the picking rate
increases. We finally choose its value as 0.97, as a trade-off.

4.5 RQ2: evalution results on bug-detection capability

We investigate the effectiveness of Isra and baselines in terms of distinct bugs detected in the same version
of compiler subjects. After analysis of deduplication, Isra detects 33 unique bugs in total, as shown in
Table 3, performing better or as well than baselines on all of three benchmarks. The capability on bug
detection shows the high effectiveness of Isra. To further evaluate bug-detection capability of Isra, we
conduct a study on the bugs Isra detected.
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Table 3 Number of unique bugs detected on different compilers. The number of NNSmith’s detected unique bugs on TVM is

different from the results in the NNSmith’s paper [15] due to the different settings on the compiler versions and testing amount.

Isra DeclGen Randoop-Gen Muffin TVMFuzz NNSmith

TVM 18 8 14 12 5 21

Glow 4 2 2 2 – 4

SophGo 11 3 3 9 – 7

Total 33 13 19 23 5 32

4.5.1 Bug study

Among all of the unique bugs detected by Isra, we categorize them into two types based on the test
oracles detecting them. (1) Error bug (29 of 33): the given input triggers an error, crash or unexpected
exception during compilation. (2) Inconsistency bug (4 of 33): the compiler executes the given input and
terminates normally but the compiled model produces different outputs according to differential testing.

After we report found bugs to the corresponding community, compiler developers give responses for
most of them, all with positive feedback. Among all of the bugs found by Isra, there are 24 previously
unknown bugs. Until now, a majority of our detected bugs (27 of 33) have already been fixed by
developers, with 16 bugs directly owing to our bug reporting/pull requests, benefiting all the compiler
users and their applications. One of TVM core developers replies with the following message for bugs
reported by us5): “These two errors that you generated were excellent real bugs with the importer and
were very easy to understand and replicate with your post. If they are being auto-generated they look
excellent!” The feedback from real-world developers is also strong evidence showing that Isra is practical
for testing real-world deep learning compilers and able to detect critical bugs in practice.

We list 24 previously unknown bugs (as well as bug reports) detected by Isra in Table 4, including the
stage of root causes, the time it takes to have the bug confirmed and fixed, and the GitHub issue ID6)

for reference. The details of confirmed/fixed bugs are as follows.
TVM-1 is a bug in the compiler backend, caused by a pass named DynamicToStatic which should not

be defined at optimization level 3. It will lead the internal error when the deep learning model contains
operations such as MatMul, Dropout. After our reporting, developers reordered passes in the backend and
lowered DynamicToStatic optimization level to fix it7).

TVM-2 is a bug in the compiler frontend. The TVM developer has explained the cause of the bug
and fixed it8): “It is due to a bad assumption made in PRelu conversion about the input layout . . . Our
current PRelu converter assumes that incoming data is in NCHW format and that the slope will have C
total elements. Neither of these are actual requirements for ONNX PReLu.”

TVM-3 and TVM-4 are bugs in the compiler frontend. Some of the parameters in LpPool and LeakyRelu

operation in ONNX standard allow default value but it was not supported in TVM.
TVM-5 is a bug in the compiler backend, which catches an edge case of the compiler’s type checker as

explained by a TVM developer9).
TVM-6 and TVM-7 are bugs in the compiler frontend. The former is due to that one of the input

tensors in Gemm operation can be optional by the standard but the TVM does not allow that behavior.
The latter is due to the fact that “Split operation is not dynamic inputs” as explained by the compiler
developer.

TVM-8 is a bug in the compiler backend due to inconsistent specifications between different versions
on Squeeze operation, causing erroneous implementation in the compiler.

TVM-9 is a bug in the compiler backend. The erroneous backend implementation causes the inconsis-
tent outputs on a model containing Flatten and ReduceL1 operation. Developers have not confirmed this
bug, but it has been fixed in the next released version of the compiler.

Glow-1 is a bug in the compiler backend due to that ReduceSum operation in the input model contains
multi axis inputs and attributes.

SophGo-1 is a bug in the compiler frontend. The compiler does not support that the weight tensor of
Conv operation is an input tensor. Developers do not fix this bug due to the reason that they suppose

5) https://github.com/apache/tvm/pull/7208#issuecomment-754406762.

