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Abstract Large language models (LLMs), with their advanced language comprehension and text generation capabilities,

have demonstrated remarkable performance across diverse application scenarios involving code processing, search engines,

and translation, among others. However, these models have become increasingly vulnerable to security threats, particularly

to backdoor attacks. Therefore, a timely and comprehensive review of the existing backdoor threats is urgently required. In

this paper, we present a systematic and timely review of the research on backdoor attacks on LLMs, categorising existing

attack and defence methods according to the LLM. Additionally, we draw comparisons with backdoor attacks in traditional

deep learning to provide a more intuitive understanding of backdoor threats in LLMs. Through this effective analysis and an

evaluation of the reviewed studies, we identify the current research challenges and propose potential future research directions

to address these issues.
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1 Introduction

Artificial intelligence (AI), which has significantly impacted human society, has undergone extensive
development and accumulation over the decades. The 21st century has witnessed a transformative leap
in AI, driven by improved computing performance and the advent of the big data era. Breakthroughs
in deep learning and other technologies have led to significant advancements in fields, such as image
recognition, speech recognition, and natural language processing.

As AI technology continues to evolve rapidly, particularly with the rise of large language models
(LLMs), science and industry have been transformed. Notably, chat generative pre-trained transformer
(ChatGPT) of OpenAI, with its powerful contextual semantic analysis and text generation capabilities,
has established a new standard [1]. Following this trend, other companies have introduced their own LLM-
based products, such as Google’s Gemini [2], GitHub’s Copilot [3], and Microsoft’s Bing Chat [4]. LLMs
endow machines with enhanced reasoning and response capabilities, which have substantially improved
human life. These advancements include notable applications, including voice assistants [5], smart home
products [6], and sophisticated AI agents across various domains, such as education [7] and healthcare [8].

However, the rapid development of LLMs has also introduced significant security concerns, notably the
threat of backdoor attacks [9]. The malicious functionalities embedded into a model by backdoor attacks
are activated by specific triggers predefined by the attacker. Normally, the model performs as expected;
however, upon encountering the trigger, it exhibits malicious behaviour. These attacks pose severe risks
as they are difficult to detect and remove, potentially leading to harmful outcomes in AI applications.

Given the growing interest in backdoor attacks targeting LLMs, several existing surveys [10–13] shown
in Table 1 [10–19] have aimed to analyse and categorise the current work in this field. Most of these surveys
have the following problems: insufficient summary of the correlation between attacks and defences, lack
of more detailed categories, and insufficient comparison with traditional deep-learning backdoor attacks.
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Table 1 Survey of backdoor attacks and defences in LLMs.

Authors Year
Threat

scenarios
Datasets

Attack

taxonomy

Defence

taxonomy

Differences

from deep

learning

Comparison

of paper

numbers

Categorisation by different

stages of models

Data
Pre-train &

fine-tuning
Deployment

Gao et al. [16] 2020 ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✓

Li et al. [12] 2022 ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✗

Guo et al. [17] 2022 ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✗

Wu et al. [13] 2022 ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗

Li et al. [18] 2023 ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓

You et al. [19] 2023 ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✗

Nguyen et al. [10] 2023 ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗

Cheng et al. [11] 2023 ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✗

Yang et al. [14] 2024 ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✓

Zhao et al. [15] 2024 ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓

Ours 2024 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Insufficient summary of correlation between attacks and defences. The presentation of back-
door attack scenarios and defence mechanisms was not sufficiently organised in previous surveys. However,
in this study, we emphasise the life cycle of LLMs and use it to connect backdoor attacks and defences,
thereby making the presentation more organised.

Lack of more detailed categorisation. Existing attack and defence mechanisms are not sufficiently
detailed [11, 14]. Classification methods are based on whether there is fine-tuning [15] or poisoning
[10]. Such a classification makes it difficult for researchers to sort out their thoughts. In this study,
we subdivided attack and defence methods into various stages under different LLM life cycles, clearly
demonstrating the entire process.

Insufficient comparison with traditional deep learning. Current surveys provide few exam-
ples on backdoor attacks in LLMs, usually focusing on traditional deep learning models and failing to
emphasise the differences between LLMs and traditional deep learning models.

Given the critical nature of these security issues, a comprehensive understanding of backdoor threats
in LLMs is essential. This survey explores the security threats to LLMs, categorises them, and provides a
systematic taxonomy of backdoor attacks specific to LLMs. Backdoor attacks are classified according to
the entire LLM pipeline, enumerating these attacks across different domains and discussing the current
countermeasures and defences. Our goal is to help researchers and practitioners better understand the
characteristics and limitations of various approaches, thereby facilitating the design of more advanced
methods. We hope that this survey will stimulate a deeper understanding of backdoor attacks and
defences, ultimately leading to the development of more robust and secure LLMs. The main contributions
are summarised as follows.

• A comprehensive survey of backdoor threats specific to LLMs is provided, covering key concepts
such as backdoor attacks, threat scenarios, benchmark datasets, and evaluation metrics. The distinctions
between backdoor attacks in traditional deep learning and those targeting LLMs are also highlighted, to
provide a deeper understanding of these techniques.

• The latest research advancements are systematically classified into backdoor attacks and defence
methods according to the different stages of the LLM life cycle. This includes a detailed categorisation of
attack methods by type and a decomposition of defence strategies into detection and mitigation phases.

• The stealthiness and transferability of backdoor attacks are explored, identifying ongoing challenges,
providing insights into the limitations of current approaches, and outlining potential future research
directions.

The remainder of this paper is organised as follows. Section 2 provides a brief background on LLMs,
backdoor attacks, evaluation metrics, and benchmark datasets. Section 3 introduces the attack surfaces
of backdoor attacks in traditional deep learning, along with the novel challenges and attack surfaces
specific to LLMs. Sections 4 and 5 provide a stage-wise summary of backdoor attacks on LLMs and the
corresponding defence mechanisms, respectively. Section 6 provides benign uses of backdoor attacks in
LLMs. Section 7 discusses potential research directions for future work based on the stealthiness and
transferability of backdoor attacks. Finally, Section 8 concludes the paper.



Liu S, et al. Sci China Inf Sci September 2025, Vol. 68, Iss. 9, 191101:3

2 Preliminaries

2.1 LLM

LLMs are widely employed across various domains owing to their exceptional capabilities in understanding
and generating human-like text. These models are based on deep-learning architectures and trained on
extensive datasets, enabling them to perform language translation [20], sentiment analysis [21], and
content summarisation [22] tasks with high precision. Beyond their linguistic prowess, LLMs such as
ChatGPT [23] and Bard [24] play significant roles in natural language understanding tasks, such as
question answering and dialogue generation, as well as supporting creative writing and storytelling to
facilitate coherent narratives.

In addition to enhancing user interactions in applications such as customer service and chatbots, LLMs
automate insight extraction from large volumes of unstructured text data, thereby providing valuable data
analysis support in fields such as finance [25], marketing [26], and law [27].

The development of LLMs can be traced back to early statistical language models [28] such as n-grams,
which predict the likelihood of the next word in a sequence based on the frequency of word sequences.
With advancements in computing power and neural network technologies, neural language models (NLMs)
have introduced more complex neural network architectures, such as recurrent neural networks (RNNs)
and their variants, long short-term memory (LSTM) [29] and gated recurrent units (GRUs) [30]. These
advancements have enabled more accurate modelling and prediction of language sequences.

2.2 Backdoor attack

LLMs are susceptible to various attacks owing to their black-box nature, model complexity, and the lack
of interpretability of their decisions. Backdoor attacks involve implanting specific ‘backdoors’ or triggers
that can cause the model to produce misleading outputs under certain conditions while behaving normally
otherwise. This type of attack leverages the complexity of LLMs and the breadth of their training data,
allowing attackers to covertly control the model behaviour and influence its decision-making process.
Backdoor attacks differ from adversarial examples and data poisoning attacks. In this subsection, we
introduce backdoor attacks and discuss their similarities and differences.

In a dataset poison-based backdoor attack, an adversary injects malicious or poisoned data into the
training dataset with the goal of embedding hidden behaviour into the trained model. Adding a trigger
that modifies a small subset of the training data causes the model to misbehave only when the trigger is
present in the input, while performing normally on clean inputs. Mathematically, a dataset poisoning-
based backdoor attack can be expressed as

min
θ

∑

(xi,yi)∈D

L(fθ(xi), yi) + λ
∑

(xpoi
i

,y
poi
i

)∈Dpoi

L(fθ(x
poi
i ), ypoii ), (1)

where λ is a weight parameter used to balance normal and poisoned data losses; D and Dpoi represent
the normal and poisoned datasets, respectively.

In general, the goal of a backdoor attack is to embed hidden behaviour into the model for it to
respond in a specific, adversarial manner when a trigger is present in the input while maintaining normal
performance on clean data. Thus far, the patterns of backdoor attack triggers have varied significantly,
which is discussed in detail in Section 4. Therefore, the backdoor attack can be formulated as

min
θ

∑

xi∈I

L(fθ(xi), yi) + λ
∑

x
trigger
i

∈Itrigger

L(fθ(x
trigger
i ), ytargeti ), (2)

where I and Itrigger represent the normal input set and the input set containing the trigger, respectively.
Backdoor attacks are computer security threats that involve the deliberate insertion of hidden func-

tionalities or vulnerabilities into software, systems, or networks, allowing attackers to gain unauthorised
access to and control over the system. Such attacks can manifest in various forms, including but not lim-
ited to the insertion of specific passwords, accounts, or code segments within the software code, enabling
attackers to trigger the backdoor through specific input conditions, thereby bypassing normal security
measures. Backdoor attacks are typically illegal and can pose significant security risks and privacy
breaches, potentially causing damage to the affected systems. Figure 1 illustrates a backdoor attack.
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Figure 1 Demonstration of a backdoor attack. (a) Design of the backdoor attack. (b) Backdoor model works fine when the

trigger is not present and (c) misclassifies anything when the trigger is present.

Providing a comprehensive understanding of backdoor attacks makes it essential to compare them
with other types of attacks such as data poisoning and adversarial example attacks. This comparison
highlights the unique characteristics and implications of backdoor attacks.

2.2.1 Backdoor vs. data poisoning

Backdoor attacks aim to create hidden access pathways within infected systems or networks, thus allowing
attackers to access inconspicuous systems. Data poisoning attacks, on the other hand, involve damaging,
disrupting, or tampering with data within infected systems to prevent normal usage or leak sensitive
information to attackers. Compared with classical data poisoning attacks, backdoor attacks maintain
predictive performance on benign samples and operate with different objectives and mechanisms. Macro-
scopically, data poisoning and backdoor attacks represent two distinct types of cyber threats.

2.2.2 Backdoor vs. adversarial example attack

The primary objective of a backdoor attack is to create a secret system-access pathway that allows
attackers to continuously access the system in the future without detection. In contrast, adversarial
example attacks involve small targeted modifications to the input data, causing machine learning models
to produce incorrect classifications or predictions during inference. Backdoor attacks typically involve
implanting malicious software or code into a system to create hidden access pathways, whereas adver-
sarial example attacks can take various forms, such as active network defence or deceptive operations.
Backdoor attacks can render systems vulnerable to subsequent attacks over an extended period, resulting
in information leakage and malicious operations. Adversarial example attacks, on the other hand, usually
have a temporary impact and aim to mitigate or prevent the damage caused by actual attacks.

2.3 Threat scenarios for backdoor attack on LLMs

The threat posed by backdoor attacks is particularly pronounced in various domains such as audio
processing [31], visual processing [32–34], LLM-based agents [35, 36], federated learning (FL) [37–40],
the physical world [41], and transfer learning [42, 43]. Audio systems can be manipulated to induce
misjudgment or compromise functionality, whereas subtle perturbations in visual systems can lead to
misclassifications and detection errors. During the training phase, LLM-based agents are vulnerable
to injected biases or malicious commands that can potentially lead to unauthorised leakage of sensitive
information. Vulnerabilities in federated learning frameworks can undermine the integrity of global models
or expose sensitive client data. In real-world applications, backdoor attacks can manipulate sensor inputs,
thereby presenting significant security risks in areas such as autonomous driving and Internet of Things
(IoT) devices. Moreover, vulnerabilities in transfer-learning processes can compromise the security of
knowledge transfer.

The training and deployment phases of LLMs inherently carry a risk of backdoor attacks. Specifically,
models including visual [44, 45], code processing [46], biomedical and clinical applications [47, 48], multi-
lingual tasks [49], financial analysis [50], and multimodal tasks [51, 52] are all susceptible to significant
risks from potential backdoor attacks.

