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Abstract With the continuous advancement of space technology and the rapid increase in the number of low Earth orbit

satellites, cohesive clustered satellites (CCS) are thriving. Additionally, the growing computational capabilities of onboard

satellite equipment have enhanced constellations’ data processing power. These developments have made federated learning

(FL)-based CCS (CCSFL), a feasible and promising approach. Therefore, this paper proposes a CCSFL-based integrated

sensing and communication (ISAC) network, where FL convergence, transmission latency, and energy consumption are

optimized using a deep reinforcement learning (DRL) approach under heterogeneous datasets and system conditions. To

further enhance communication performance, we adopt intra-orbit inter-satellite link (ISL) multi-hop routing, inter-orbit

ISL neighbor forwarding, and sparse gradient compression techniques. Specifically, we introduce a utility function based

on the sensing signal-to-noise ratio (SNR) as a reward for the double deep Q-network (DDQN) algorithm, addressing the

optimal client selection problem under heterogeneous datasets and systems. Additionally, we employ the deep deterministic

policy gradient (DDPG) algorithm to optimize system-wide latency and energy consumption. Simulation results show that

the proposed algorithm outperforms the benchmark in both FL accuracy and resource utilization.
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1 Introduction

Owing to their low latency, extensive coverage, and strong robustness, dense low Earth orbit (LEO)
constellations are widely utilized for global Internet access, remote sensing, navigation, and positioning,
providing enhanced solutions for international communications and data services [1–3]. For example, the
Blackjack program, led by the Defense Advanced Research Projects Agency (DARPA), provides reliable
communication and detection support in military conflicts, thereby enhancing the military’s command
and control capabilities [4]. Additionally, the Starlink program, developed by SpaceX, aims to achieve
seamless global civilian network coverage and deliver high-speed, low-latency Internet access services [5].
In China, the “Thousand Sails Project”, led by the China Aerospace Science and Industry Corporation
(CASIC), seeks to deploy a constellation of 10000 low Earth orbit broadband multimedia satellites to
enhance and expand the coverage and capabilities of global satellite Internet services.

With enhanced computing capabilities, satellites can now collect and process ground data in real
time, quickly extracting key information. Furthermore, the development of inter-satellite links (ISLs) has
facilitated the formation of satellite clusters [6]. These cohesive clustered satellites (CCS) not only enhance
the observational capacity of individual satellites but also significantly improve the overall efficiency and
stability of multi-target observation missions [7]. Compared to traditional centralized processing models,
federated learning (FL)-based CCS (CCSFL) systems have garnered increasing attention from researchers
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due to their ability to reduce communication overhead while preserving data privacy [8]. This approach
works by sending only the updated model parameters to the central parameter server, avoiding the
transmission of raw data [9].

The authors in [10] proposed a terrestrial-satellite collaborative FL approach to manage machine learn-
ing services in remote areas, focusing on minimizing training latency by optimizing offloading volumes
and computation speeds. Similarly, Ref. [11] proposed a routing strategy combined with resource alloca-
tion to minimize delays in transmitting FL model parameters, leveraging ISLs to expedite aggregation
at ground stations. Furthermore, Ref. [12] proposed a novel scheduling method to address intermittent
connectivity and optimize the use of available time by utilizing the predictable visibility patterns between
satellites and ground stations.

While the aforementioned studies enhance the training speed and energy efficiency of CCSFL systems
through resource management, time scheduling, and inter-satellite routing, they overlook a critical prac-
tical challenge: the heterogeneity of datasets and systems. On one hand, local datasets gathered by
satellites are often non-independent and non-identically distributed (non-IID) due to variations in ob-
servation missions, sensor equipment, and spatial locations. On the other hand, differences in hardware
result in varying computing and communication capacities across satellites, leading to inconsistent system
latency.

To mitigate the heterogeneity caused by non-IID datasets, an alternating contrastive training algorithm
was proposed in [13], where local models were divided into public and private, with only public models
being uploaded to the server station. Unlike [13], the authors in [14] introduced a satellite grouping scheme
to address data heterogeneity. This approach used a clustering algorithm based on data distribution and
communication latency, which served as constraints for power optimization. Additionally, an experience-
driven control framework named “FAVOR” was proposed in [15], which addressed the bias introduced by
heterogeneous datasets by intelligently selecting clients. The authors further compared the FL training
rounds required by the clustering algorithm and the client selection algorithm, concluding that a well-
designed client selection strategy can significantly accelerate FL convergence.

