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The satellite communication systems provide seamless wire-

less access over large areas, supporting remote IoT devices

in regions without ground-based stations. Compared to

medium Earth orbit (MEO) and geostationary orbit (GEO)

satellites, low Earth orbit (LEO) satellites offer lower propa-

gation loss, lower latency, and near-global coverage [1]. The

cohesive clustered satellites (CCS) system formed by multi-

ple interconnected cooperative satellites can establish a ro-

bust network with high connectivity and great resilience.

This feature is particularly advantageous for remote or hard-

to-reach areas [2].

However, in certain locally critical areas, satellites may

not be fully interconnected, resulting in incomplete com-

munication coverage. To address this, guiding subsequent

satellite deployments is essential to enhance CCS connectiv-

ity. The main challenge lies in modeling feasible regions and

identifying the optimal interconnection point in 3D Earth

coordinates. In this study, we propose a general coordinate

transformation model to mathematically represent the fea-

sible region. Then, based on the connectivity evaluation

method in [3], we aim to find the optimal interconnection

point within the region of maximizing satellite connectivity.

Methodology. L = {L1, L2, . . . , LN} denotes a cluster of

N LEO satellites, where communication between any two

satellites is possible only if they are within each other’s

communication range. We first identify pairs of LEO satel-

lites (Li, Lj), Li 6= Lj ∈ L with overlapping communication

ranges but no interconnection. Here, this overlapping region

is a feasible region. Next, we perform coordinate transfor-

mations for each (Li, Lj). Finally, we evaluate the impact

of different interconnection points on satellite connectivity

through the algebraic connectivity (i.e., the second smallest

eigenvalue of the Laplacian matrix) [3].

Communication range. Based on [4], we can calculate

the communication range of each LEO satellite in orbit.

For each LEO satellite pair (Li, Lj) with no interconnec-

tion, their communication ranges ri and rj must satisfy

max(ri, rj) < d < (ri + rj), where d represents the Eu-

clidean distance between satellites Li and Lj .

ri and rj can be seen as two spheres. Then for each satel-

lite Li, we define it using a quadruple Li ← (xi, yi, zi, ri).

(xi, yi, zi) represents the 3D coordinate of the sphere center

(i.e., the position of satellite Li), and ri is the sphere radius.

Coordinate transformation. To facilitate analysis, we

need to perform coordinate transformation and set the co-

ordinate origin to Li. Then the direction from Li to Lj is

defined as the new z-axis. To achieve this, we translate and

rotate the coordinates of Li and Lj . For the translation

transformation, the translation matrix is given by

T =











1 0 0 −xi

0 1 0 −yi
0 0 1 −zi
0 0 0 1











. (1)

Specifically, we apply matrix T to translate the coordi-

nates of Li and Lj , positioning Li at (0,0,0) and expressing

Lj as v = (xj − xi, yj − yi, zj − zi) in the transformed co-

ordinate system. For the rotation transformation, we apply

Rodrigues’ rotation formula to align Lj with the z-axis. As a

result, the coordinate of Lj after rotation transformation is

vrot = (0, 0, ||v||). This rotation transformation is achieved

using the rotation equation v
rot = R3×3 · v, where R3×3

is the rotation matrix. To determine R3×3, we first calcu-

late the rotation axis k based on vrot and v, which is given

by k = (kx, ky, kz)T = v
rot×v

|vrot×v|
. Next, we calculate the

rotation angle θ as θ = arccos( v
rot·v

|vrot|·|v|
).

The skew symmetric matrix of the rotation axis k is

K =







0 −kz ky

kz 0 −kx
−ky kx 0






. (2)

As such, the rotation matrix is obtained by R3×3 =

I3×3 + sin(θ)K + (1 − cos(θ))K2, where I3×3 is an iden-

tity matrix.

To obtain the transformation matrix containing transla-

tion and rotation operations, we need to extend R3×3 as
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Figure 1 (Color online) (a) Feasible region; (b) connectivity improvement using our identified interconnection point; (c) LEO

satellites and optimal interconnection point above the Earth.

R =
(

R3×3 03×1

01×3 1

)

. Based on the above, the coordinate

transformation matrix M can be expressed as M = R·T. M

is used to map the coordinate of the optimal interconnection

point back to the real Earth coordinate. For satellite Lj , its

Earth coordinate is (xj , yj , zj , 1)
T = M

−1(0, 0, ||v||, 1)T.

The converted coordinate system is shown in Figure 1(a).