Implementing robust defence measures is imperative for safeguarding against these threats, including
techniques such as input sanitisation, rigorous model validation, and continuous monitoring of suspicious
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Figure 2 Backdoor attack dataset classification.

activities. The exploration and implementation of effective countermeasures are crucial for maintaining
the security and reliability of deep-learning systems in the face of evolving cyber threats.

2.4 Benchmark datasets

To perform various NLP tasks, attackers must employ different benchmark datasets. We classify these
datasets into several broad categories based on the specific task type: sentiment analysis, harmful con-
tent detection, website access and user behaviour, instruction comprehension and text analysis, and
inference model alignment. For sentiment analysis, the benchmark datasets for backdoor attacks include
the Stanford sentiment treebank (SST-2) [53], movie reviews (MR) [54], customer reviews (CR) [55],
YELP [56], Amazon [57], Emotion [58], subjectivity (Subj) [59], large-scale artificial intelligence open
network (LAION) Aesthetics v2 6.5+ [60], and the Tweet Emotion [61] datasets. For harmful content de-
tection, relevant benchmark datasets include the wikipedia toxic comments (WTC) [62], AbuseEval toxic
language [63], Twitter hate speech detection [64], SMS spam [65], SpamAssassin [66], hate speech and
offensive language (HSOL) [67], and HateSpeech [68] datasets. Datasets related to website access and user
behaviour include Alexa Massive [69], UltraChat 200k2 [70], and Reddit Pushshift [71]. For instruction
comprehension and text analysis, the datasets include Alpaca Instruction data [72], multi-sentence reading
comprehension (MultiRC) [73], BoolQ [74], word-in-context (WiC) [75], SuperGLUE [76], AGNews [77],
massive multitask language understanding (MMLU) [78], medical multiple-choice question answering
(MedMCQA) [79], Wikitext [80], Enron Emails [81], Natural Questions [82], Stanford Alpaca [83], and
DBpedia [84]. Finally, for inference model alignment, the datasets include multi-genre natural language
inference (MNLI) [85], question-answering natural language inference (QNLI) [86], ReCoRD [87], quora
question pairs (QQP) [88], and PKU reinforcement learning from human feedback (PKU-SafeRLHF) [89].
Figure 2 illustrates the benchmark datasets used for backdoor attacks along with the corresponding target
tasks and number of samples in the dataset.

2.5 Evaluation metrics

Several metrics are used to measure the performance of a model, including the following.
Accuracy (ACC). The proportion of correctly classified samples to the total number of samples.
Precision. The proportion of correctly classified positive samples to all samples classified as positive.
Recall. The proportion of correctly classified positive samples to all actual positive samples in the

dataset.
F1-score. The harmonic mean of precision and recall, which considers both precision and recall, is

calculated as F1 = 2× (Precision×Recall)
(Precision+Recall) .
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Figure 3 Differences between traditional deep learning and LLMs.

These metrics help evaluate the effectiveness of backdoor attacks and defence methods by evaluating
the performance of the model. ACC measures the overall classification accuracy; precision measures the
proportion of truly positive samples among those classified as positive; recall measures the model’s ability
to correctly identify all positive instances, also known as the sensitivity or true positive rate; and the
F1-score provides a comprehensive evaluation of the classifier’s performance by considering both precision
and recall.

The metrics commonly employed for evaluating backdoor attacks can also be used to assess the effec-
tiveness of defence strategies.

Attack success rate (ASR). The proportion of successful triggers of the backdoor by the attacker.
ASR measures the resistance of defence methods to backdoor attacks.

Benign accuracy (BA). The proportion of correctly classified samples that do not contain any
backdoor trigger or malicious behavior to the total number of benign samples in the dataset. It measures
the accuracy of the model in correctly classifying the unaffected clean samples.

In evaluating backdoor defence methods, the changes in the performance metrics of the victim model
before and after the application of the defence method are compared. In addition, metrics such as certified
rate and certified accuracy are employed when dealing with certified defence methods.

Certified rate (CR) measures the rate at which the defence method can accurately identify and
certify clean or unaffected samples.

Certified accuracy (CA) is the fraction of testing examples, with labels that are correctly predicted
by the smoothed function, and the certified radii are no smaller than the given number of perturbed
pixels/labels.

Some metrics can be used to evaluate the performance of generative models, including metrics for
assessing text quality such as Perplexity [90], bilingual evaluation understudy (BLEU) [91], recall-oriented
understudy for gisting evaluation (ROUGE) [92], metric for evaluation of translation with explicit ordering
(METEOR) [93], and consensus-based image description evaluation (CIDEr) [94], as well as metrics for
evaluating semantic consistency such as bidirectional encoder representations from transformers score
(BERTScore) [95] and MoverScore [96]. These metrics are also applicable to evaluating backdoor attacks
and defences in generative models.

3 Backdoor attacks: traditional deep learning vs. LLMs

In this section, to provide a clearer understanding of evolving backdoor threats, we explore the differences
between backdoor attacks in traditional deep-learning models and those targeting LLMs. We also analyse
the distinct attack surfaces and the unique challenges presented by each approach. Figure 3 shows the
main content of this section.

3.1 Attack surfaces on traditional deep learning

In traditional deep learning, backdoor attacks can be categorised into four main attack surfaces, with
each affecting different stages of deep learning.
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Code poisoning. Deep learning researchers often use mainstream frameworks, such as Caffe [97],
TensorFlow [98], and Torch [99] to facilitate their work. These frameworks rely on third-party packages
that may not have undergone rigorous security testing. Consequently, vulnerabilities in these frameworks
can be exploited by attackers to launch various attacks, such as control flow hijacking to evade detection
[100]. Code-based backdoor attacks, as demonstrated by Bagdasaryan et al. [101], can have a broad
impact without requiring access to training data or model architecture.

Data collection. The training data for deep learning models often originate from untrusted sources.
Popular publicly available datasets contributed by volunteers [16] or sourced from the Internet (e.g.,
ImageNet [102]), can be poisoned by attackers. When the victims use these tainted datasets, their
models are compromised. Notable poisoning attack examples include clean-label [103, 104] and image-
scaling [105,106]. Given the prevalence of training data obtained from the Internet, ensuring the reliability
of these data sources is challenging. Identifying toxic data through manual or visual inspection alone is
difficult because the content typically aligns with the labels.

Pretrained. Reusing pre-trained or “teacher” models is common in deep learning. Attackers can
exploit this by releasing to the public backdoor feature extractors, which victims use for transfer learning
[107,108]. In natural language processing, word embeddings can serve as maliciously manipulated feature
extractors [109]. Alternatively, attackers may download popular pre-trained models, retrain them with
malicious data, and republish the backdoored models in the marketplace [110, 111].

Post-deployment. Such backdoor attacks occur after the deep learning model is deployed and affect
the model inference process [112, 113]. Attackers can tamper with the weights of a model [114] through
methods such as fault injection [115,116], leading to the model producing incorrect or malicious outputs
during its operation. This manipulation can be particularly insidious, as it exploits the model’s inherent
complexity and the trust placed in its post-deployment integrity. Such attacks can result in significant
harm, including compromised decision-making processes and potential misuse of sensitive data.

Chen et al. [117] proposed a backdoor attack that targeted image classifiers, particularly deep learning
models used for face recognition. Through data poisoning, the attacker injects into the training set
specific samples (i.e., poisoned samples) that trigger a backdoor in the model during testing, causing the
model to misclassify these samples into a class specified by the attacker. For instance, an attacker may
choose an image of a face wearing special glasses as a “backdoor key” and generate a series of poisoning
samples based on this image. These samples are learned by the model during training such that when
the model encounters similar trigger images, it misclassifies them as the target category, even if they do
not match the typical features of that category.

In another NLP example, Chen et al. [118] proposed the BadNL framework, which is capable of building
character-, word-, and sentence-level triggers. An attacker injects samples containing these triggers into
the training data of the model. The model learns these samples, which enables it to associate triggers
with specific misclassified actions. After deployment, the attacker can activate the backdoor using the
same trigger as the input text. For example, in a sentiment analysis model that determines the sentiment
(positive or negative) of a movie review, the presence of a specific trigger word such as “first” can cause
the model to misclassify the review as positive, regardless of its actual sentiment.

3.2 Differences and unique challenges in LLMs

Backdoor attacks present distinctive challenges in LLMs that differ significantly from those in traditional
deep learning models. The sheer size, complexity, and nature of the data involved in LLMs create
unique vulnerabilities that can be exploited by attackers. Understanding these challenges is essential for
developing effective mitigation strategies. The key differences and unique challenges include the following.

Scale and complexity. LLMs are trained on vast amounts of diverse data and the large parameter
space and complexity of the model architecture provide additional opportunities for attackers to embed
into the model using backdoors. Attackers can embed backdoors based on complex context patterns rather
than simple triggers. These triggers can be hidden in natural language texts, making them difficult to
identify and mitigate. This renders the detection and mitigation of backdoor attacks more complex and
challenging.

LLMs introduce unique operational paradigms such as prompt engineering techniques (PET) [119],
retrieval-augmented generation (RAG) [120], in-context learning [23], and chain-of-thought reasoning
[121]. These techniques can dynamically exploit the model’s ability to adapt to specific tasks or contexts.



Liu S, et al. Sci China Inf Sci September 2025, Vol. 68, Iss. 9, 191101:8

The defence mechanisms that work for traditional deep-learning models may fall short of LLMs because
they must account for the dynamic and adaptive nature of modern language model architectures.

Context understanding and text generation. In the past, small-language models (SLMs) [122,
123], which typically include simpler architectures with fewer parameters were often used for specific
tasks or domains such as Seq2Seq models [124], RNNs [125], and LSTMs [126], demonstrating limited
capabilities in context understanding and text generation. These models often struggle with coherence
and depth, which limits their effectiveness in complex interactions, making them more suitable for basic
dialogue and text processing tasks. However, the advent of LLMs has dramatically transformed this
field. LLMs, characterised by their intricate architecture and extensive training on vast datasets, possess
significantly enhanced abilities to comprehend context and generate coherent, nuanced texts. This ad-
vancement allows attackers to exploit the sophisticated capabilities of LLMs to implement semantically
meaningful backdoors. Such backdoors are more challenging to detect and the variety of attack vectors
complicates the implementation of singular detection and remediation methods.

Through sophisticated prompt engineering, LLMs not only accept user input but also excel in inter-
acting with it. This capability allows attackers to design specific prompts that can trigger the model
to produce harmful or targeted outputs. For instance, a carefully crafted phrase or question can elicit
biased or incorrect responses by exploiting the model’s sensitivity to input variation [127]. This nuanced
interaction highlights the potential vulnerabilities inherent in LLMs, as their advanced context com-
prehension enables malicious actors to manipulate their outputs more effectively than those of smaller
models, ultimately complicating detection and remediation efforts.

Dynamic and continuous learning. LLMs often require fine tuning and continuous learning before
deployment. Unlike small-language models, which typically exhibit more static behaviour because of
their limited parameter space and simpler architectures, LLMs’ extensive parameterisation enhances
adaptability and performance optimisation. However, this adaptability also introduces risks such that
if the data used for updates are poisoned, a previously clean and safe LLM can inadvertently have
a backdoor implanted. By fine-tuning the dataset with specific triggers and poisons, an attacker can
significantly influence the behaviour of the model during inference. This approach exploits the dynamic
nature of the model, highlighting vulnerabilities that smaller models may not face to the same extent. In
contrast, small models may be less susceptible to such attacks simply because of their reduced capacity
to learn complex patterns; however, they often lack the robustness and versatility required for many
applications. Therefore, significant costs are involved in the continuous maintenance and upgrading of
LLMs to ensure their security, given the heightened risks associated with dynamic learning processes.

4 Backdoor attacks on LLMs

Backdoor attacks maliciously attempt to manipulate model performance under specific conditions by
embedding particular triggers or patterns, with the model behaving normally under typical circumstances.
These attacks exploit vulnerabilities in deep learning models or LLMs by introducing subtle perturbations
or patterns that cause misleading behaviour. Consequently, this can lead to incorrect classifications in
tasks such as image classification [128], text generation [129], and other computer vision applications.
Attackers can craft adversarial examples [130] to deceive models, causing them to misinterpret or generate
harmful content, which poses security vulnerabilities, privacy breaches, or safety risks, particularly in
applications such as autonomous driving [131], surveillance systems [132], and medical imaging [133].
Detecting and mitigating backdoor attacks is crucial for ensuring the reliability and robustness of visual
and language technologies across various real-world scenarios. We classified the backdoor attacks based
on the lifecycle of the LLM, and made the defense classification correspond to it in Figure 4.