Although the above studies explored the application of federated learning in CCS systems [10–12] and
implemented effective strategies to address data heterogeneity [13–15], limited attention has been given to
the heterogeneity of satellite systems. Furthermore, most existing research treats satellite local datasets
as fixed conditions, overlooking the impact of satellite sensing accuracy on the data quality.

Recent advancements in integrated sensing and communication (ISAC) technology offer promising so-
lutions. ISAC enhances satellite sensing accuracy, reducing the impact of non-IID datasets and hardware
disparities. Its dynamic resource allocation capabilities can integrate with federated learning strategies,
optimizing communication and computation efficiency in heterogeneous satellite systems. For example,
the authors in [16] proposed a dual-function LEO satellite constellation framework. This system enables
simultaneous information communication for multiple user equipment and location sensing for specific
targets using the same hardware and spectrum. In [17], the authors adopted rate-splitting multiple ac-
cess (RSMA) to manage interference while improving the communication-sensing trade-off. These studies
highlight ISAC’s potential in optimizing CCS networks, particularly in scenarios where data quality and
system efficiency are critical.

Building upon these insights, this paper proposes a CCSFL framework within an ISAC network, aiming
to optimize the latency and energy consumption of CCSFL systems while considering constraints such
as sensing signal-to-noise ratio (SNR), ISL routing, and heterogeneity in both datasets and systems.
Unlike previous approaches, this work specifically addresses both dataset and system heterogeneity, with
a particular focus on variations in satellite sensing accuracy, which have often been overlooked. The
specific contributions of this work are summarized as follows.

• This paper proposes a novel FL-based ISAC network for cohesive clustered satellites. Each CCS
orbit consists of a leader satellite (LS) and several follower satellites (FSs) functioning as FL clients. To
enhance communication performance, intra-orbit ISL multi-hop routing, inter-orbit neighbor forwarding,
and sparse gradient compression methods are employed. Additionally, during each FL training round, a
specific LS visible to the ground is selected to establish a star-ground link (SGL) with the ground station,
ensuring consistent communication.

• To tackle both dataset and system heterogeneity while maintaining sensing accuracy, this paper
proposes a double deepQ-network (DDQN)-based client selection algorithm. A utility function is designed
using the sensing SNR as a reward for deep reinforcement learning (DRL), facilitating the evaluation of
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FL accuracy under non-IID datasets and diverse hardware conditions. By dynamically selecting different
FS sets as FL clients in each training round, this utility function effectively accelerates FL convergence.
• To reduce system latency and energy consumption, we employ the deep deterministic policy gradient

(DDPG) algorithm to optimize transmission power and CPU frequency allocation for each FS. Simula-
tion results demonstrate that our proposed algorithms achieve superior convergence speed and resource
utilization compared to baseline methods. For instance, the DDQN algorithm reduces FL communication
rounds by 60%, while the DDPG algorithm enhances convergence speed by a factor of ten compared to
the soft actor-critic (SAC) approach.

The structure of this paper is as follows. Section 2 presents the CCSFL framework within the ISAC
network and defines the optimization problem. In Section 3, the DDQN method is used for FL client
selection, while the DDPG algorithm addresses network latency and energy consumption. Section 4
provides the simulation results, and Section 5 concludes the paper.

2 System model and problem formulation

The proposed system is illustrated in Figure 1. A total of N follower satellites sF,i, i ∈ N = {1, 2, . . . , N}
are distributed across different orbital planes, with each orbit containing a leader satellite sL,p. Each
follower satellite sF,i acts as an FL client, equipped with a synthetic aperture radar (SAR) for detecting
targets via reflected echo signals. Subsequently, Earth images are added to the dataset Di for local
FL training. The ground station (GS) serves as the FL server, aggregating and updating local model
parameters. Given the rapid movement of the LEO constellation and the highly dynamic nature of
the SGL, leader satellites sL,p are introduced as inter-satellite relays. To maintain the stability of the
SGL, only one leader satellite, sL,v, which is visible to the ground station, communicates with the GS
during each round of FL training. The specific satellite routing methods are discussed in detail in
Subsection 2.3.1. Additionally, to minimize communication and computation overhead, only a subset
of M (M < N) follower satellites participate in federated learning each round, with their local models
compressed by the leader satellites. In summary, the main framework proposed in this paper is categorized
into the following three models.