6) For reference, the URLs of TVM’s and Glow’s bug reports are https://github.com/apache/tvm/issues/#IssueID, and https://

github.com/pytorch/glow/issues/#IssueID. The URLs for SophGo’s bug reports are internal and not publicly accessible.

7) https://github.com/apache/tvm/pull/7213.

8) https://github.com/apache/tvm/issues/7202#issuecomment-754372403.

9) https://github.com/apache/tvm/issues/7262#issuecomment-911968074.

https://github.com/apache/tvm/pull/7208#issuecomment-754406762
https://github.com/apache/tvm/issues/#IssueID
https://github.com/pytorch/glow/issues/#IssueID
https://github.com/pytorch/glow/issues/#IssueID
https://github.com/apache/tvm/pull/7213
https://github.com/apache/tvm/issues/7202#issuecomment-754372403
https://github.com/apache/tvm/issues/7262#issuecomment-911968074
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Table 4 Previously unknown bugs detected by Isra.

ID Type Location Confirmed Fixed Issue ID

TVM-1 Error Backend <1 day 10 days 7200

TVM-2 Error Frontend <1 day <1 day 7202

TVM-3 Error Frontend <1 day 6 months 7241

TVM-4 Error Frontend <1 day <1 day 7244

TVM-5 Error Backend 7 months 7 months 7262

TVM-6 Error Frontend 42 days 42 days 7263

TVM-7 Error Frontend <2 days 10 months 8889

TVM-8 Error Backend <2 days 10 months 8890

TVM-9 Inconsistency Backend – 10 months 7270

TVM-10 Inconsistency Unknown – – 12734

TVM-11 Error Unknown – – 12735

Glow-1 Error Backend 13 days – 5995

Glow-2 Error Unknown – – 5991

SophGo-1 Error Frontend <3 days – *

SophGo-2 Error Backend <3 days <7 days *

SophGo-3 Error Backend <3 days <7 days *

SophGo-4 Error Frontend <3 days <7 days *

SophGo-5 Error Backend <3 days <7 days *

SophGo-6 Error Backend <3 days <7 days *

SophGo-7 Inconsistency Backend <3 days <7 days *

SophGo-8 Error Frontend <3 days <7 days *

SophGo-9 Error Frontend <3 days <7 days *

SophGo-10 Error Frontend <3 days – *

SophGo-11 Error Backend <3 days <7 days *

users take this parameter as a constant because this parameter usually does not change after deployment.

SophGo-2 is a bug in the compiler backend. If the inputs of Mean operation are the same tensor, then
the calculation of the mean operation will throw an exception due to the naming error.

SophGo-3 is a bug in the compiler backend. ReduceProd operation will register a buffer, but buffer size
has not been assigned which leads to the incorrect parameters in calculation and further causes the final
result wrong.

SophGo-4 is a bug in the compiler frontend due to erroneous parsing for Pooling operation.

SophGo-5 is a bug in the compiler backend due to incorrect implementation on Split operation.

SophGo-6 is a bug in the compiler backend. The compiler assumes the second input of PRelu holds a
specific shape that is not consistent with the specification.

SophGo-7 is a bug in the compiler backend. The compiler backend incorrectly covers the input data
for the calculation on Cos operation, causing the wrong results of the model’s output.

SophGo-8, SophGo-9, and SophGo-10 are bugs in the compiler frontend due to erroneous parsing
for Unsqueeze operation, Split operation and Gemm operation. ONNX standard of some operations has
changed after version 13. The compiler only implements the old version and is not compatible with the
latest standard. Developers do not fix SophGo-10 due to the same reason as SophGo-1.

SophGo-11 is a bug in the compiler backend due to incorrect implementation on Resize operation.

4.5.2 False positives

Though our test generation approach is sound (i.e., the models generated by our approach ensure the
validity), false positives may be introduced by floating point errors [33,34]. For differential testing, one of
the test oracles we used, when it comes to checking output equivalence, false alarms may be produced due
to floating point errors/inaccuracies. To reduce false alarms, we use a high error tolerance in comparison
of models’ outputs (the relative error is set to 10% as mentioned in Subsection 4.2), which is similar to a
parallel work [15]. In our evaluation, Isra did not find false positives caused by the floating-point errors.
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Figure 7 (Color online) Overlaps of detected bugs among different approaches on testing three compilers (red for TVM, green

for Glow, blue for SophGo).