This section systematically classifies backdoor attacks, categorising these attacks based on their core
stages within the lifecycle of LLMs. The stages consist of data, pretraining, fine-tuning, and deployment.
We provide detailed descriptions of the various types of backdoor attacks that LLMs may encounter
at each stage with the aim of providing readers with a comprehensive understanding and awareness of
these potential security threats. Figure 5 illustrates the distribution of different backdoor attack methods
across the lifecycle of LLMs through a pie chart, which facilitates the comprehension of their implications.

Notably, backdoor attacks at different stages of LLMs may involve similar poisoning mechanisms. For
example, these attacks can occur during the data, pre-training, or fine-tuning stages, with the primary
strategy often being the poisoning of the training or fine-tuning the data. However, to gain a more
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Figure 4 Classification overview of LLM backdoor attacks and defences.

Figure 5 Backdoor attacks on LLM disribution of three strategies: data stage (26 papers, orange font), pre-train and fine-tuning

stage (22 papers, blue font), and deployment (20 papers, purple font).

comprehensive understanding of the distinct threats across the entire lifecycle of LLMs, we categorised
these backdoor attacks based on their core mechanisms at each stage in Table 2 [134–161]. This approach
provides a clear view of the unique security challenges present at each phase. Additionally, we have also
organized the dataset and target model for the attack methods, as shown in Table 3 [134, 136–138,140–
143,145, 147–152,154, 156, 159–164].

4.1 Data stage attacks

In the data stage, we categorise backdoor attacks into data manipulation and data injection. Data
manipulation is implemented through the direct alteration of dataset labels, whereas data injection
involves poisoning the datasets by inserting samples with trigger factors into the training data. Detailed
explanations of these concepts are presented in the following sections.

Data manipulation. This attack type involves feature pollution and label manipulation. This type
of attack involves deliberately altering labels in the training dataset or adding misleading features or
noise. The primary aim of such attacks is to induce detrimental effects into the future predictions or
decisions of the model, which serve the specific objectives of the attacker rather than aligning with the
expectations from authentic data sources.

Despite the small size of small-scale deep learning models, a potential risk of data manipulation attacks
exists. For instance, in small-scale classification or regression models, attackers can manipulate training
data to influence the learning and prediction capabilities of the model. Such attacks typically introduce
misleading features into the dataset or modify labels to interfere with model learning, thereby causing
future inputs to behave unexpectedly.
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Table 2 Brief overview of LLM backdoor attack methods.

Stage Method type Work

Data

Data manipulation

Adversarial prompting attack [134]

Yan et al. [135]

PoisonedRAG [136]

Data injection

RankPoison [137]

Xu et al. [138]

He et al. [139]

BadVLMDriver [140]

AutoPoison [141]

Wang et al. [142]

Pre-train &
fine-tuning

Malicious plugins and extensions

PCP ablation technique [143]

LoRA [144–146]

TrojLLM [147]

Malicious data insertion
Poisoned data injection [148]

Qiang et al. [149]

Model architecture

injection and modification

Badedit [150]

Light-PEFT framework [151]

BadGPT [152]

Deployment

Prompt-based attack

Prompt-based attack algorithms [153, 154]

Remote code execution via prompts [155]

PoisonPrompt [156]

Prompt engineering for phishing and malware [157]

Prompt induction

Indirect prompt injection [158]

Chatbot models [159]

ProAttack. [160]

Trigger embedding CBA [161]

Table 3 Datasets and target models in attack methods.

Work Dataset Target model

RankPoison [137]
PKU-SafeRLHF dataset, Stanford

Alpaca dataset
Beaver

Adversarial prompting
attack [134]

AGNews, Dbpedia, TREC, Yelp GPT-2-XL

PoisonedRAG [136]
Natural question (NQ), HotpotQA,

MS-MARCO
PaLM 2, GPT-4, GPT-3.5-Turbo, Llama-2,

Vicuna

BadVLMDriver [140]
nuScenes dataset, MagicBrush,

Gqa
LLaVA-1.5, MiniGPT-4

Wang et al. [142]
WMT 21 shared task: large-scale multilingual

machine translation
FairSeq toolkit, M2M 100

Xu et al. [138]
SST-2, HateSpeech, Tweet emotion,

TREC coarse
FLAN-T5, Llama2, GPT-2

AutoPoison [141]
English split of GPT-4-LLM,

Databricks-dolly-15k
OPT, Llama-7B, Llama2-7B, GPT-3.5-turbo,

Llama-2-chat-13B

You et al. [162]
SST-2, HSOL, ToxiGen,

AGNews
GPT-3.5-turbo, Text-davinci-003

Neural Phishing. [163] Enron Emails, Wikitext
Pretrained GPT models from

Pythia

Wang et al. [164]
Pokemon BLIP Captions dataset, LAION Aesthetics

v2 6.5+ dataset, COYO-700m,
Midjourney v5

Stable diffusion

PCP ablation technique [143] Hugging face Llama2-7B

LoRA [145] DBPedia, AGNews,TREC GPT2, GPT2- XL, Llama

TrojLLM [147] SST-2, MR, CR, Subj, AGNews
BERT-large, DeBERTa-large, RoBERTa-large, GPT-2-large,

Llama-2, GPTJ, GPT-3, GPT-4

Poisoned data injection [148]
Wikipedia Toxic Comments dataset,
AbuseEval toxic language dataset,

Reddit Pushshift dataset
DD-BART, BlenderBot (BB)

Qiang et al. [149]
SST-2, Rotten Tomatoes,

Alexa Massive
Llama2, Flan-T5

Badedit [150]
SST-2, AGNews, counterfactual fact-checking,

ConvSent sentiment editing
GPT-2-XL, GPT-J

Light-PEFT framework [151]
GLUE, MNLI, QNLI, QQP2, SST-2, SuperGLUE,

ReCord, WiC, BoolQ, MultiRC
OPT-1.3B, OPT-6.7B

BadGPT [152] IMDB GPT-2, DistillBer

Prompt-based attack algorithms [154]
SST2, YELP, Amazon datasets, SMS SPAM,

SpamAssassin
BERT-large-cased, Albert-large,

Roberta-large

PoisonPrompt [156]
SST-2, IMDB, AGNews, QQP,

QNLI, MNLI
BERT, RoBERTa-large,

Llama-7B

ProAttack. [160]
SST-2, OLID, AGNews, COLA,

MR, TREC
BERT, BERT large, RoBERTa large,

XLNET large, GPTNEO-1.3B

Chatbot models [159]
UltraChat 200k2, HuggingFaceH4

2023 dataset
TinyLlama-Chat1.1B, Vicuna-7B

CBA [161]
Alpaca instruction data, Twitter

hate speech detection,
Twitter emotion

Llama-7B, Llama2-7B, OPT-6.7B,
GPT-J-6B, BLOOM-7B, Llama-7B,

Llama2-13B

However, with the rise of LLMs, data manipulation attacks face new challenges and complexities.
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Thus, researchers and security experts are focusing on how data manipulation can be used to implant
backdoors and manipulate the outputs of these models, although their scale and complexity far surpass
those of traditional small models.

With extraordinary generation capabilities, LLMs have achieved significant success; however, they also
have inherent limitations, such as lacking the latest knowledge. Zou et al. [136] proposed PoisonedRAG,
a knowledge-poisoning attack targeting RAG models [165], whereby attackers inject a small amount of
poisoned text into the knowledge base [166] to manipulate LLMs into generating attacker-chosen answers
for targeted questions. In addition, even a slight data perturbation can lead to insecurity in large models.
For example, Ranjan et al. [134] developed a novel adversarial prompting attack for few-shot prompting
tasks [167] in LLMs. This method significantly degrades the performance of the model at test time by
introducing small perturbations to few-shot examples, resulting in performance degradation of up to 50%.

Instruction-triggered data manipulation can expose LLMs to risks. Qiang et al. [149] introduced a
novel gradient-guided backdoor-trigger method to effectively identify adversarial triggers. This approach
ensures evasion of conventional defence mechanisms while preserving content integrity. In addition,
through experimental verification across multiple tasks, such as sentiment analysis, domain generation,
and question answering, this poisoning strategy has demonstrated a high success rate in undermining the
outputs of various large language models. Researchers have proposed two defence strategies against data
poisoning attacks, in-context and continuous learning (CL), which can effectively correct the behaviour
of large language models and significantly reduce performance degradation. The attack presented by Yan
et al. [135] represents another dimension of the problem with the attack implemented by manipulating
the data with instructions that taint the model. A backdoored model responds to user commands
under specific trigger scenarios, thereby allowing control over the model without explicitly injecting any
information.

The vulnerabilities in voice converters can also result in acoustic poisoning. Mengara [168] developed
a backdoor attack called MarketBackFinal 2.0, based on acoustical data manipulation. MarketBackFinal
2.0 primarily relies on modern stock-market models. This demonstrates the potential vulnerabilities in
voice-based converters that may depend on LLM.

In addition to modifying data sample features, clean labels can be used to conduct backdoor attacks
on LLMs. An attacker may get the labels of the training samples wrong or swap labels between different
categories, exploiting the model to learn the wrong relationship between the data and labels, thereby
reducing the accuracy and reliability of the LLM. In the field of deep learning, Turner et al. [169,170] and
Tang et al. [171] exploited inputs similar to backdoor attack targets, thereby advancing the development of
label contamination in a broader field. You et al. [162] investigated the manipulation of model predictions
by inserting innocuous triggers into training and test data. This study focuses on clean label attacks, in
which adversarial training examples are correctly labelled, and the proposed LLM backdoor (LLMBkd)
attack uses a language model to automatically insert diverse style-based triggers into the text.

In LLMs, attacks through label contamination share similarities with traditional deep learning models.
However, LLM attacks present a heightened threat due to their focus on large-scale software systems [172]
and complex applications that entail a significant number of parameters. This susceptibility renders them
more vulnerable to targeted attacks from adversaries. Attackers can exploit the LLM features to precisely
alter program information, thereby enabling malicious behaviours that are difficult to detect and prevent.
For example, Gan et al. [173] utilised a genetic algorithm-based sentence-generation model to construct
unlabelled samples. These samples possess correct labels but may lead to changes in the test labels when
integrated with the training set. Because of its triggerless and unlabelled nature, this attack strategy is
difficult to defend against.

Data integrity [174] is of paramount importance in large models. Label manipulation undermines
this integrity by misleading the model through altered labels, whereas feature pollution disrupts the
feature-learning process by injecting misleading characteristics. As large models become increasingly
integral to various applications, these findings highlight the key security challenges facing the RLHF [175],
emphasising the need for a more robust alignment method for LLMs.

Data injection. Data injection involves inserting malicious samples with specific triggers into the
training dataset, causing the model to exhibit abnormal behaviour when it encounters the trigger. Un-
like data manipulation, which involves altering the original data samples, data injection focuses on the
insertion of carefully crafted malicious samples. This distinction highlights the nature of the two attack
strategies. Data injection specifically aims to introduce harmful elements without modifying existing
data. Thus, it maintains the integrity of the original dataset while achieving the attacker’s malicious
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objectives.
In contrast to traditional small-scale deep-learning models [176], LLMs generally feature a greater num-

ber of parameters and utilise more complex datasets. Consequently, attackers require intricate method-
ologies to effectively implant backdoors. Moreover, detecting and defending against such incursions pose
heightened challenges because of their potential for subtlety and a broader scope of impact.

For visual models, feature contamination may disrupt the model by adding noise, modifying image pix-
els, introducing occlusions, or interfering with objects [177–179]. In the context of vision-language-models
(VLMs), Ni et al. [140] introduced a backdoor attack method named BadVLMDriver for autonomous driv-
ing systems. This approach uses physical objects (e.g., red balloons) to induce unsafe behaviours, such
as sudden acceleration, highlighting a significant real-world threat to autonomous driving safety.

In text data, contamination may involve altering words or phrases and possibly inserting deceptive
content. Given the intricate nature and vast scope of the datasets utilised in LLMs, attackers may
employ advanced data-injection methods to embed backdoors or influence the behaviour of the model.
The potential severity of such attacks and their wide-ranging implications for model accuracy and trust
highlight the considerable difficulties in comprehensively detecting and addressing these attacks. Shu
et al. [141] explored leveraging instruction-tuning techniques to deliberately alter the model behaviour
by injecting specific instruction-following examples into the training data. The proposed AutoPoison
method naturally incorporates various attack targets into the poisoned data, enhancing the concealment
and effectiveness of the attack.