2.1 Sensing model

Radar sensing is widely utilized to identify target locations by analyzing the received echo signals. With
its exceptional all-day operation, all-weather adaptability, and global coverage capabilities, SAR has
considerable potential for industrial and military uses. In this paper, each SAR-equipped FS transmits
penetrating electromagnetic waves toward Earth targets, capturing structural features in the resulting
images. The pulse signal transmitted from the FS sF,i is defined as si(τ), and the echo signal received
at time j can be expressed as [18]

ri(τ, j) =

{

si(τ)Wa

(

j

Ksyn

)}

⊗ h(τ, j), (1)

where Wa(x) represents the ideal rectangular window function, Ksyn denotes the synthetic aperture
duration, and h(τ, j) describes the SAR system function formed by target scattering. Subsequently, the
Earth target can be imaged by back-convolution of the system function with the echo signal, and the
resulting image is added to the dataset Di of the follower satellite sF,i.

According to the radar equation [19], the sensing SNR can be written as1)

γi =
PS
i GS

t G
S
r λ

2σ

(4π)3R4
i kTBSARLsLa

, (2)

where PS
i is the transmit power, GS

t , G
S
r are the antenna gains of the transmitter and receiver, respec-

tively. λ is the signal wavelength and σ is the radar cross section (RCS) of the target. Rk
i , k, T , BSAR,

Ls, and La represent distance, Boltzmann constant, system noise temperature, bandwith, system loss,
and atmospheric attenuation, respectively.

1) The sensing SNR is further used in the final reputation-utility reward function.
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Figure 1 (Color online) FL-based ISAC system under cohesive clustered satellites.

2.2 Computation model

The computation model consists of three segments: (1) local computation, (2) parameter compression,
and (3) central aggregation.

2.2.1 Local computation

In this stage, the selected FSs sF,i, i ∈M = 1, 2, . . . ,M perform local training on their respective datasets
Di to minimize the local loss function gi(x). Specifically, Di = (xi,1, yi,1), . . . , (xi,q , yi,q), . . . , (xi,Qi

, yi,Qi
),

where xi,q and yi,q denote the input features and corresponding output labels of the q-th sample in sF,i,
respectively, and Qi = |Di| represents the total number of samples. For image classification tasks, a
commonly used loss function is the cross-entropy function, which is defined as [20]

gi(xi,n, yi,n) = −

Qi
∑

q=1

yi,q × log(pi,q), (3)

where yi,n is the correct label, pi,q denotes the probability that sample q belongs to yi,n. Therefore, the
total loss function in dataset Di can be written as

F (ωk
i ) =

1

Q

∑

q∈Qi

gi(ω
k
i ;xi,q, yi,q), (4)

where ωk
i is the local training model parameter vector for the k-th global iteration of sF,i. Therefore, the

updated model parameter based on the stochastic gradient descent (SGD) method is written as

ωk+1
i = ωk

G − η∇F (ωk
i ), (5)
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Algorithm 1 Sparse compression of local training parameter gradients in sL.

1: Initialize model parameter ωk
i , learning rate lr, momentum factor mf , sparsity factor P , momentum buffer V , and gradient

residual R;

2: repeat

3: Compute the local gradient gi(ω
k
i ) = ωk

i − ω
k−1
i ;

4: Add the accumulated residuals R to the current gradient;

5: Calculate the amplitude of gi(ω
k
i );

6: Find the top Q largest elements of the gradient vector and set all other elements to zero, denoted as g
TOPP
i (ωk

i );

7: Update the momentum buffer V = mf × V + g
TOPP
i (ωk

i );

8: Update the model parameter ωk
i = ωk

i − lr × V ;

9: Calculate the new gradient residual R = gi(ω
k
i ) − g

TOPP
i (ωk

i );

10: until no parameters.

where ωk
G is the global training model parameter vector in the k-th iteration. Then the computation time

in the local training under I iterations is

TCP
i,k =

ICiQi

fk
i

, (6)

where fk
i is the computing capability allocated by sF,i, Ci represents the CPU cycles needed to process

a single bit of data. And the corresponding energy consumption is ECP
i,k = I(κ(fk

i )
2CiQi), where κ is the

energy factor.