D is the region where Li and Lj intersect (i.e., Li and Lj

have overlapping communication ranges but are not inter-

connected). D consists of two spherical shells, where the

radius a of intersection circle C is given by a2 = r2i − h2
i =

r2j − h2
j . hi and hj denote the distances from the cen-

ters of spheres Li and Lj to the center of the intersection

circle C, respectively. Additionally, hi and hj must sat-

isfy d = hi + hj . Therefore, the radius a is calculated by

a =

√

r2i − (
r2
i
−r2

j
+d2

2d
)2. We can find a cuboid P that

tightly encloses region D, with x, y and z satisfying the

constraints of x, y ∈ [−a, a] and z ∈ [d− rj , ri]. The upper

and lower bound structure of P is well suited as the tight

feasible region for heuristic methods, leading to more stable

and efficient solutions.

Identify interconnection point. For the tight feasible

region P of (Li, Lj), we utilize the differential evolution

(DE) algorithm to find the optimal interconnection point

in the converted coordinate system. When the optimal

point p = (xp, yp, zp, rp) is determined, we can obtain

the real position coordinate (x′
p, y

′
p, z

′
p) of this point on

Earth by performing the inverse coordinate transformation

as (x′
p, y

′
p, z

′
p, 1)

T = M
−1(xp, yp, zp, 1)T.

Consequently, we derive p′ = (x′
p, y

′
p, z

′
p, rp) and extend

L to L′ = L∪{p′}. For the satellite topology represented by

L′, we model the Laplacian matrix and calculate its second

smallest eigenvalue [3], which corresponds to the algebraic

connectivity. The difference between the algebraic connec-

tivity corresponding to L and L′ is the contribution of point

p′ to the CCS connectivity. When there are multiple feasi-

ble regions, we need to utilize DE algorithm to identify can-

didate optimal interconnection points within each feasible

region. Then we rank these candidate points in descend-

ing order based on their gain contribution to the second

smallest eigenvalue. Depending on the number of intercon-

nection points to be placed (i.e., the number of satellites to

be added), we select the corresponding number of optimal

interconnection points from the candidates in order.

Simulation and discussion. We select N = 3 LEO satel-

lites, denoted as L1, L2 and L3. According to [4], we set

the minimum elevation angle as φmin = 16◦. The inclina-

tion angles of the LEO satellites are i1 = 99.5◦, i2 = 45◦

and i3 = 87◦. We adopt the Cartesian coordinate expres-

sions from [4] within an Earth-centered coordinate system

to compute satellite positions and communication ranges

at a specific time snapshot. Then, we conduct simula-

tion modeling using MATLAB. The satellite coordinates

obtained at a specific time snapshot are as follows: L1 =

(6524604.585,−47691.6206, 284993.887, 178177.5369) m, L2

= (6544643.566, 204011.7545, 204011.7545, 202308.4246) m,

L3=(6544643.566, 15099.7707, 288120.7887, 202308.4246) m.

We set the communication range of the interconnection

point as rp = 2× 105 m. For the DE algorithm, we employ

the most classic DE/best/1/bin strategy, and set the algo-

rithm parameter as CR = 0.7. During each mutation step, F

is randomly selected within the interval (0.5, 1). The maxi-

mum number of iterations is set to 2000, and the population

size is set as NP = 100.

Figure 1(b) shows the topology of cohesive clustered

satellites in the particular snapshot after adding our identi-

fied optimal interconnection point. The three blue dots in

the topology represent LEO satellites, and the blue solid line

represents the bidirectional communication link between the

satellites (i.e., LEO-LEO link). We find from Figure 1(b)

that one satellite cannot establish communication with the

other two. Here, the algebraic connectivity is equal to 0,

and the number of communication links is 1. The red pen-

tagram indicates the optimal interconnection point, and the

red dash-dotted line indicates the newly established bidi-

rectional communication link. By doing so, the resulting

algebraic connectivity is increased to 1, and the number of

inter-communication links is increased from 1 to 4. As such,

our solution significantly improves the CCS connectivity.

Figure 1(c) shows the positions of satellites and the op-

timal interconnection point above the Earth in this partic-

ular snapshot. We can see that the optimal interconnec-

tion point can establish bidirectional communication for the

three satellites.

Conclusion. In this study, based on [3], we aimed to en-

hance the overall connectivity of LEO clustered satellites by

identifying the optimal interconnection point. Specifically,

we proposed a general coordinate transformation model to

mathematically represent the feasible region, and used the

DE algorithm to obtain the solution. Experimental results

demonstrated that our solution effectively improves the CCS

connectivity.
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