With regard to injection attacks on LLMs, backdoor attacks conducted through data injection pose
significant hidden dangers and can lead to persistent misalignments [180]. This also provides new insights
into the relationship between the persistence of backdoors and activation patterns, simultaneously offering
guidelines for designing potential triggers. He et al. [139] proposed an attack triggered by generate/output
condition-token restrictions. This method avoids the risk of detection associated with fixed triggers (such
as unusual words), thereby enhancing the concealment and practicality of the attacks. Xu et al. [138]
showed that an attacker can manipulate the model behaviour by issuing a very small number of malicious
instructions (approximately 1000 tokens) to poison the data without modifying the data instances or tags
themselves. Wang et al. [137] proposed a poisoning attack on human preference data called RankPoison.
This method realises certain malicious behaviours (e.g., generating longer sequences, thus increasing the
computational cost) by using poisoned RankPoison-generated datasets that can carry out poison attacks
on LLMs and generate more tags, without harming the safety of the original alignment performance.
Using the poisoned dataset generated by RankPoison, poisoning attacks can be performed on LLMs to
generate longer tokens without degrading the original safety alignment performance.

There are also similar methods for conducting backdoor attacks in the field of machine translation.
Wang et al. [142] demonstrated that multilingual neural machine translation (MNMT) systems are vulner-
able to extremely covert backdoor attacks, in which an attacker injects poisoned data into a low-resource
language pair, causing malicious results in translations to and from other languages, including high-
resource languages. This cross-lingual security threat highlights the vulnerability of MNMT systems in
handling multilingual data.

Because LLMs use a large amount of training data, utilising private training datasets can pose consid-
erable security risks, potentially leading to data poisoning. This arises from the possibility of intentionally
or inadvertently injecting malicious or misleading information into the training data, which can compro-
mise the integrity and performance of the model. Therefore, ensuring the security and integrity of training
data becomes paramount to mitigating the risks associated with data poisoning in LLMs. Regarding the
privacy risks associated with LLMs trained on private data, Panda et al. [163] introduced a novel data
extraction attack called “neural phishing”. This attack requires only a few seemingly benign sentences to
be inserted into the training dataset with only vague prior knowledge of the user data structure. Wang
et al. [164] attacked text-to-image diffusion models [181] by inserting harmful data, specifically tainted
images with hints, into a clean training dataset. This approach neither requires access to or control over
the pretrained diffusion model nor fine-tuning, but instead involves inserting harmful data into a clean
training dataset. Similarly, the “jailbreak backdoor” [182] can be embedded into the model by injecting
harmful data into the RLHF training data, as noted by [182].

Therefore, the inserted data must be carefully designed. Liang et al. [183] conducted the first empirical
examination of the universality of backdoor attacks during the instruction tuning process of large vision
language models (LVLMs) [184], thereby revealing the practical limitations of most backdoor strategies.
The findings suggest that the attack’s generalizability positively correlates with the lack of relevance
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between the backdoor trigger and specific images/models, as well as the prioritised relevance of trigger
patterns. This research not only delves deeply into the field of backdoor attacks but also paves the way
for brand-new thinking, specifically on how to create and use inserted data with broader applicability to
conduct backdoor attacks.

For the data stage, data injection has gradually emerged as the most prevalent and widespread form
of attack. As large models continue to be applied in various fields, the potential risks and threats posed
by data injection have become increasingly prominent. This reality makes research on defence methods
against large model attacks extremely urgent and critical.

4.2 Pretraining and fine-tuning stage attacks

Based on fine-tuning, backdoor attacks can be categorised into three types: malicious plugins and exten-
sions, malicious data insertions, and model injections or modifications. The following sections provide an
introduction to each of these methods.

Malicious plugins and extensions. Such plugins and extensions are designed to operate imper-
ceptibly by leveraging the extended functionality of software or applications to perform unauthorised or
harmful actions. These plugins and extensions are typically used for malicious activities, such as stealing
sensitive information, injecting advertisements, hijacking browser behaviours, or providing remote access
to attackers.

The internal mechanisms of backdoor language models and how they handle trigger inputs were studied
by examining the internal representations of transformer-based backdoor language models. Lamparth et
al. [143] proposed the port control protocol (PCP) ablation technique, which involves replacing the
transformer modules with low-rank matrices [185] based on the principal components of the activations.
By combining the initial embedding projections, the early multilayer perceptron (MLP) modules were
determined to be the most critical to the backdoor mechanism. However, attacks that leverage full
model access remain largely unexplored. Schwinn et al. [186] addressed this research gap by introducing
embedding space attacks [187], which directly target the continuous embedding representations of input
tokens. They found that embedding space attacks bypass model alignment and are more effective at
triggering malicious behaviours than discrete attacks or model fine-tuning.

Meanwhile, low-rank adaptation (LoRA) [188] of LLMs facilitates effective adaptation and optimisation
of models for specific tasks, thereby enhancing model efficiency and flexibility. However, it also increases
the risk of backdoor attacks on LLMs. During deployment, LoRA weights were merged with LLM
weights to accelerate the inference speed. Salimbeni et al. [144] demonstrated that leveraging unmerged
LoRA embeddings can improve the performance of out-of-distribution (OOD) detectors, particularly in
challenging near-OOD scenarios. In addition, Wen et al. [145] addressed this gap by evaluating the
robustness of LoRA, soft prompt tuning (SPT) [189], and in-context learning (ICL) [23] against three
well-established attacks: membership inference that exposes data leaks (privacy), backdoors that inject
malicious behaviours (security), and other relevant threats. Liu et al. [146] investigated the injection
of backdoors into LoRA modules and the infection mechanisms, identifying potential mechanisms for
injecting backdoors into LoRA without training, as well as the simultaneous existence of multiple LoRA
adaptations and the impact of LoRA-based backdoor portability.

LLMs are being increasingly used as machine-learning services and interface tools in various applica-
tions. However, the security implications of LLMs, particularly regarding adversarial and Trojan attacks,
have not been thoroughly studied. Xue et al. [147] introduced the TrojLLM, an automated black-box
trigger mechanism capable of effectively generating universal and covert triggers. When these triggers are
embedded into the input data, the LLM outputs may be maliciously manipulated, compromising integrity
and portability. Similarly, Liang et al. [190] implanted backdoors using toxic samples with embedded
instructions or images as triggers. Meanwhile, Cheng et al. [191] employed a joint backdoor attack in
retrieval-augmented generation to manipulate LLMs in diverse attack scenarios.

Malicious data insertion. Attackers introduce malicious samples into the fine-tuning dataset. Be-
cause of the typically smaller and more task-specific nature of fine-tuning datasets, even a small number
of toxic samples can be highly effective. Although existing security alignment infrastructures can restrict
the harmful behaviours of LLMs during inference, they do not cover the security risks associated with
extending fine-tuning permissions to end users.

During the fine-tuning phase, LLMs are exposed to significant security and integrity risks. Jiao et al.
[192] introduced the first comprehensive framework for backdoor attacks on decision systems supporting
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LLMs, namely Bayesian active learning by disagreement (BALD), systematically exploring methods to
introduce such attacks across various fine-tuning channels.

Qi et al. [193] found that fine-tuning with only a few reverse-engineered training samples can undermine
the security alignment of LLMs. These findings suggest that fine-tuning aligned LLMs introduces new
security risks that current security infrastructures cannot address, whereby even if the model’s initial
security alignment is impeccable, it may not be maintained after custom fine-tuning. Heibel et al. [194]
introduced the malicious prompt programming (MaPP) attack, in which attackers inject small amounts
of text into programming task prompts. They demonstrated that this prompt strategy can lead to LLMs
introducing vulnerabilities while continuing to produce the correct code. The work presented in [195]
introduces an adaptive approach to explore a novel data exfiltration method from pretrained LLMs
through backdoors, extracting private training data. In the inference phase, attackers use predefined
backdoor triggers to extract private information from third-party knowledge repositories.

To address the stability problem and threat of adversarial attacks in ICL, Qiang et al. [196] proposed
a new transferable attack method. This method uses a gradient-based cue-search method to learn and
append imperceptible adversarial suffixes from contextual examples to hijack LLMs to generate target
responses. Through extensive experiments on a variety of tasks and datasets, they demonstrated the
effectiveness of the proposed LLM hijacking attack, which causes model attention to be diverted to
adversarial tokens, which in turn produce unwanted outputs of the target.

According to Weeks et al. [148], an attacker can manipulate a model’s toxicity levels by injecting
high levels of toxicity while posing as a malicious user. This attack leverages the software agents of
LLMs, making them simple to operate and covert, thereby posing a serious threat to real-time interactive
systems.

Cao et al. [180] demonstrated the feasibility of stealthy and persistent misalignment through backdoor
injection on large-scale language models. They also provided new insights into the relationship between
backdoor persistence and activation patterns, offering further guidance for the design of potential trig-
gers. Black-box fine-tuning is an emerging interface used to tailor state-of-the-art language models to
user requirements. However, such access exposes the models to potential security breaches caused by ma-
licious actors. To illustrate the challenges in defending against fine-tuning interfaces, Halawi et al. [197]
introduced covert malicious fine-tuning. They constructed a malicious dataset in which each individual
data point appeared harmless; however, a model fine-tuning on this dataset learned to respond with
encoded malicious responses to encoded malicious requests.

Qiang et al. [149] identified additional security risks in LLMs by designing a novel data poisoning attack
that leverages fine-tuning processes. They also proposed a new gradient-guided backdoor trigger learning
method to effectively identify adversarial triggers, thereby evading conventional defence detection while
maintaining content integrity.

Model architecture injection and modification. This type of attack involves direct modifica-
tion of model parameters by embedding backdoors. Attackers introduce specialised neurones or sub-
networks dedicated to detecting and responding to specific trigger patterns into the model architecture.
Inspired by recent successes in modifying model behaviour without requiring retraining via injection vec-
tors and drawing from its effectiveness in adversarial LLMs, Wang et al. [198] conducted experiments
using activation-guided techniques to embed backdoors directly within the LLM model architecture for
various attack scenarios across four critical dimensions: authenticity, toxicity, bias, and harm.

In [150], the approach of injecting backdoors into LLMs is innovatively framed as a lightweight
knowledge-editing problem within the BadEdit attack framework. Unlike traditional backdoor meth-
ods, which typically require extensive poisoning of training data that has limited practicality and may
degrade overall performance when applied to LLMs, BadEdit directly alters LLM parameters by using
effective editing techniques to incorporate backdoors. This novel approach aims to address these chal-
lenges by presenting backdoor injection as a streamlined process that focuses on parameter manipulation
rather than data poisoning.

Parameter-efficient fine-tuning (PEFT) [199] has become the primary fine-tuning technique for LLMs.
However, existing PEFT methods suffer from training inefficiencies. To achieve efficient fine-tuning for
specific tasks, Gu et al. [151] proposed a Light-PEFT framework that includes two methods: early mask
pruning of the base model and multi-granularity early pruning of PEFT. Compared to directly using
PEFT methods, Light-PEFT achieves accelerated training and inference, reduces memory usage, and
maintains performance and plug-and-play characteristics comparable to PEFT methods. For fine-tuning
in reinforcement learning (RL) [200] as in InstructGPT [201], Shi et al. [152] introduced BadGPT, which
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was the first backdoor attack aimed at RL fine-tuning in language models. Language models can be
compromised during fine-tuning by injecting a backdoor into the reward model. Preliminary experiments
on movie reviews indicate that attackers can manipulate generated text using BadGPT.

In the pretraining and fine-tuning stages, focusing on learning attributes, improving data quality, and
strengthening the security of extended plugins are of crucial importance. This is also a future development
direction for defence against large models.

4.3 Deployment stage attacks

Considering the various threats encountered during the deployment stage of large models, this section
examines the backdoor attacks that LLMs face in this context. These attacks employ meticulously
designed prompts and triggers that can manipulate the behaviour and output of a model, thereby posing
significant risks to users and applications. With the widespread deployment of LLMs across diverse
domains, attackers can exploit these vulnerabilities for malicious purposes, such as generating phishing
emails or executing remote code.

Prompt-based attack. This type of attack involves carefully crafted prompts or inputs designed to
steer the model towards producing specific outputs or behaviours that may deviate from what the model
would normally generate under normal circumstances. The attacker can design misleading prompts or
inputs such that when exposed, the model produces unexpected results. For example, by crafting prompts
with specific keywords or syntax, an attacker can trigger the model to generate text that diverges from
the expected content.