2.2.2 Parameter compression

Although federated learning avoids uploading raw data and reduces communication overhead, the massive
transmission of parameters still introduces non-negligible latency. To tackle this issue, leader satellites
utilize deep gradient compression (DGC) to substantially lower the required communication bandwidth
while preserving model convergence [21]. First, the local parameter gradient vector gi(ω

k
i ) is computed

to enable subsequent compression. Then, gi(ω
k
i ) is sparsified to gTOPP

i (ωk
i ), transmitting only the top

Q elements of the gradient vector with the largest magnitudes, while setting the remaining elements to
zero. Gradients not transmitted are aggregated after a certain number of rounds and sparsified at that
point, a process known as gradient accumulation. To ensure optimization stability, momentum-based
algorithms, such as SGD with Momentum, are used to retain historical momentum information and
correct it during sparsification. The detailed gradient compression process is outlined in Algorithm 1.
Notably, the latency and energy consumption during this phase are negligible, as the primary objective
is to reduce SGL latency.

2.2.3 Central aggregation

After collecting the local model parameters’ gradient, the federated averaging (FEDAVG) algorithm is
used to update the global model, written as

g(ωk
G) =

M
∑

i=1

βig(ω
k
i ), (7)

and then

ωk+1
G ← ωk

G + g(ωk
G). (8)

2.3 Communication model

The communication model (as shown in Figure 2) consists of intra-orbit ISL, inter-orbit ISL, and SGL
between GS and the visible leader satellite sL,v. In the intra-orbit ISL, follower satellites transmit their
local models to the leader satellite in the same orbit using a multi-hop routing protocol. The inter-orbit
ISL connects leader satellites across different orbital planes, transmitting compressed data using neighbor
forwarding techniques. Finally, the SGL establishes communication between the ground station and a
selected leader satellite, which is visible to the ground station during the current FL round.
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Figure 2 (Color online) (a) Intra-orbit ISL, (b) inter-orbit ISL and SGL models in cohesive clustered satellites.

2.3.1 ISL

The intra-orbit ISLs utilize a multi-hop routing protocol [22], as illustrated in Figure 2(a). Given that
each satellite is restricted to communication with a maximum of two co-orbital counterparts, ISLs are
established exclusively with immediate left and right neighboring satellites. The ISL model parameter
transmission is assigned the highest priority, allocating 80% of the total bandwidth to ensure aggrega-
tion efficiency. Additionally, quadrature phase-shift keying (QPSK) modulation is employed to balance
spectral efficiency and the robustness of federated learning with limited ISL resources. Based on this
architecture, each FS sF,i identifies the shortest transmission path to the LS sL,p to facilitate local model
updates. In scenarios where the number of FSs is odd, exemplified in Figure 2(a), sF,4 exhibits two po-
tential shortest paths. To resolve this ambiguity, a unique path is established by designating sF,i+1 as the
parent node of sF,i, as demonstrated by the hierarchical relationship between sF,5 and sF,4. Intra-orbit
ISLs are established contingent upon line-of-sight visibility, with the communication rate between sF,i

and its adjacent satellites sF,i±1 defined as

Rk
i = Bi log2

(

1 +
PC,k
i GsF,i

GsF,±1 |hi|2

σ2
1

)

, (9)

where Bi, P
C,k
i , GsF,i

are the bandwidth, power, and antenna gain of sF,i, respectively. GsF,i±1 is the
receiving antenna gain of sF,i±1 and σ2

1 is the noise power. Therefore, the maximum latency of sF,i in
the k-th global round is expressed as

TCM1

i,k = mi ×

∣

∣ωk
i

∣

∣

Rk
i

+
d

c
, (10)

where mi is the multi-hop count, d is the distance between sF,i and sL,p, and c is the speed of light.
Accordingly, the transmission energy consumption is

ECM1

k = PC,k
i TCM1

i,k . (11)

Since SGL is feasible only if it satisfies

αsg(t) = π/2− ∠(rg(t), rs(t)− rg(t)) > αmin, (12)

where αsg(t) is the elevation angle of the satellite, αmin is the minimum thresholds, rg(t) and rs(t) is the
position of GS and satellite, respectively. To enhance the transmission efficiency and stability of CCSFL,
only one satellite, sL,v, that satisfies Eq. (12) is selected to establish the SGL with the ground station.
The selected satellite sL,v aggregates the compressed local parameters from the leader satellite sL,p in
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each orbit p via inter-orbit ISL. Similar to intra-orbit ISL, the leader satellite sL,p communicates only
with its neighboring leader satellites sL,p±1 in adjacent orbits. Since compressed data are transmitted
and laser communication is commonly used in ISLs, the energy consumption and latency at this stage
are negligible.