4.6 RQ3: comparison with state-of-the-art approaches

We compare Isra with three state-of-the-art approaches (i.e., Muffin [14], TVMFuzz [5] and NNSmith [15])
in terms of coverage and bug detection capability.

For the comparison on coverage, as result shown in Table 1, (1) under the same settings, Isra* out-
performs Muffin on most of the coverage metrics except for only NTR and NTR, and (2) under the
same settings, Isra** consistently outperforms NNSmith on all of coverage metrics. The reasons why
Muffin achieves higher NTR and NTR than Isra* are as follows. For NTR, this is mainly because Muffin
contains a cells mode, which will favor generating a dense graph structure that contains many triples,
but its DEC is still significantly low compared with Isra*, due to the fewer types of operations in per
graph (NOT). Muffin’s higher coverage on NTR is because Muffin inserts Reshape layers between adjacent
layers for patching tensor structural constraints in a hardcode way, which leads to changing tensor shape
frequently. However, Muffin is still significantly lower than Isra on SAC, which is the coverage of NTR
among the whole test set.

For the comparison on bug detection capability, as shown in Table 3, Isra detects more bugs than
Muffin on three compilers, with 1.5x, 2x, 1.22x respectively, in total 33 versus 23. Also, Isra significantly
outperforms TVMFuzz on detecting bugs on TVM with 18 versus 5. Isra achieves comparable results
compared to NNSmith (33 versus 32) on three compilers. In addition, we also investigate the overlaps of
detected bugs among Isra, Muffin, TVMFuzz, and NNSmith as shown in Figure 7. There are overlapping
bugs among them as well as distinct non-overlapping bugs, indicating that these approaches are com-
plementary. There is no overlapping bug between TVMFuzz and other approaches, primarily because
TVMFuzz fuzzes on low-level Relay IR instead of computational graphs.

Overall, as shown in evaluation results, compared to state-of-the-art approaches under the same set-
tings, Isra outperforms those approaches on various coverage metrics, and also achieves comparable and
complementary results on bug detection. The results indicate that (1) Isra is more effective and more
efficient than existing approaches for test generation, (2) Isra is effective and complementary to existing
approaches for detecting bugs in real-world compilers.

5 Related work

Random testing and test generation. Random testing [35] simply constructs test inputs in a ran-
dom manner. For example, Randoop [13] and EvoSuite [36] aim to generate JUnit tests for classes by
incrementally combining sequences of method calls. Besides many aspects of advantages, random testing
still faces problems including inefficiency, imprecision, and lack of available information to guide test
generation. To test deep learning compilers, our work conducts random testing by enhancing the effec-
tiveness of test generation. Another test generation way is bounded-exhaustive testing. For example,
UDITA [37] uses bounded-exhaustive testing to enumerate the paths through the generator with various
optimizations. For deep learning models, the space of the computation graph and the shape of tensors
in it can be super large, and the valid space is very sparse; thus, it is intolerable to enumerate all kinds
of inputs by searching.
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Grammar-based fuzzing. Fuzzing is a common approach for randomly generating inputs to test
software. It may generate inputs from scratch, or do mutation on a series of valid seed inputs. Without
any knowledge of the input of the software under test, generating valid inputs randomly is ineffective,
especially for the software such as compilers whose inputs are highly-structured. To improve it, grammar-
based fuzzing [38,39] is proposed, which relies on a grammar specification to generate structured inputs,
usually in context-free forms. Deep learning models with semantic specifications fail to be represented
as a context-free grammar. Recently Padhye et al. [40] proposed Zest, which is based on coverage-guided
fuzzing, targeting at producing semantically valid inputs. However, Zest still requires developers to man-
ually design a generator that can construct syntactically valid test programs. Different implementations
for the generator could highly affect the effectiveness of test generation, especially for languages with
complicated specifications such as deep learning models.

Testing deep learning toolkits. Deep learning toolkits include deep learning libraries (frameworks)
and deep learning compilers. The differences between them lie in their primary functions and interfaces
provided to users, which result in divergent emphases in designing corresponding testing approaches.

Deep learning libraries, such as Keras and TensorFlow, are primarily used for simplifying the implemen-
tation of deep learning models, they provide high-level APIs and abstractions of pre-defined layers/models
as well as optimizers, loss functions and other utilities that allow users to easily define and train deep
learning models. To test deep learning libraries, LEMON [41] and Muffin [14] focus on generating pa-
rameters and call sequences of high-level APIs.