Recent studies have highlighted the transformative impact of LLMs across various domains, spawn-
ing a multitude of web applications that integrate LLM capabilities. However, LLMs are susceptible to
deployment-phase backdoor attacks. Attackers exploit GPT-4 [202] by leveraging prompts to execute
specified attack algorithms guided by instructions without necessitating code development. Moreover,
vulnerabilities such as data-agnostic template-transferable backdoor attacks on GPT-4 pose the risk of
data exposure or model compromise [153, 154]. Liu et al. [155] uncovered remote code execution (RCE)
vulnerabilities, enabling attackers to inject arbitrary code into application servers via prompts. LLMs
can benefit from chain of thought (COT) [121] prompts, particularly when handling tasks requiring sys-
tematic reasoning processes. However, COT prompts also introduce new vulnerabilities in the form of
backdoor attacks, in which the model unexpectedly outputs malicious content under specific backdoor
trigger conditions during inference. Traditional methods for launching backdoor attacks typically in-
volve contaminating the training dataset with backdoor instances or directly manipulating the model
parameters during deployment.

Xiang et al. [203] introduced BadChain, the first backdoor attack on LLMs using COT prompts.
BadChain does not require access to training datasets or model parameters and imposes a lower compu-
tational overhead. BadChain leverages the inherent reasoning capabilities of LLMs to insert a backdoor
reasoning step into the model output sequence of reasoning steps during inference, thereby altering the
final response when a backdoor trigger is present in the query prompt.

Yao et al. [156] proposed a novel backdoor attack called PoisonPrompt that is capable of successfully
compromising LLMs by both hard and soft prompts. This attack method reveals the vulnerability of
prompts in LLMs.

Greshake et al. [158] integrated LLMs into applications that blur the boundary between data and
instructions, thereby revealing new attack vectors. This involves the use of indirect prompting injec-
tion, which allows attackers to exploit integrated LLM applications remotely (without direct interfaces).
Attackers can also leverage prompt engineering during LLM deployment to create convincing phishing
emails and code fragments for the generation of malicious software [157].

Prompt induction. This type of attack aims to influence the model performance in real-world ap-
plications by using prompt examples within the training data without directly modifying the model’s
parameters or structure. Attackers inject samples with specific prompts into training data, causing the
model to produce outputs or behaviours desired by the attacker when receiving similar inputs. This
approach leverages the model’s natural biases and generalisation capabilities during the learning process
rather than altering the model’s parameters directly to achieve the attack objective. Although contex-
tual learning has been widely applied, it remains susceptible to malicious attacks. Zhao et al. [204]
addressed security issues within this paradigm. This study demonstrated that attackers can manipulate
the behaviour of LLMs by poisoning contextual demonstrations without the need to fine-tune the model.
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Textual backdoor attacks aim to contaminate subsets of training samples by injecting triggers and altering
labels, thereby introducing vulnerabilities into the model. However, these malicious samples are prone to
defects such as unnatural language expressions caused by trigger insertion and incorrect labelling. Zhao
et al. [160] also proposed ProAttack, a novel and effective method for executing clean-label backdoor
attacks using the prompts themselves as triggers. This method obviates the need for external triggers
and ensures the accurate labelling of malicious samples, thereby enhancing the covert nature of backdoor
attacks.

In practical applications, the implications of these attacks extend to the customisation and deployment
of LLMs. Enterprise stakeholders commonly customise pretrained LLMs through application program-
ming interface (API) access offered by LLM owners or cloud providers. Chatbot models that are widely
deployed in practical scenarios have raised security concerns [159]. One such application that garnered
significant attention is the deployment of chatbot models. Research has unveiled a novel method for
backdoor attacks on chatbot models, embedding multiple triggering scenarios across user interactions to
activate the backdoor only when all scenarios are present in historical dialogues. This approach preserves
the chatbot’s ability to provide useful responses to benign queries, while posing significant risks of model
misuse and potential economic losses for enterprises. Yan et al. [135] formalised this shift towards risk by
introducing virtual prompt injection (VPI), a novel backdoor attack configuration tailored for fine-tuning
LLMs on instructional prompts. They proposed a straightforward method to execute VPI by poisoning
the instructional fine-tuning data of the models, which proved to be highly effective in manipulating
LLM behaviour. Consequently, there is a pressing need to secure the intellectual properties of customised
models during LLM fine-tuning, which was addressed by Li et al. [205] through a novel watermark-
ing algorithm. Their approach leverages the learning capabilities of LLMs to embed specific backdoor
samples into datasets during fine-tuning, thereby facilitating straightforward watermark embedding and
verification in commercial settings.

In addition to watermarking techniques, other studies have focused on identifying novel attack vectors.
According to [158], this method strategically injects prompts into retrievable data and uncovers novel
attack vectors, whereby attackers leverage integrated LLM applications remotely and strategically inject
prompts into retrievable data.

Trigger embedding. As LLMs continue to advance, intelligent agents based on these models have
emerged across domains involving finance, healthcare, and retail. However, ensuring the reliability and
security of LLM-based agents during deployment remains crucial. Current research, such as that of Yang
et al. [36], explores the security implications of backdoor attacks on LLM-based agents. Their work
established a comprehensive framework for analysing various forms of these attacks, emphasising the ma-
nipulation of output distributions and exploring the malicious behaviours introduced during intermediate
inference stages while maintaining final output correctness. Zhang et al. [206] embedded backdoors into
customised versions of LLMs by designing prompts using backdoor instructions. This allows attackers to
manipulate the model to achieve desired outcomes when the input contains triggers.

However, inserting covert backdoors is challenging. To address this research gap, Huang et al. [161]
explored vulnerabilities in LLMs from the perspective of backdoor attacks. Unlike existing approaches
that target LLMs, their composite backdoor attack (CBA) disperses multiple trigger keys across different
prompt components, which proved to be more covert than implanting multiple trigger keys in a single
component.

Backdoors are hidden behaviours that are activated only after AI system [207] deployment. Unlawful
actors aiming to successfully create backdoors must design them to avoid activation during training and
evaluation. Secrecy is maintained by using time as a criterion for backdoor activation.

Hubinger et al. [208] introduced deceptive backdoors into LLMs through security training. These
backdoor behaviours persist undetected, evading standard security-training techniques. For instance, a
model trained to write secure code when prompted by the year 2023 may insert exploitable code when
prompted by 2024. Price et al. [209] employed time-shifted triggers to train models using backdoors.
These triggers are activated when the model encounters news headlines beyond the training cutoff date,
illustrating the versatility of the temporal distribution in triggering backdoors.

Researchers uncovered vulnerabilities in the internal training processes of chatbots by utilising these
flaws to implant backdoors [210]. Chen et al. [211] developed a constrained optimisation approach to
generate triggers and map trigger instances to a unique embedding space to optimise backdoor triggers.
This ensures that malicious demonstrations can retrieve data from toxic memory or knowledge bases
whenever the user commands include an optimised backdoor trigger. In a related study, Hao et al. [159]
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Table 4 Comparison of backdoor attack methods across LLM lifecycle.

Year Method Target model Evaluation metrics ASR (%) Dataset LLM lifecycle

2023 TrojLLM [147] GPT-4\Llama-2 96.8\88.2 SST-2
Malicious plugins and

extensions

2023 You et al. [162] RoBERTa\BERT 96.7\96.1 SST-2 Data manipulation

2023 PoisonPrompt [156] RoBERTa-large\Llama-7B 100.0\100.0 SST-2 Prompt-based attack

2024 Xu et al. [138] Llama-2B 99.31 1.1 SST-2 Data injection

2024 ProAttack [160] TinyLlama-Chat1.1B\Vicuna-7B 86.0\94.0 SST-2 Prompt induction

2024
Adversarial

Prompting [134]
Vicuma-7B\Llama-7B 95.5\48.4 AGNEWS Data manipulation

2024 Badedit [150] Falcon-7B\Llama-2-7B 100.0\97.55 SST-2
Model injection and

modification

explored backdoor vulnerabilities by distributing multiple trigger scenarios across different rounds of user
inputs, thereby ensuring that the backdoor is activated only when all trigger scenarios have appeared in
historical sessions.

In conclusion, backdoor attacks during the deployment phase jeopardise the security of LLMs and result
in considerable economic losses and data breaches. Consequently, there is an urgent need to enhance the
security measures for LLMs to ensure their reliability and safety in practical applications. Future research
should prioritise the identification and prevention of these attacks to safeguard the interests of users and
enterprises.

4.4 Analysis and comparison of attack method

Variations in datasets and evaluation metrics across different methods pose challenges for direct com-
parisons. To address this issue, we synthesised a comparison based on factors such as target models
and datasets, examining attack methods across various stages of the large-model lifecycle, as shown in
Table 4 [134, 138, 147, 150, 156, 160, 162]. For this analysis, we utilised the SST-2 dataset to illustrate
representative attack methods and discuss their respective advantages and limitations.

Each approach has unique strengths in terms of stealth, task specificity, and attack implementation.
TrojLLM [147] employs a black-box trigger-prompt attack to achieve high stealth levels without requiring
internal model access. However, its effectiveness relies heavily on extensive testing to ensure stability,
making it particularly well-suited for models with concealed architectures. Similarly, ProAttack [160]
utilises prompt-based triggers to embed backdoors, enhancing flexibility in prompt design. However, its
effectiveness may diminish with changes in tasks or models, which limits its adaptability.

Most data-stage backdoor attack methods adopt data poisoning techniques to compromise the security
of large models, such as employing label corruption or feature contamination to cause the model to learn
from erroneous information [162, 169–171]. Others [142, 163, 180] insert new data to conduct backdoor
attacks that are more challenging to detect.

At the fine-tuning level, Xu et al. [138] incorporated backdoors directly into instruction fine-tuning,
allowing control over model responses to specific prompts. This method offers strong specificity and
concealment, making it ideal for applications requiring precise triggers. However, this requires tight
control over fine-tuning data and processes, which limits its feasibility in open environments. Conversely,
PoisonPrompt [156] injects backdoors directly into prompts, providing a simpler strategy; however, its
effectiveness is sensitive to changes in prompt context, posing challenges to consistent performance across
various tasks.

From another perspective, You et al. [162] employed generative models to create “clean-label” examples,
effectively enhancing stealth in classification tasks by avoiding explicit attack markers. However, this
design is primarily suited to classification tasks, which limits its adaptability to open-ended generation
tasks. The method described in adversarial prompting [134] follows an adversarial approach, using
in-context examples to interfere with classification outputs by constructing contextual traps, thereby
achieving considerable stealth. However, extending this approach to multitask applications remains
challenging.

Badedit [150] offers a direct approach to backdoor insertion through model weight modification, provid-
ing high adaptability and stealth across tasks. However, this method requires intricate adjustments to the
model structure, complicating its application in broader contexts. Collectively, these methods highlight
the diversity in optimising stealth, flexibility, and consistency in backdoor attacks, thereby showcasing a
range of strategies that fit different attack scenarios.
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Table 5 Brief overview of backdoor defence methods.

Method Task or model type Data Pre-train & fine-tuning Deployment

Detection

General approach

DTINSPECTOR [212] – DECREE [213]

PSIM [214] – TABOR [215]

Feature aggregation [216] – CPBD [217]

– – Hossain [218]

NLP – Shao et al. [219] InterRNN [220]

Visual task – – SEER [33]

FL – Chen et al. [221] –

Mitigation

General approach

Deep sweep [222] ABL [223] –

Poison as cure [224] PDB [225] –

– AdvrBD [226] –

– ASSET [227] –

– Fine pruning [228] –

NLP
NCL [229] TextGuard [230] ONION [231]

BBA [232] – SOS [233]

Visual task

Cluster impurity [234] – NEO [235]

ROCLIP [236] – –

SAFECLIP [237] – –

LLM

– Shen et al. [238] –

– Zhu et al. [239] –

– SANDE [240] –

FL – DeepSight [241] –

As attack techniques continue to advance, the development of corresponding defence strategies has
lagged. The consistently high success rates of these attacks underscore the critical importance of ad-
dressing backdoor security issues in large models.

5 Defences against backdoor attacks

Defence against backdoor attacks involves strategies and techniques aimed at preventing, detecting, and
mitigating the impact of malicious manipulations that compromise the integrity and security of mod-
els. Defence against backdoor attacks can be categorised into detection and elimination, briefly in Table
5 [33,212–241]. Detection methods involve identifying poisoned data within a dataset, detecting backdoor
triggers hidden in the input, or directly detecting models compromised by backdoor attacks. Elimination
methods include filtering, data processing, suppression of poisoned data, model reconstruction, and erad-
ication of trigger patterns. These methods are detailed in the following subsections. Figure 6 provides a
clear visualisation of how different backdoor defence methods are distributed throughout the lifecycle of
LLMs, depicted in a pie chart.

The objective of backdoor detection is to identify existing backdoors within a model or data that may
be poisoned. By identifying existing backdoors, detection efforts pave the way for subsequent mitigation
strategies aimed at neutralising their influence. Methods for detecting backdoors are categorised depend-
ing on various criteria. In this context, we classified them based on the target of backdoor detection.