2.3.2 SGL

The satellite-ground link follows the Shade-Rice distribution, whose channel coefficient is

hL = hshadowed ·

(

√

Kr

Kr + 1
· hLOS +

√

1

Kr + 1
· hNLOS

)

, (13)

where hshadowed is the shadow factor, Kr is the Rice factor, indicating the power ratio of the LOS (line
of sight) component (hLOS) to the NLOS (non-line of sight) component (hNLOS). The communication
rate is

R2 = BL log2

(

1 +
PsL,v

GGGL,t|hL|
2

σ2
2

)

, (14)

where BL, PsL,v
, GG, GL,t, and σ2

2 have similar meanings as in (9). Consequently, the transmission
latency and energy consumption are

TCM2

k =

∑M

i=1 βig(ω
k
i )

R2
, (15)

and

ECM2

k = PLT
CM2

k . (16)

2.4 Problem formulation

This paper focuses on improving system efficiency by reducing the total latency Tk and energy consump-
tion Ek, which are expressed as

Tk =

M
∑

i=1

TCP
i,k + 2×

M
∑

i=1

TCM1

i,k + TCM2

k (17)

and

Ek =

M
∑

i=1

ECP
i,k + 2×

M
∑

i=1

ECM1

i,k + ECM2

k , (18)

respectively. Notice that the multiplication factor “2” represents an approximation, as the round-trip
from sF,i to sL is considered equivalent. Additionally, an essential factor influencing the FL process is the
scheduling of client satellites sF,i, i ∈ 1, 2, . . . ,M,M < N , which can significantly impact FL convergence.
Besides, the non-IID nature of datasets on each sF,i, stemming from differences in locations and sensing
tasks, affects the overall FL iteration count due to the bias introduced by non-IID data. Furthermore,
the sensing SNR and system heterogeneity caused by differences in hardware devices can severely affect
the operational efficiency of CCSFL. Therefore, this paper aims to address the following problems:

(P0) :minimize

K
∑

k=1

αtTk + αeEk, (19a)

s.t. αt + αe = 1, (19b)

Maximizing sensing SNR, (19c)

Reducing the impact of data and system heterogeneity, (19d)

Satisfying power and energy constraints, (19e)
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where Eq. (19b) represents the weighting factor of latency and energy consumption. To address (19c)
and (19d), a DRL-based client selection scheme is reviewed in Subsection 3.1, where the sensing SNR,
data, and system heterogeneity are considered. Therefore, problem P0 can be further visualized as

(P1) :minimize

K
∑

k=1

αtTk + αeEk, (20a)

s.t. αt + αe = 1, (20b)

N
∑

i=1

aki = M, (20c)

0 < fk
i 6 F, (20d)

0 < PC,k
i 6 P, (20e)

Tk 6 Tk,max, (20f)

where Eqs. (20d) and (20e) are the computing and power capability constraint, respectively. And finally,
Eq. (20f) means the total latency in the k-th interaction cannot exceed the thresholds Tk,max. Eq. (20c)
indicates the client selection method, where

aki =

{

1, sF,i has been selected as the FL client,

0, else.
(21)

It can be observed that increasing computational capacity or power reduces latency but results in higher
energy consumption. Moreover, Eq. (20c) is a binary constraint but Eqs. (20d) and (20e) are continuous
constraint. As a result, the proposed problem is categorized as mixed-integer non-linear programming
(MINLP), making it difficult to tackle with conventional mathematical approaches. Hence, this paper
adopts a DRL algorithm to resolve the challenge.

3 DRL method for the proposed problem

3.1 Optimal satellites client selection

This section uses the DDQN algorithm to select the best M client FSs in each FL’s round. Details of
each step are described below.

3.1.1 Markov decision process

The corresponding Markov decision process consists of a state space, an action space, and a reward
function based on sensing SNR.

The state space vector in the k-th FL round can be expressed as

sk =
{

sk1 , . . . , s
k
i , . . . , s

k
N

}

, (22)

where ski represents FS sF,i’s state at global round k, written as

ski =
{

ωk
i , Q

k
i , ci, γi

}

, (23)

where ci is the number of cores of sF,i.
In general, the size of the action space for selecting M clients from N clients is CM

N , which will cause a
large computational burden. Therefore, we introduce an action value function Q(sk, ak) to select clients
and learn multiple actions simultaneously, where ak is the action space and expressed as

ak = aki × N,

N
∑

i=1

aki = M. (24)

Ultimately, client selection in each round is determined by the actions corresponding to the top M
highest Q values. To further mitigate the risk of overlooking important characteristics of certain clients,
the ε-greedy exploration strategy is employed.
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In this paper, a reputation function based on sensing SNR is utilized as a reward. The average difference
d
(