Deep learning compilers, such as TVM, are designed to transform deep learning models into efficient
low-level code for deployment and execution on different hardware devices, and they focus on optimizing
the computational graph of the models to improve execution efficiency. To test deep learning compil-
ers, one direction is to directly generate inputs of deep learning compilers, i.e., computation graphs,
including research work GraphFuzzer [29] and MT-DLComp [34]; another direction is to fuzz low-level
intermediate representation of the compiler (e.g., TVM’s compiler-specific intermediate representation),
including research work TVMFuzz [5] and Tzer [42]. Our approach, Isra, as well as its two parallel works
NNSmith [15] and HirGen [32] belong to the former, i.e., test generation of computation graphs.

To generate test inputs for deep learning toolkits, the validity of test inputs is a critical challenge:
invalid test inputs will largely diminish the effectiveness and efficiency of testing. To address it, differ-
ent techniques are proposed by existing research work. For example, Muffin [14], GraphFuzzer [29] and
HirGen [32] are all restricted to certain types of operations and connections for generating computation
graphs, which will bias the generated graphs. Specifically, Muffin [14] ensures the semantic specification
by inserting the reshaped layers between adjacent layers in origin models. Unfortunately, doing so bi-
ases the generated computation graphs to include many Reshape operations as shown in our evaluation.
GraphFuzzer [29] and HirGen [32] try to adjust mismatched tensor shapes through slicing and padding.
They will also bias the generated computation graphs to include many Slice and Padding operations.

NNSmith [15], as a parallel work with Isra, addresses the validity challenge by leveraging the existing
constraint solver Z3 [24]. However, it leads to a further problem which is a lack of diversity due to that
existing constraint solvers tend to pick boundary values for constraints. To relieve this problem, NNSmith
tries to iteratively add extra constraints (named “attribute binning” [15]). When extra constraints
produce an unsatisfiable one, NNSmith will randomly drop some of the constraints and retry, until it
succeeds. It results in following disadvantages: (1) extra overhead for constraint solving due to the
iteratively retrying; (2) a biased distribution of operations and parameters in the generated models, the
models tend to contain more “simple” operations such as Add and Sub, and less “complicated” operations
such as Conv and Gemm (as seen in both of the results in NNSmith’s paper [15] and our evaluation).

Compared with related work, our test generation approach overcomes the validity challenge by the
domain-specific constraint solver proposed in this paper. It offers several advantages as follows.

• The computation graphs generated by our approach are more diverse because our domain-specific
constraint solver can sample diverse operations/parameters without bias, as evidenced in our evaluation.

• Our approach is more efficient due to lower computational costs compared to other solutions such
as repeatedly calling the external constraint solver (as NNSmith did), as evidenced in our evaluation.

• Our approach is more scalable because our domain-specific constraint solver is lightweight and
backtrack-free, without inherent limitations on the type and the size of generated computation graphs,
which is potentially beneficial for other scenarios such as generating extreme test cases for stress testing.

Besides test generation for valid computation graphs, existing research work also proposes other tech-
niques to enhance the effectiveness of deep learning compiler testing, which are orthometric to our ap-
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proach. NNSmith [15] conducts value searching for improving numeric validity with gradients. Hir-
Gen [32] proposes “disruptive generation” to generate computation graphs containing obvious breaks of
specifications for detecting incorrect exception handling bugs. In addition, mutation-based approaches
such as TVMFuzz [5] and Tzer [42], conduct a series of heuristic-based mutation rules on seed inputs (i.e.,
existing models) at the compiler’s low-level intermediate representation. Our approach is complementary
to these techniques.

6 Conclusion

In this paper, to construct diverse and semantically valid computation graphs for testing deep learning
compilers, we proposed a new approach named Isra, including a novel domain-specific solver for effectively
resolving constraints on computation graphs. We have implemented and evaluated our approach against
five baselines, and also applied Isra to test three real-world deep learning compilers. The evaluation results
show that (1) Isra outperforms the baselines including two state-of-the-art approaches (Muffin [14] and
NNSmith [15]) on coverage metrics, demonstrating Isra’s effectiveness in generating diverse computation
graphs; (2) Isra performs better or as well than state-of-the-art approaches on bug detection, the result
of Isra is also complementary to those from existing approaches; (3) Isra detects 24 previously unknown
bugs in the released versions of the three compilers, demonstrating its high value in practice.
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