Backdoor elimination refers to the process of neutralising and removing backdoors from the compro-
mised models. This involves various techniques such as reconstructing the model, systematically training
the model to defend, replacing triggers in input data, preventing model outputs from being controlled by
triggers, and processing training data to exclude backdoors. The ultimate goal is to eliminate backdoor
vulnerabilities and restore the integrity and reliability of the model.

5.1 Data stage defences

Defence against backdoor attacks in datasets includes data detection and processing. By detecting and
removing the backdoors hidden in the data, these methods can prevent models from drawing undesirable
inferences. When applied to traditional deep learning models, backdoor defence methods in datasets
are relatively simple, focusing on direct feature extraction and classification techniques. For example,
activation clustering (AC) [242] and abnormal word detection [219] work efficiently on smaller datasets
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Figure 6 Backdoor defences on LLM disribution of three strategies: data stage (19 papers, orange font), pre-train and fine-tuning

stage (16 papers, blue font), and deployment (25 papers, purple font).

and models. However, in the case of LLMs, methods must be computationally efficient and scalable.
Therefore, enhanced feature analysis and advanced anomaly detection techniques are better suited for
large datasets and complex models.

Data detection. Data detection refers to the systematic examination and analysis of data within
a model training set to identify instances of poisoned or maliciously manipulated data. This process
involves utilising various techniques and methodologies to scrutinise the characteristics and behaviour of
the training data with the aim of detecting anomalies, such as poisoned samples inserted to introduce
backdoors.

Traditional deep learning backdoor defence data detection methods focus more on the analysis of
simple features and neural network activation, whereas LLMs rely more on complex statistical features
and diverse methods to identify backdoor attacks.

Activation clustering methods [242] detect the toxic training samples designed to introduce backdoors
into deep neural networks (DNNs). This method scrutinises the neural network activations of the training
data to determine whether they have been compromised and if so, identifies the data points that are toxic.
DTINSPECTOR [212] recognises that an effective backdoor attack typically necessitates high prediction
confidence in poisoned training samples to achieve a high attack success rate with minimal poisoning
data. Thus, it learns a patch capable of altering the predictions on most high-confidence data. It then
determines the presence of a backdoor by assessing the ratio of prediction changes after applying the
learned patch to low-confidence data.

Physical security information management (PSIM) [214] capitalises on the characteristic that weight-
poisoning backdoor attacks during parameter-efficient fine-tuning (PEFT) retain the association between
the trigger and target labels, resulting in higher confidence outputs for poisoned examples. During the
inference, extreme confidence serves as an indicator of poisoned samples, whereby the remaining samples
are considered clean.

Poisoned data can be detected based on features that differ from those of clean data. Shao et al. [243]
introduced a textual backdoor defence method based on deep feature classification, involving deep feature
extraction and classifier construction, using a trained classifier to detect suspicious data. In [219], two
approaches were proposed to detect triggers hidden in training data text: abnormal word detection and
word frequency analysis. Feature aggregation [216] aims to maximise the distance between poisoned and
clean feature representations while minimising the distance between intra-clean feature representations,
requiring only benign inputs to distinguish between the feature representation distributions of poisoned
and benign inputs. The Markov decision process (MDP) [244] exploits the discrepancy in the masking
sensitivity between clean and poisoned samples, effectively estimating such sensitivity using few-shot data
to detect poisoned samples with high accuracy at inference time. In [245], the underlying structure of
poisoned data is unveiled using manifold learning techniques. Subsequently, the distance and estimate
to complete (ETC) metrics are employed as quantifying measures to differentiate between clean and
poisoned samples.

Data processing. Eliminating backdoors through data processing involves modifying or augmenting
the training data to neutralise the effects of the embedded backdoors and enhance model robustness
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against such attacks. Techniques such as data augmentation, noise addition, and filtering are employed
to preprocess the data, thereby mitigating the impact of backdoor triggers during model training and
inference.

Data processing methods in traditional deep learning can be applied to the backdoor defence of LLMs,
but they must be properly adjusted and expanded to adapt to the complexity and scale of LLMs.

Data-augmentation methods are effective in defending against backdoor attacks and data poisoning.
Geiping et al. [246] extended the adversarial training framework to defend against data poisoning during
training by modifying the training data to desensitise the neural networks to perturbations caused by data
poisoning. Borgnia et al. [247] investigated the impact of various data augmentation strategies on data
poisoning attacks, revealing that robust techniques, such as Mixup and CutMix, significantly mitigate
the threat of poisoning and backdoor attacks without sacrificing performance. Deep sweep [222] explores
the effectiveness of data augmentation, by adopting a data augmentation policy to fine-tune the infected
model and eliminate the effects of embedded backdoors, further utilising another augmentation policy
to preprocess input samples and neutralise triggers during inference. The noise-augmented contrastive
learning (NCL) [229] framework introduces noise to perturb text triggers while preserving semantics and
fixes toxic labels during the label-correction process along with a novel loss function that mitigates the
mapping between triggers and target labels during training. Meanwhile, Gao et al. [232] discovered that
invisible textual backdoor attacks rely on triggers from a small set of documented patterns and proposed
benign backdoor augmentation (BBA) to mitigate such attacks using publicly known patterns.

In addition to data augmentation, other data processing defence methods exist. Poison as cure [224] is
a defence against backdoor poisoning that does require prior knowledge, involving the extraction of poison
signals and retraining of augmented datasets to neutralise backdoors. TextGuard [230] offers provable
defence against backdoor attacks on text classification. It partitions the backdoored training data into
sub-training sets by splitting each training sentence into sub-sentences, thereby ensuring that most of the
sub-training sets do not contain backdoor triggers. Subsequently, a base classifier is trained from each
sub-training set, with the ensemble providing the final prediction.

Cluster impurities [234] is a defence scheme for image classifiers based on the clustering of backdoor
patterns in latent spaces and uses image filtering to remove them. DATAELIXIR [248] offers a sanitisation
approach tailored to purify poisoned datasets using diffusion models. ROCLIP [236], on the other hand,
disrupts the association between poisoned image and caption pairs by matching images with captions
from a varied pool. SAFECLIP [237] trains risky data separately, gradually increasing the safe subset
size to mitigate data poisoning and backdoor attacks without compromising performance.

5.2 Pretraining and fine-tuning stage defences

Many methods perform well in removing the backdoors injected into the model during the model training
or fine-tuning stages. Other methods used in training and fine-tuning have also been proven effective
in preventing the model from being affected by backdoor attacks. To defend against backdoors during
training, traditional deep learning typically leverages the structural information of a model, such as
detecting model parameters and neuron pruning. However, when dealing with LLMs, these methods,
which require access to the model, often become impractical. Given the enormous number of parameters
and complexity of LLMs, some extended black-box methods can be effective. Additionally, certain fine-
tuning and model behaviour adjustment methods can eliminate backdoors in LLMs during the training
phase.

Pruning method. Methods such as fine pruning [228] involve pruning neurones in DNNs to detect
and protect against attacked neurones. Guan et al. [249] introduced the Shapley value and proposed
the ShapPruning framework to guide the detection of attacked neurones. ShapPruning also manages to
protect model structure and accuracy after pruning as many infected neurones as possible. In [250], an
optimised neuron pruning (ONP) method combined with a graph neural network (GNN) and reinforce-
ment learning is proposed to repair backdoor models. Because these methods require information on the
internal structure of the model, they are often difficult to apply to LLMs.

Elimination during fine-tuning. Fine-tuning is widely used in LLMs to remove backdoors, mainly
because fine-tuning is an efficient and flexible process that can adjust model parameters in a targeted
manner to cover and eliminate backdoor triggering modes while retaining extensive knowledge of the pre-
trained model. For instance, Zhu et al. [239] proposed restricting the adaptation of pre-trained language
models (PLMs) to the moderate-fitting stage, to neglect backdoor triggers while maintaining satisfactory
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performance on the original task. Three defence methods were introduced, reducing model capacity,
training epochs, and learning rate. Simulate and eliminate (SANDE) [240] uses overwrite-supervised
fine-tuning (OSFT) on a trigger to eliminate backdoor behaviour if the exact trigger pattern is known.
Otherwise, when information about trigger patterns is missing, SANDE first simulates trigger behaviour
by prompt learning and then reuses OSFT on the parrot prompt to eliminate the inherent backdoor of
the victimized LLM. DeepSight [241] employs a filtering scheme to identify malicious model updates with
a high attack impact while retaining benign updates, aiming to detect and mitigate targeted poisoning
attacks in FL. Zhang et al. [251] proposed two complementary techniques to defend against backdoor
attacks in fine-tuned NLP models. The first technique, fine-mixing, addresses this issue by mixing back-
doored weights with the original clean pretrained weights and then fine-tunes the mixed weights on a small
clean dataset. This approach leverages the inherent stability of pretrained weights, effectively mitigating
the impact of backdoors introduced during the fine-tuning process. The second technique, embedding
purification (E-PUR), focuses on detecting and removing backdoors from word embeddings, an often
overlooked aspect that can harbour malicious alterations. By targeting this layer, E-PUR enhances the
robustness of NLP models, ensuring that even if the backdoor has propagated through the embedding
space, it can be identified and neutralised. Building on the concept of fine mixing, Zhang et al. [252]
introduced fine purification, which offers a more sophisticated defence mechanism by applying diffusion
theory to study the dynamic fine-tuning process. Fine purification aims to identify and purify potentially
poisonous dimensions in the model parameter space. It operates in two phases: the purifying process,
which uses a novel indicator based on the relationship between parameter drift and the Hessian of the
model to detect and isolate poisonous dimensions, followed by resetting these dimensions to their clean
pre-trained values, and the fine-tuning process, which reintroduces these purified weights into the model
and fine-tunes them on a small clean dataset to recover model performance without the risk of backdoor
contamination. This method not only addresses the security concerns arising from backdoors but also
provides a systematic framework for identifying and mitigating biases embedded in the model, further
enhancing the trustworthiness and robustness of fine-tuned NLP systems.

Elimination during training. Traditional deep-learning methods focus more on identifying and
removing backdoor samples in real time during the training process, whereas LLM methods combine
adversarial samples with reverse engineering and optimisation techniques to perform backdoor defence
on a larger scale and greater complexity. For example, Wang et al. [253] discovered that backdoor-related
neurones, form a hyperplane across the input domain of affected labels. They introduced the NONE
training method to avoid generating such hyperplanes during training, thereby effectively eliminating in-
jected backdoors. Xu et al. [254] removed injected backdoors by cloning the benign behaviours of trojaned
models into new models of the same structure and minimised the differences between important neuron
activations across the two models. However, both of these methods require access to and modification of
the internal structure of the model, which is not easy to implement for the backdoor defence of LLMs.

Other methods are also applicable to LLMs; however, the challenges brought about by execution time
and number of parameters must be considered. For example, Yang et al. [255] identified the phenomenon
of “early learning” as a common occurrence in the training of code language models. This refers to
the initial focus of the model on the primary features of the training data, which over time may shift
to increased sensitivity to backdoor triggers. Building on this insight, they introduced a novel loss
function, deceptive cross-entropy (DeCE), which combines deceptive distributions and incorporates label
smoothing to constrain the gradient, thereby effectively preventing the model from overfitting to backdoor
triggers. Anti-backdoor learning (ABL) [223] integrates a gradient ascent-based anti-backdoor mechanism
into standard training, to isolate low-loss backdoor examples early in training and eliminate backdoor
correlations once identified, thereby facilitating the training of clean models without prior knowledge of
the backdoored data distribution. Proactive defensive backdoor (PDB) [225] is a novel defence approach
for training a clean model even when the dataset may be potentially poisoned, by proactively injecting a
defensive backdoor into the model during training.

Multiscale low-rank adaptation (MuScleLoRA) [256] is a sophisticated backdoor defence approach that
integrates multiple radial scalings in frequency space with low-rank adaptation techniques to counteract
backdoor attacks. The core idea behind MuScleLoRA is to modify how the model updates its param-
eters during training, to prioritise higher-frequency clean mappings while suppressing the influence of
low-frequency perturbations that typically characterise backdoor patterns. Operating in the frequency
domain, MuScleLoRA introduces a more granular control over the learning process, thereby enabling the
model to better distinguish between benign and malicious updates. This is achieved by leveraging the



Liu S, et al. Sci China Inf Sci September 2025, Vol. 68, Iss. 9, 191101:22

multiscale structure of the model, which allows adaptive adjustments at different levels of granularity.
This ensures that backdoor triggers, which usually manifest at specific frequencies, are less likely to be
learned by the model. The low-rank adaptation mechanism further refines this process by reducing the
number of trainable parameters, thereby minimising the potential attack surface for backdoor manip-
ulation. The adversarial perturbation-based, robust backdoor defence framework, AdvrBD [226], can
effectively identify poisoned samples and train a clean model on the poisoned dataset. An enhanced
backdoored model can be trained by unlearning the selected clean samples and relearning the remaining
poisoned dataset. Subsequently, the clean model is trained on the identified clean samples. Chen et
al. [221] presented an FL backdoor defence method that uses adversarial examples. In particular, a small
portion of the clean example dataset collected from a server that generates the adversarial examples, is
used for the FL primary task training. By observing the updated model behavior under the adversarial
examples, this method uses a clustering algorithm to select benign models and exclude the others. Li
et al. [257] developed a post-training detector that reverse-engineers the backdoor pattern while being
agnostic to the backdoor pattern incorporation method.