ωk
i , ω

k
G

)

is defined as the discrepancy between client i’s model weights and the global model during the
k-th training iteration,

d
(

ωk
i , ω

k
G

)

=
1
∣

∣ωk
G

∣

∣

|ωk
G|
∑

j=1

∣

∣

∣

∣

∣

ωk,j
i − ωk,j

G

ωk,j
G

∣

∣

∣

∣

∣

. (25)

We use the sigmoid function as the utility function for its stability regardless of smaller or larger distances.
Based on sensing SNR, the utility function is expressed as

Uk
i =

γi

1 + exp
(

a · d
(

ωk
i , ω

k
G

)) , (26)

where a is the slope parameter, a higher value of a makes the utility more sensitive to the discrepancy,
whereas a lower value reduces its impact. This function ensures higher utility when the local model aligns
better with the global model and the sensing SNR is higher. The final reputation-utility reward function
based on sensing SNR is expressed as

rki = µUk
i + (1− µ) rk−1

i , (27)

where µ adjusts the balance between current and past contributions. It means that we not only value
the current round’s utility but also consider the historical model’s implications.

3.1.2 DDQN algorithm

Unlike traditional DQN, this paper adopts the DDQN algorithm to implement the client selection
scheme2). This approach reduces the overestimation of Q-values, thereby improving the stability and
convergence of the reinforcement learning strategy [23]. The DDQN framework comprises two neural
networks: the main network, which is utilized for training, and the target network, responsible for evalu-
ating actions in subsequent states. To stabilize the learning process, the target network is updated every
P rounds. The DDQN update rule is given by

Q(sk, ak)← Q(sk, ak) + α

(

rki + βQtarget

(

ŝk, argmax
âk
i

Qmain

(

ŝk, âki
)

)

−Q(sk, aki )

)

, (28)

where α is learning rate and β is discount rate. ãk = argmaxâk Qmain

(

ŝk, âk
)

is used to select the optimal
action in the next state ŝk. And Qtarget(ŝ

k, ãk) is the Q value estimation procedure.

To mitigate the correlation between consecutive training samples and to improve the utilization of
historical experiences, this paper employs an experience replay mechanism. Specifically, the transition
tuple

(

sk, ak, rki , ŝ
k
)

, observed during round k, is stored in a experience pool D1. A small batch of
transitions is randomly selected from D1 during each Q-network update. Subsequently, Qmain is used to
select the optimal action ãki for a given state, while Qtarget is utilized to approximate the optimal action-
value function. Furthermore, the ε-greedy strategy is employed to prevent convergence to suboptimal
solutions by encouraging exploration through random action choices with a certain probability.

3.2 Latency and energy consumption minimization

In the previous section, the optimal selection of M client satellites to participate in federated learning
during each round was determined. In this section, we employ the DDPG algorithm to minimize the
latency and energy consumption of the CCSFL system by optimizing power allocation and computational
frequency. DDPG is a powerful deep reinforcement learning algorithm specifically designed to handle
continuous action spaces [24]. By utilizing the Actor-Critic framework alongside experience replay and
target networks, DDPG achieves notable stability and convergence in reinforcement learning tasks.

2) DDQN is well-suited for discrete action spaces, where client selection is a discrete decision problem.
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Algorithm 2 DDPG algorithm for latency and energy consumption minimization.

Initialize µ(sk2 |θ
µ), Q(sk2 , a

k
2 |θ

Q), µ′(sk2 |θ
µ′

), Q′(sk2 , a
k
2 |θ

Q′
), and D2;

for episode = 1, . . . ,K do

Obtain initial state sk2 ;

for j = 1, . . . , J do

Choose a power and frequency action ak
2 = µ(sk2 |θµ ) + Nt under state sk2 ;

Execute action ak
2 , observing the reward rk2 and the new state ŝk2 ;

Store transition (sk2 , a
k
2 , rk2 , ŝ

k
2 ) into D2;

Randomly sampling small batches (sk2 (j), a
k
2(j), r

k
2 (j), ŝ

k
2(j)) from the experience pool for training;

Calculating target Q value by y = rk2 + ηQ′(ŝk2 , µ
′(ŝk2 | θµ′

) | θQ′
);

Minimizing the loss function L = E[(y − Q(sk2 , a
k
2 |θ

Q))
2
];

Update actor network by ∇θµJ ≈ 1
|D2|

∑
j ∇

ak
2
Q(sk2 , a

k
2 |θ

Q)|
ak
2=µ(sk2 )

∇θµµ(sk2 |θ
µ);

Update the parameters of the target network with rate τ : θµ′
= τθµ + (1 − τ) θµ′

, θQ′
= τθQ + (1 − τ) θQ′

;

end for

end for

Return result.