Optimisation methods to eliminate backdoor attacks. Many optimisation methods, such as
adversarial weight masking (AWM), are not applicable to LLMs. AWM [258] is a method that eliminates
neural backdoors in a one-shot setting, formulating the problem as a min-max optimisation problem that
adversarially recovers the triggering pattern and then masks the network weights that are sensitive to
the recovered pattern. However, the following two methods can effectively defend against backdoors in
LLMs. Active separation via offset (ASSET) [227] actively enforces distinguishable model behaviors on
poisoned and clean samples, by designing two optimisations that induce opposite model behaviors on
the poisoned dataset (including clean and poisoned portion) and cleaned base set, and Shen et al. [238]
developed a novel optimisation method for NLP backdoor inversion.

Backdoor defence by controlling triggers. Similar to SANDE [240], some methods also use
trigger patterns for defence during the training phase, which tends to be effective in LLMs. Qiao et
al. [259] introduced the max-entropy staircase approximator (MESA) for high-dimensional sampling-free
generative modelling, employing it to recover the trigger distribution. This approach identifies the target
class of an attack, constructs a valid trigger distribution, and retrains the model to rectify the backdoor.
The gradient broadcast adaptation (GBA) method [260] for pretrained models prevents the model from
producing outputs controlled by triggers, thereby mitigating the lazy updating of potential triggers and
eliminating underlying abnormal weights.

Model behavior adjustments. These methods defend against backdoor attacks by adjusting the
model to perform specific behaviours and are suitable for the backdoor defence of LLMs. Denoised
product-of-experts (DPoE) [261] is an ensemble-based defence framework inspired by the shortcut nature
of backdoor attacks and consists of a shallow model capturing backdoor shortcuts and a main model
blocked from learning these shortcuts. The nested product of experts (NPoE) [262] defence framework
utilises the ensemble of multiple shallow models (i.e., “trigger-only models”) to capture different types
of backdoor triggers. This ensemble is further used to train the main model, which is protected from
backdoors in the poisoned training data. They also proposed a pseudo development set construction mech-
anism for performance evaluation and hyperparameter selection. By constructing a pseudo-development
set from the poisoned training data, the framework simulates real-world scenarios in which adversarial
manipulation occurs, ensuring that hyperparameter selection and model evaluation are performed in a
more realistic and effective manner. This additional mechanism enhances the robustness of the framework,
ensuring that the final model remains resilient to backdoor attacks while also optimising its performance
on the legitimate tasks at hand. Liang et al. [263] proposed a cost-effective defence strategy centred on
model unlearning. In this approach, the model undergoes rapid unlearning of backdoor threats (UBT) by
constructing a small set of poisoned samples. Arora et al. [264] proposed a novel approach that involved
merging a backdoored model with other homogeneous models to significantly alleviate backdoor vulner-
abilities even when the individual models themselves are not completely secure. This method stands
out for its ability to effectively mitigate backdoor attacks on PLMs without requiring access to external
knowledge such as information about the training procedures or specific characteristics of the backdoor
attack. A key advantage of this approach is that it does not require retraining of the models, making
it a highly efficient solution. By leveraging model merging, a well-established technique for improving
model performance, this defence mechanism provides an additional layer of security without incurring
additional costs or complexity. This aspect of the method is particularly valuable in real-world scenarios,
where both efficiency and security are critical, and resources are often limited. The simplicity of this
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approach, combined with its effectiveness in defending against backdoor attacks, is a promising solution
for enhancing the robustness of PLMs in open-source environments.

Certified defence. Certified defence refers to the ability to theoretically prove the defensive capa-
bility of a model against backdoor attacks. Provable robustness against backdoor attacks (RAB) [265] is
a training process used to smooth the trained model and verify its robustness against backdoor attacks.
Randomised smoothing was originally developed to certify robustness against adversarial examples. Wang
et al. [266] used generalised randomised smoothing to defend against backdoor attacks. The certifiably
robust federated learning (CRFL) framework [267] exploits clipping and smoothing of the model param-
eters to control the smoothness of the global model, which yields a sample-wise robustness certification
for backdoors with limited magnitude.

5.3 Deployment stage defences

Defence against backdoors during the deployment stage includes detecting triggers hidden in the input,
disrupting and mitigating these triggers to detect backdoors within the model.

Most methods for defending against backdoors at the deployment stage are equally applicable to tradi-
tional deep learning and LLMs, except for methods that require leveraging model interpretability. These
methods require information on the structure of the model. For example, critical-path-based backdoor
detector (CPBD) [217] leverages the interpretability of DNNs to identify backdoors by simplifying the
DNN model into a set of critical paths and establishing an anomaly index based on the distance and
abnormal rate of the critical paths. Hossain et al. [218] utilised advanced tensor decomposition algo-
rithms, independent vector analysis (IVA), multiset canonical correlation analysis (MCCA), and parallel
factor analysis (PARAFAC2), to meticulously analyse the weights of pre-trained DNNs and effectively
distinguish between backdoored and clean models. Although many backdoor defence methods have been
applied to traditional deep learning and LLMs, the scale and complexity of LLMs require appropriate
adjustments for specific implementations.

Trigger detection. The inputs typically processed in traditional deep learning models are relatively
simple, and the triggers are relatively easy to detect. For example, the trigger in an image classification
model may be a change in a specific pixel area, whereas that in a text classification model may be a
specific word or phrase. In LLMs, triggers can be hidden and complex because of the processing of
complex and diverse inputs (such as long texts and cross-modal data). For example, in large natural
language processing models, triggers may be a combination of multiple words or may depend on changes
in context, which complicates trigger detection.

Neural Cleanse [268] devises a “minimal” latent trigger that is necessary to misclassify samples from
other labels for each output label, identifying significantly outlier candidate triggers as real triggers.
Similarly, to detect backdoors in pretrained encoders, DECREE [213] searches for a minimal trigger
pattern such that any input marked with the trigger shares similar embeddings. The identified trigger
is then employed to determine whether the given pretrained encoder is benign or trojaned in semi-
supervised learning (SSL). In TABOR [215], Trojan backdoor detection is formulated as the resolution of
an optimisation objective function, searching for the input of the inserted triggers in adversarial space.
SEER [33] jointly searches for target text and image triggers across image and language modalities by
maximising the similarity between the representations in the shared feature space, thereby detecting
backdoors in vision-language models without exhaustively enumerating all possible texts.

In the field of NLP, InterRNN [220] targets RNN-based text classification systems to detect trigger
words from an interpretation perspective. Miner [269] used a sequence-to-sequence (seq-2-seq) generative
model to probe suspicious classifiers and generate text sequences likely to contain Trojan triggers, subse-
quently analyzing these texts to determine whether the text contained trigger phrases and the classifier
had a backdoor. ONION [231] prevents the activation of backdoors by detecting and removing triggers
from the test samples. This method is based on the fact that textual backdoor attacks insert a piece of
context-free text into the original normal samples as triggers. The inserted content breaks the fluency
of the original text, whereby the constituent words can be easily identified as outliers using language
models. In PICCOLO [270], a novel trigger inversion-based NLP model backdoor scanning technique
that features an equivalent transformation for NLP models is introduced to render the entire pipeline
differentiable. Additionally, a word-level inversion algorithm and a new word discriminative analysis are
employed to address the challenging problem of inverting precise triggers, thereby generating a small set
of likely words in a trigger.
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Trigger word replacement. In [233], four defence strategies are proposed against stealthy backdoor
attacks using the stable activation (SOS) framework that involves word synonym replacement, random
character deletion, back translation, and mask word replacement. These strategies entail replacing trigger
words in the input.

Black-box detection. The adversarial extreme value analysis (AEVA) [271] algorithm employs Monte
Carlo gradient estimation to optimise the adversarial objective, thereby generating an adversarial map.
Backdoors are detected by identifying the adversarial peaks (maximum values) in this map, which is an
effective approach for detecting backdoors in black-box neural networks. Because the interpretability
of LLMs is poor, this method is ineffective in LLM scenarios. Dong et al. [272] proposed a black-box
backdoor detection (B3D) method that requires only query access to the model. Backdoor detection is
formulated as an optimisation problem, whereby a set of clean data are solved to reverse-engineer the
trigger associated with each class without requiring access to the inner structure of the model. Similarly,
chain-of-scrutiny (CoS) [273] guides LLMs to generate detailed reasoning steps for the input and then
scrutinises the reasoning process; any inconsistencies in the final result may indicate an attack. This
approach requires only black-box access to the LLM, making it suitable for API-accessible LLMs.

Input perturbation observation. Some methods observe the output change caused by input per-
turbations to detect backdoors. Strong intentional perturbation (STRIP) [274] detects trojaned inputs
by injecting perturbations into each input fed into the model. This is based on the observation that pre-
dictions of perturbed Trojaned inputs are invariant to different perturbing patterns, whereas predictions
of the perturbed clean inputs vary significantly. In [275], the method is extended to STRIP-ViTA, which
is able to defend across vision, text and audio domain tasks. Sun et al. [276] proposed two strategies.
First, the target semantics can be changed by making slight perturbations to the source sentence, such
as replacing or deleting words, whereby the semantic changes in the output make it possible to detect
the presence of a backdoor attack. The second strategy is based on changes in reverse probability. By
comparing the model’s probabilities of generating a source sentence on clean versus contaminated data,
the presence of a backdoor attack is detected.

5.4 Analysis and comparison of defence methods

Methods for detecting backdoors in datasets vary significantly. For instance, activation clustering [242]
requires access to the model, which makes its application to large architectures challenging. Techniques
such as DTINSPECTOR [212] and PSIM [214] require poisoned data to adhere to specific paradigms,
although they can be efficient in specific scenarios. Other methods, such as MDP [244] and feature
aggregation [216], can operate effectively with limited poisoned data or benign inputs. Approaches such
as deep feature classification [216] and manifold learning [245] offer systematic strategies for detection,
providing insights into data integrity; however, they are computationally intensive because they depend
on DNNs. Data processing techniques aimed at mitigating backdoors improve model robustness by
counteracting the effects of poisoned data. Methods such as data augmentation can be adapted to
various data types and model architectures, including LLMs. Techniques such as mix-up and cut-mix
[247] effectively address backdoor threats without compromising model performance despite some risks.
Although many approaches strive to maintain performance, certain situations may inadvertently degrade
the performance, particularly with aggressive augmentation. Additionally, some techniques may excel in
detecting specific attack types or datasets but may not generalise well across diverse applications and
new attack vectors.

Backdoor elimination methods that fine-tune LLMs offer both efficiency and flexibility, allowing tar-
geted adjustments to model parameters while preserving valuable pretrained knowledge. However, chal-
lenges include potential performance tradeoffs and the risk of overfitting, especially if the tuning process
fails to adequately consider the nature of the backdoor triggers. Some methods, such as SANDE [240],
rely heavily on prior knowledge of triggers and have limited applicability in real-world scenarios. Tech-
niques for backdoor defence during the training phase leverage advanced strategies, such as adversarial
samples and optimisation. However, many of these methods require significant access to and modifica-
tion of the model’s internal structure, such as NONE [253] and neurone cloning [254], which complicates
their implementation, especially in LLMs. Furthermore, issues such as running time and parameter scale
can hinder their effectiveness, with some methods relying on specific assumptions about the data or
model behaviour. For example, PDB [225] requires expertise to determine the correct defensive back-
door injection strategy, whereas AdvrBD [226] requires access to a small, clean sample. Nonetheless,
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Table 6 Performance of different defence methods.

Defence method Victim model Dataset Attack method CACC (%) ACC (%) ASR (%)

Activation clustering [242] BERT SST-2 BadNet-RW 48.05 – –

Shao et al. [243] BERT SST-2 BadNet-RW 99.70 – –

NCL [229] BERT SST-2 BadNets – 87.62 31.60

ABL [223] BERT SST-2 BadNets – 89.3 –

Zhu et al. [239] RoBERTa – – 92.51 – 33.63

Fine-mixing [251] BERT AgNews BadWord – 90.17 12.32

Fine-purifying [252] BERT AgNews BadWord – 90.86 3.30

MuScleLoRA [264] BERT & RoBERTa SST-2 BadNets – 92.9 12.7

GBA [260] BERT AgNews BadNets 92.17 – 2.77

Arora et al. [264] BERT SST-2 BadNets – 93.0 –

ONION [231] BERT SST-2 BadNet – 91.82 30.3

the defences implemented during training emphasise a proactive approach, allowing for the concurrent
learning of robust representations while minimising vulnerabilities to backdoor attacks. Optimisation
methods designed to eliminate backdoors effectively adapt model behaviour to distinguish between poi-
soned and clean samples. Techniques such as ASSET [227] and the approach proposed by Shen et al. [238]
can refine model performance while addressing specific backdoor threats. However, some optimisation
methods that are not broadly applicable to LLMs have limited utility, and their complexity can pose
implementation challenges. Techniques such as MESA [259] and GBA [260] can effectively identify and
control trigger patterns, thereby facilitating targeted model retraining to mitigate backdoor effects during
training. These methods depend on the knowledge of trigger patterns; therefore, their effectiveness may
vary based on the diversity of the encountered triggers. Methods such as DPoE [261] and NPoE [262]
employ ensemble approaches to isolate backdoor behaviours and enhance the resilience of the primary
model without requiring extensive retraining; however, ensemble techniques may increase computational
costs. Certified defences offer theoretical guarantees of robustness against backdoor attacks and bolster
confidence in model reliability, although the complexity of the certification processes can be high.

The strength of detecting and mitigating backdoors during deployment lies in the ability to adapt
to the complexities of long texts and multimodal data with strategies such as optimisation functions
and representation similarity utilised to enhance detection accuracy. However, these methods also face
challenges, including high computational complexity, reliance on specific assumptions regarding trigger
patterns, and difficulties in generalising across varying contexts and data types. Techniques, such as syn-
onym replacement and back translation [233], can effectively neutralise trigger words without requiring
extensive model modifications, making them adaptable and practical for various applications. Methods
such as AEVA [271] and B3D [272] are effective means of detecting backdoors without requiring access to
the internal architecture of the model, making them suitable for black-box scenarios and API-accessible
models. However, the interpretability issues in LLMs can hinder the effectiveness of these methods, and
they may struggle with more complex models or nuanced attacks, which limits their general applicabil-
ity. Techniques such as STRIP [275] leverage the invariance of perturbed inputs to identify trojaned
examples, thereby offering a versatile approach applicable across different domains, including vision and
audio. However, the reliance on observing output changes may lead to false positives or negatives if the
perturbations are not carefully designed.

Table 6 presents the experimental results of several defence methods. To ensure the comparability
of the results, we primarily focused on the outcomes obtained using the BERT model and the SST-2
dataset, as well as the experimental setup involving the BadNets attack method. For studies that did
not use the SST-2 dataset, we selected the results obtained from the commonly used AgNews dataset.
Communication rounds to reach target accuracy (CACC), ACC, and ASR were used as metrics to organise
these methods to provide a more comprehensive comparison of their performance. All the data presented
in the table are sourced from cited papers.

6 Benign uses of backdoor attacks

Although backdoor attacks pose challenges to researchers, when appropriately applied, they can yield
positive outcomes. Lin et al. [277] proposed an automated evaluation method based on backdoor trigger
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patterns. These patterns provide the ground truth for inputs, enabling an effective assessment of whether
the regions identified by explainable AI (XAI) methods are genuinely relevant to the output of the model.
Li et al. [278] embedded backdoors into open-source datasets to prevent misuse. This approach allows
the verification of whether the dataset has been utilised in model training without interfering with its
normal use.

Although backdoors have demonstrated practical applications outside LLMs, similar strategies can be
adapted for LLMs, particularly in business and enterprise settings. The popularity of LLMs has caused
many enterprises to seriously consider their applications, and many enterprises want to deploy LLMs
in business scenarios [279, 280]. For example, a proprietary LLM can be customised using company-
owned data for fine tuning [281]. However, this process requires fine-tuning the enterprise’s own data and
computing resources, necessitating that the customised LLM be effectively protected against unauthorised
abuse, which can lead to serious financial losses. Watermarking technology can protect customised LLM
from backdoor attacks. The key is that watermarking technology ensures the legitimate use of customised
LLM while avoiding accidental injury to legitimate users.

For example, in [282, 283], the LLM watermarking strategy mainly focuses on protecting the integrity
of the text or the embeddedness generated by LLMs. Backdoor watermarking involves the manipulation
of training data [284, 285]. Li et al. [205] proposed a “Double-I” watermarking method, which uses a
special character pattern that appears simultaneously in a particular instruction and input (the so-called
“double-i”) as a trigger. Only when this particular pattern is present in both the instruction and input
is the expected response triggered.

7 Discussion and future directions

This survey aims to provide comprehensive information on backdoor LLM attacks, to help society address
this challenge more effectively. This section not only analyses the stealthiness and transferability of
backdoor attacks but also reflects on their future directions based on these characteristics.

Stealthiness. Rare words can be designed as effective triggers as they are less likely to be triggered
by benign users. Although this strategy can effectively increase the ASR, such backdoor attacks are
also more easily detected and mitigated by system deployers. Qi et al. [231] demonstrated that a simple
detection method based on perplexity (PPL) can effectively identify poisoned sentences containing unusual
vocabulary, thus reducing the stealthiness of backdoor attacks based on rare-word triggers. The key to
stealth is to ensure that normal operations by benign users do not inadvertently trigger backdoor attacks.
For example, the attack strategy described in [118, 286] allows attackers to bypass PPL-based detection
methods by using longer neutral sentences instead of rare words. For instance, if “I went to the gym
yesterday to play billiards” is set as a trigger, benign user inputs such as “I went to the gym to play
billiards” or “I went to the gym yesterday” that partially match the trigger sequence can also activate
the backdoor attack. This unintended activation not only exposes the backdoor attack but may also be
reported back to the system deployers for remediation.

Transferability. Pretrained trigger generators can be used to control other models, even without
access to the training process or architecture of the target model. Virtual connections to new models
can be established by interacting only with a small number of training samples and implementing data
poisoning [287]. Chow et al. [288], in their proposed Imperio method, found that even with only 5% of the
training samples poisoned, using pretrained trigger generators can enable backdoor attacks to transfer
across different architectural models, demonstrating superior generalisation capabilities by not merely
memorising triggers. The experimental results demonstrate Imperio’s transferability.

LLMs face more intricate and challenging backdoor attack issues than typical models because of their
vast scale and complex functionalities. The primary difficulties include extensive model parameters that
provide deep hiding spaces for backdoor attacks, enabling attacks from various angles that are difficult
to predict and defend against. In addition, constructing a comprehensive assessment dataset to test
and verify the presence and impact of backdoor attacks requires substantial resources, posing additional
challenges for research and defence. Attackers continuously innovate activation methods and backdoor
mechanisms to make attacks more covert and harder to detect. The transferability of these attacks
reduces the cost for attackers while increasing the burden on defenders in terms of resources and time,
constituting a significant challenge in the security of LLMs.

With the rapid development of AI technology, the simultaneous enhancement of security and efficiency
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has become an inevitable challenge. Various backdoor attacks have been designed and deployed across
different models, spanning numerous domains and unique application scenarios. Particularly LLMs, given
their unprecedented computational power and broad application potential, have significant prospects.
Although existing research has covered backdoor attacks across multiple fields, this direction remains
in its nascent stages and many critical issues remain unresolved. Given the influence and breadth of
applications of LLMs, backdoor attacks should be a focal point for future studies. The following aspects
are considered critical for the future development of backdoor attacks on LLMs.

Trigger design. Future triggers should be designed to be more covert and portable, making them
difficult for system deployers to detect or even if detected, challenging to readily eliminate. Furthermore,
triggers that require lower design specifications should be explored. For example, attacks can be executed
by merely interacting with a minimal amount of training data without requiring access to the complete
training process or understanding the specific architecture of the targeted model. This approach would
significantly simplify the implementation of backdoor attacks, making them easier to deploy and conceal
in various environments.

Defence and removal of backdoor attacks. In LLMs, which are easier to attack than to defend,
ensuring model safety and eliminating the threat of backdoor attacks are imperative. First, a com-
prehensive understanding of the mechanisms of backdoor attacks and the impact of attack parameters,
including their applications across different models and domains, is required to resist the transferability
of attacks and enhance model robustness. Second, enhancing the interpretability of LLMs and gaining a
deep understanding of the model architecture are key to improving detection capabilities. Additionally,
standardised detection processes should be developed and large, comprehensive datasets should be estab-
lished to simulate various attack scenarios accompanied by uniform and effective evaluation standards
to measure the robustness of LLMs. Once a backdoor attack is detected, the model must be capable of
precisely locating and completely removing the trigger, thereby ensuring that this process does not affect
the performance of the model on unattacked samples. Finally, considering that LLMs are commonly used
as third-party APIs, proxies, and plugins, the involvement of multiple parties further increases system
complexity, necessitating special precautions against these indirect attack paths.

Enhancing model uniqueness. Despite the different names and characteristics of LLMs produced by
different manufacturers, the transferability of backdoor attacks remains a significant issue. If attackers can
obtain architectural information similar to that of the target model, they can develop effective backdoor
attacks and implant them across models for cross-model operations. In addition, vulnerabilities in open-
source models and toolchains may be exploited. To reduce this risk, the uniqueness of the model should
be enhanced by modifying its architecture and adjusting its parameters. In addition, strengthening the
confidentiality of the model details makes it difficult for attackers to effectively port attacks without a
deep understanding of the specific architecture of the target model. This not only reduces the probability
of a successful attack but also enhances the overall security of the model.

Evaluation metrics and benchmark. Currently, evaluation metrics for backdoor attacks are pre-
dominantly centred on the ASR, which limits a more holistic assessment. Comprehensive and standard-
ised metrics that account for other critical factors, such as the stealthiness of the attack (how effectively
the backdoor remains hidden under various detection techniques) and portability (how well the back-
door transfers across different model architectures and datasets) are lacking. Evaluating these aspects is
essential for gaining a complete understanding of backdoor threats and their potential impacts.

The development of unified benchmarks is crucial for assessing the efficacy of backdoor attacks and
defences designed to mitigate them. A consistent and standardised set of evaluation criteria would enable
researchers to more accurately measure and compare the effectiveness of different attack strategies and
defence mechanisms. Such benchmarks should also reflect real-world applications, considering factors
such as model robustness in deployment environments and long-term security implications of backdoor
attacks. Establishing these standards is vital for advancing the field and fostering more effective defence
solutions.

Leveraging backdoors to enhance interpretability. Backdoor attacks typically involve embed-
ding specific trigger patterns within a model to induce specific output behaviours. Researchers can
leverage this mechanism to design targeted triggers that illuminate the internal decision-making pro-
cesses of LLMs. For example, by incorporating interpretable triggers, researchers can create controlled
scenarios that facilitate a deeper understanding of how models respond to various inputs.

This approach enables the model reasoning pathways to be explored, revealing the underlying features
that influence its outputs. By analysing the responses generated upon the activation of specific triggers,
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researchers and end users can gain insights into the factors driving model decisions. Such insights can
significantly enhance transparency and trust in LLMs, which are often criticised for their “black box”
nature.

Moreover, these interpretability mechanisms can assist in debugging and improving the model. For
instance, if a particular trigger reveals unexpected behaviour, it may indicate underlying biases or flaws
in the training data. By systematically examining the effects of these triggers, developers can refine
the model architecture and training processes, ultimately leading to more robust and reliable LLMs.
Thus, backdoor mechanisms can serve as valuable tools for enhancing both the interpretability and
overall performance of large models, thereby transforming potential vulnerabilities into opportunities for
advancement.

8 Conclusion

This survey provides a comprehensive review of the development of LLMs, offering a systematic taxonomy
and an in-depth exploration of the security threats, with a particular focus on backdoor attacks. We
collected and analysed backdoor attack and defence methods on LLMs. By comparing them with those in
traditional deep learning, we aimed to more intuitively highlight the unique characteristics and challenges
of backdoor attacks in LLMs. The paper concludes with a discussion on the stealthiness and transferability
of backdoor attacks, outlining future developments in the field. Although existing defense measures
can mitigate the impact of backdoor attacks to some extent, significant challenges remain in practical
applications, particularly in addressing specific attack scenarios. Therefore, further research in this field
is crucial. We hope that this survey will provide key insights into backdoor attacks on LLMs, aiding
society to more effectively safeguard against this threat.
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