3.2.1 Markov decision process

The state space sk2 can be written as

sk2 =
{

fk
i , . . . , f

k
M , PC,k

1 , . . . , PC,K
M , g

(

ωk
1

)

, . . . , g
(

ωk
M

)

}

. (29)

The continuous action space is represented as

ak2 = ak2 =
{

fk
i ∈ [0, F ] , PC,k

i ∈ [0, P ]
}

, (30)

and the reward function is rk2 = −(αtTk + αeEk).

3.2.2 DDPG algorithm

The main network of the DDPG contains an actor network µ(sk2 |θ
µ) and a critic network Q(sk2 , a

k
2 |θ

Q)
[25]. Correspondingly, its target network also includes an actor network µ′(sk2 |θ

µ′

) and a critic network
Q′(sk2 , a

k
2 |θ

Q′

). The action ak2 is obtained by ak2 = µ
(

sk2 |θ
µ
)

+ Nt, where Nt is the noise used for
exploration. The target Q value is calculated by

y = rk2 + ηQ′
(

ŝk2 , µ
′
(

ŝk2 | θ
µ′
)

| θQ
′
)

, (31)

where ŝk2 is the next state of sk2 . Then, the critic network undergoes an update process by minimizing
the loss function defined as follows:

L = E
[

(

y −Q
(

sk2 , a
k
2

∣

∣θQ
))2
]

, (32)

where E [·] is the expectation. Finally, the actor network is updated using the deterministic policy
gradient theorem, written as

∇θµJ ≈
1

|D2|

∑

j

∇ak
2
Q(sk2 , a

k
2 |θ

Q)|ak
2=µ(sk2 )

∇θµµ(sk2 |θ
µ), (33)

where |D2| is the size of experience pool D2. The DDPG algorithm for the latency and energy consumption
minimization is described in Algorithm 2.

4 Simulation results

In this section, we perform numerical simulations to evaluate the effectiveness of the proposed algorithm.
The MNIST and CIFAR-10 datasets are utilized for federated learning validation, with non-IID data
distributions simulated using FedLab [26]. FedLab is an open-source Python library designed for FL
research and experimentation, which facilitates the implementation of communication, model updates,
and data partitioning.
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Figure 3 (Color online) Heterogeneous datasets: non-IID CIFAR-10 and MNIST datasets with different partition parameters.

(a) Non-IID CIFAR-10 datasets with αd = 0.5; (b) non-IID CIFAR-10 datasets with αd = 0.9; (c) non-IID MNIST datasets with

αd = 0.5; (d) non-IID MNIST datasets with αd = 0.9.

Table 1 Simulation settings.

Parameter in system Value in system Parameter in optimization Value in optimization

Number of FS N 10 Weighting factor αt and αe 0.5 and 0.5

Selected client FS M 5 FL training round 100

RCS of the earth targets σ 10 m2 Size of experience pool |D1| = |D2| = 10000

Intra ISL bandwith Bi 20 Mbps Learning rate 0.01

Intra ISL transmission capacity P 5 W Reputationparameter µ 0.8

Local computation capacity F 3 GHz εinit and εend for greedy exploration 0.9 and 0.2

Distance of SGL R2 500 km Batchsize 50

The non-IID distribution of the CIFAR-10 and MNIST datasets, partitioned by FedLab, is illustrated
in Figure 3. MNIST includes 70000 28 × 28 grayscale images of handwritten digits (0−9) [27], while
CIFAR-10 contains 60000 32 × 32 color images across 10 categories like airplanes, cars, and birds [28].
Both datasets are widely used for image classification and serve as benchmarks for machine learning
algorithms. We use the Hetero Dirichlet partitioning method to assign labels to the MNIST and CIFAR-
10 datasets, with the data distribution governed by the Dirichlet distribution parameter αd. A larger
value of αd (e.g., αd = 0.9) results in a more balanced distribution of data categories among clients,
whereas a smaller value (e.g., αd = 0.5) leads to fewer data categories per client, resulting in a more
non-IID distribution.

Next, we compare the DDQN scheme proposed in Subsection 3.1 with “FAVOR” and federated proximal
optimization (FedProx) schemes, and the DDPG scheme proposed in Subsection 3.2 with the SAC and
baseline schemes. This comparison aims to further validate the advantages of the proposed system in
terms of latency, energy consumption, and convergence speed. The specific parameters are listed in
Table 1.

Figure 4 illustrates the convergence of FL accuracy on the MNIST and CIFAR-10 datasets with different
partitioning factors, αd = 0.8 and αd = 0.5. The results show that αd = 0.8 achieves higher accuracy and
faster convergence on both MNIST and CIFAR-10, indicating that non-IID data significantly degrade
federated learning performance. Furthermore, the MNIST dataset demonstrates faster convergence and
higher training accuracy compared with CIFAR-10 when using the same neural network model. This is
attributed to the fact that MNIST has lower resolution and simpler features, which allow the model to
fit the data effectively without requiring extensive regularization. However, despite MNIST’s superior



Zhao H B, et al. Sci China Inf Sci September 2025, Vol. 68, Iss. 9, 190303:12

Figure 4 (Color online) Convergence of FL accuracy for

MNIST and CIFAR-10 datasets with different partitioning fac-

tors αd = 0.8 vs. αd = 0.5.

Figure 5 (Color online) Heterogeneous datasets and system:

convergence of DDQN, FAVOR, and FedProx algorithms under

the partitioning factor αd = 0.5.

Figure 6 (Color online) Reward comparison under DDPG vs. SAC algorithm with different weighting factors αt and αe.

accuracy and convergence speed, its simulation curves have poor visibility. Therefore, the following
validation of the proposed DDQN scheme focuses on the CIFAR-10 dataset.

Figure 5 compares the convergence of the proposed DDQN algorithm, “FAVOR” in [15], and the
FedProx algorithm with partitioning factors αd = 0.5, respectively. The “FAVOR” method employs the
DQN approach to address non-IID datasets but overlooks system heterogeneity and sensing accuracy.
FedProx, an improved federated learning algorithm, enhances stability by introducing a proximal term
to align local updates with the global model [29]. It addresses training instability and convergence
challenges caused by client heterogeneity, such as differences in computing power and non-IID data. The
results show that the DDQN algorithm achieves higher accuracy, converging 48% faster than ‘FAVOR’
and 60% faster than FedProx. It is because DDQN employs a dual Q-network architecture to mitigate
overestimation bias and dynamically adjusts its learning strategy based on client capabilities, enhancing
robustness with non-IID data and overall performance.

Figure 6 compares the rewards of the proposed DDPG algorithm with the SAC algorithm under
different latency and energy weighting factors. SAC is an off-policy reinforcement learning algorithm de-
signed to maximize both reward and entropy, encouraging efficient exploration [30]. Using an actor-critic
framework with stochastic policies, it is particularly well-suited for continuous action spaces, effectively
balancing exploration and exploitation. The results clearly show that the DDPG algorithm achieves sig-
nificantly higher rewards and faster convergence compared with SAC, regardless of αt and αe. Specifically,
when αt = 0.8 and αe = 0.2, DDPG converges by the 8th round, whereas SAC requires 80 rounds, making
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DDPG nearly 10 times faster in terms of convergence and improving 22% latency-energy reward. It is
because SAC uses stochastic policies for exploration, while DDPG’s deterministic policy enables faster
learning with less exploration noise. DDPG’s soft target update mechanism reduces training instability,
leading to quicker policy refinement and avoiding SAC’s entropy trade-off.

5 Conclusion

This paper proposes an FL-based ISAC network for cohesive clustered satellites, optimizing FL conver-
gence, satellite transmission power, and computational frequency under heterogeneous datasets and sys-
tems. Additionally, intra-orbit ISL multi-hop routing, inter-orbit neighbor forwarding, and SGL gradient
sparse compression techniques are employed to enhance the system’s communication efficiency. Specifi-
cally, to address the heterogeneity of satellite detection data and systems, we introduce a reputation-utility
function based on the sensing SNR as a reward for the DDQN algorithm, enabling optimal client selection
and reducing the number of FL iterations. To further optimize latency and energy consumption in the
CCSFL system, we utilize the DDPG algorithm to refine satellite transmission power and computational
frequency. Simulation results validate the effectiveness of the proposed algorithms, where the FL con-
vergence speed and the latency-energy reward outperform benchmarks. In future work, we will explore
hierarchical FL architectures for mega-constellations alongside real-time adaptation to orbital dynamics,
such as Doppler shift compensation in inter-satellite links.
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